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Abstract 
This paper combines and applies concepts from several researchers to outline an alternative 
framework to plan power systems for resource adequacy needs, which we call Adaptive Stress 
Period Planning (ASPP). It first provides background information regarding least-cost planning 
objectives and the challenge of balancing an increasing need for model representation with 
computational intensity as power systems evolve in complexity. Next, it motivates the 
opportunity for a new paradigm by outlining challenges of frameworks in use today that rely on 
aggregate capacity heuristics (i.e., capacity credits and planning reserve margins). It then lays out 
the main process details of ASPP, which more directly represent spatial and temporal detail of 
power systems in a capacity expansion model to adaptively select risk periods. The paper 
concludes with a summary of the approach, its benefits, and opportunities for future work.  
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1 Background 
An important goal of electrical power system planning is to identify cost-effective strategies to 
ensure resource adequacy by balancing future power supply with projected demand. In practice, 
the planning exercise is primarily a task in identifying least-cost infrastructure investments to 
meet a defined resource adequacy criterion (often loss-of-load expectation). “Better” system 
designs meet the socially defined level of acceptable shortfall risk at a lower cost than alternative 
strategies, as illustrated in Figure 1a.  

Solution quality is also a function of trade-offs of the modeling tools and methods that represent 
a system (as illustrated in Figure 1b). Tools often used for planning exercises, often called 
capacity expansion models (CEMs), vary widely in degree of power system representation (Cole 
et al. 2017). Generally, more detail leads to greater accuracy in capturing resource specifications 
and system interactions and thus higher-quality solutions. However, increased detail requires 
more data and increases computational burden. Planners therefore must balance model 
sophistication with computational intensity, striving to maximize solution quality within the 
bounds of the tool. 

As a system increases in complexity, greater detail is often needed to retain acceptable solution 
quality. For example, dependence on interregional power transfers, a broader range of potential 
generation and storage investment options and configurations, and wide meteorological diversity 
across candidate variable renewable resource sites all complicate the portfolio selection process.  
Without adjustments to consider this increased complexity, planners risk designing systems with 
higher-than-necessary system costs or inaccurately estimated resource adequacy levels. 

 
Figure 1. a) Objective of the planning process; b) modeling trade-off impacting solution quality 

Historical frameworks for planning with respect to resource adequacy were based on available 
capacity and are largely still in use today (National Association of Regulatory Utility 
Commissioners [NARUC] 2023, North American Electric Reliability Corporation [NERC] 
2020). In predominantly thermal systems, shortfall risk was assumed to be sufficiently low if 
enough generating capacity was installed relative to projected peak demand. In recent years, 
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several technological and meteorological evolutions have introduced new considerations 
impacting resource availability and conditions of system risk. These include the growth of 
renewable, storage, flexible load resources, electrification, and extreme weather (Energy Systems 
Integration Group [ESIG] 2021). Considering these changes, methods to estimate aggregate 
capacity heuristics (i.e., capacity credits and planning reserve margins) evolved to retain the 
original capacity-based structure (ESIG 2023, NARUC 2023). However, challenges remain in 
balancing model fidelity with computing needs. 

Several power system modelers are considering approaches to represent evolving considerations 
for resource adequacy in planning models without aggregate capacity heuristics (Bahl 2017, Li et 
al 2022, Teichgraeber 2021, Massachusetts Institute of Technology [MIT] 2022, Johnston 2019, 
Pfenninger 2018, Stephen 2023). The goal of these new methods is to simultaneously achieve 
improved computational efficiency and greater system representation, as illustrated by the blue 
line in Figure 2. As real-world systems increase in complexity, greater model detail is needed to 
retain the quality of the system representation (highlighted by the grey shaded area). 
Conventional planning methods, including those that rely on aggregate capacity heuristics, 
increase exponentially in computational complexity to retain quality (illustrated by the red line). 
Ultimately, new approaches that improve computational efficiency with greater model 
representation should produce higher-quality adequacy assessments and more cost-effective 
planning decisions.  

 
Figure 2. The goal of the new paradigm is to achieve better computational performance at the 

levels of representation quality required to model modern power systems. 

This paper outlines the opportunity for and the main process details of an alternative modeling 
framework for power system planning, which we call Adaptive Stress Period Planning (ASPP). 
ASPP more directly represents temporal and spatial detail in a CEM while using an adaptive 
process to strategically select “stress periods.” This allows for greater model representation 
during the most important times for planning. For example, each stress period in the planning 
model includes transmission network representation and time-sequenced resource dispatch. 
Importantly, this more efficiently considers interactions within resources and with load when 
identifying solution alternatives and captures energy limitations (or measures “energy 
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adequacy”)—two limitations often cited with respect to current aggregate capacity planning 
frameworks (ESIG 2023). 

The report is organized as follows. Section 2 reviews the limitations of aggregate capacity 
frameworks that motivate the need for a paradigm shift. Section 3 synthesizes preceding work 
and elaborates upon considerations of the ASPP framework. Section 4 concludes with a 
summary of the approach, its benefits, and opportunities for future work.  



4 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

2 Opportunities To Improve on Aggregate Capacity 
Frameworks 

Challenges in balancing model representation quality and computational tractability when 
planning for evolving grid systems are driving researchers to explore alternatives to the 
aggregate capacity paradigm. This section describes those challenges by highlighting core 
elements of these frameworks, evolutions in the grid, and limitations of the core elements for 
those evolutions. 

2.1 The aggregate capacity framework was created for thermal-based 
systems with relatively few spatial, temporal, or resource 
interaction effects to consider. 

 
For this paper, we define aggregate capacity frameworks according to two core components: 

1. A (or multiple) resource adequacy target(s) based on peak load or peak net load and a 
planning reserve margin (PRM), defined independently for an aggregate representation of 
space and time and for a particular resource portfolio (in megawatts [MW]).12 

2. Individual resource capacity contributions (accreditation), defined independently for 
an aggregate representation of space and time and for a particular resource portfolio (in 
MW). 

The outlines of these components came from the first resource adequacy planning processes, 
which were developed when most power systems consisted of primarily thermal generators (i.e., 
natural gas, coal, and nuclear) and relatively stable patterns of load (NARUC 2023, NERC 
2020). Periods of greatest system risk occurred during periods of high load or when a generator 
was forced out. 

A straightforward and sufficiently accurate way to conduct resource adequacy planning was 
simply to compare a sum of capacity contributions (initially nameplate capacity, then capacity 
credits) to the resource adequacy target in MW, as illustrated in Equation 1 and Figure 3. 

Sum of capacity contributions (MW) >= peak demand + planning reserve margin (MW) 

Equation 1. Simple aggregate capacity framework for resource adequacy assessment 

 
 
1 Note that historically, most PRMs were static and not recalculated regularly, though the need to adjust PRM-based 
adequacy targets based on the system is well recognized (Reimers 2018; WECC 2020).  
2 Aggregate representation refers to how planning processes define resource adequacy targets and capacity 
contributions on an annual, seasonal, or in rare cases, a monthly, basis.  
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Figure 3. Simple aggregate capacity framework for resource adequacy assessment 

As will be discussed next, several modifications have been made to details of the framework. 
Capacity accreditation was developed to fit wind, solar, and storage resources into a single 
aggregate value representing the resource’s average contribution during periods of high shortfall 
risk. Detailed modeling techniques were introduced to aid calculations of capacity credits and 
PRM (Milligan and Parsons 1997; Madaeni et al. 2012). Most workflow processes rely on a 
combination of resource adequacy and capacity expansion models to identify new infrastructure, 
as illustrated below in Figure 4. Resource adequacy models are used to exogenously determine a 
system level reserve margin and individual resource capacity credits. These capacity values are 
then passed to a capacity expansion model where the contributions of existing resources are 
compared against a planning reserve margin and the most cost-effective new resources are 
identified to meet needs. While methods vary, the commonality across these frameworks is 
aggregate (often annual, seasonal, or monthly) targets and capacity credit heuristics. 

 

Figure 4. Traditional capacity expansion framework with system needs and individual resource 
contributions precalculated. 
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2.2 Modern developments require greater model detail which 
presents computational challenges. 

Several evolutions of the grid have added sources of uncertainty and interactive effects that 
require greater modeling representation to accurately assess and plan for resource adequacy. 
Three important evolutions are 1) the introduction and growth of variable renewable energy 
(VRE), 2) the introduction and growth of energy storage resources, and 3) opportunities for 
interregional coordination via transmission. 

Assessing resource availability by location and time and system risk at all times. The 
availability of resources such as solar and wind varies across time and geography. In turn, this 
has created new conditions for system risk. System risk is now not only a function of load 
variability and generator outages but also the interactive variation in resource profiles with one 
another and with load. Rather than risk occurring only if there are not enough thermal resources 
online to meet peak load, a shortfall event might occur any time of the day due to low renewable 
resource during high or low load hours. To capture interactive effects and ensure adequacy, it is 
important for planning tools to consider a resource’s location, model more granular timescales, 
and test all time periods for potential risk (Carvallo et al. 2023). 

Chronological sequencing and grid economics. Storage resources are limited in capacity and 
duration, and their availability in any period is a function of how much charging or discharging 
occurred during preceding periods from other system resources. In addition, the choice to charge 
or discharge is influenced by grid economics and the opportunity cost of charging or discharging 
at prices in preceding or projected future periods. As a result of these dependencies, system risk 
is increasingly impacted by interactive effects between resources and load. To represent this, 
planning models must capture chronological sequencing and grid economics (Stephen et al. 
2022). 

Transmission networks and outages. As penetrations of VRE grow and the grid becomes more 
weather dependent, geographically diverse resource mixes enabled by transmission and 
coordination become important to balance grid needs. When considering transmission, the 
amount and location of energy available from resources are influenced by congestion and 
outages on transmission lines. In turn, transmission limitations can also influence system risk. 
Bigger, connected systems exponentially increase interactive effects between resources and load. 
To take advantage of the opportunities of geographic resource diversity and accurately capture 
considerations for transmission and interregional coordination, models must incorporate 
sufficient spatial representation to capture transmission networks and outages (Carvallo et al. 
2023). 

2.3 Aggregate capacity frameworks are limited by the need to 
represent complex spatial, temporal, and resource interaction 
effects with reductive capacity contribution and adequacy target 
heuristics. 

As noted previously, the two main elements of aggregate capacity frameworks (capacity 
contributions and resource adequacy targets) are defined individually for an aggregate 
representation of space and time and for a given portfolio of resources. For example, most 
planning processes define an annual or seasonal resource adequacy target and establish annual or 
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seasonal capacity contributions for groups of resource types (solar, wind, and storage) in a region 
(NARUC 2023). The need to aggregate system interactions into single-dimensional heuristics 
creates challenges when trying to balance greater needs for model representation with 
computing. These challenges are described below.  

Information reduction requires estimation techniques and computing power. Capacity 
credit and PRM calculations require methods and assumptions that inherently introduce potential 
for error. Several research papers and industry practitioners have concluded that these heuristics 
are sensitive to methodological details and often change from year to year and by planning entity 
(Jorgenson et al. 2021; ESIG 2023). These calculations also require multiple runs of a resource 
adequacy model. As the grid continues to evolve and interactive effects multiply, capacity credit 
calculations must adjust for new needs and compress more information. The challenge of 
achieving an accurate solution amid growing computational needs is recognized among 
researchers (Mills 2020), recently prompting a study to identify and prioritize methodological 
considerations according to computing effort and meaningful influence on assessments (Carvallo 
et al. 2023). 

Single-dimension heuristics do not capture interactive effects needed to test portfolio 
options. The goal of resource adequacy planning processes is to determine the least-cost 
resource mix for meeting resource adequacy needs. To do this, capacity expansion processes 
must evaluate multiple combinations of resources, or “portfolio options.” 

Because of interaction effects between resources and loads, capacity credits and planning reserve 
margin calculations are a function of the other resources in any given system or portfolio 
(Stephen et al. 2021). This means they change with each incremental resource considered for a 
portfolio. Capturing interaction effects requires a detailed representation of time and space, 
chronologically linking time, and connecting spatial elements with a network representation. 

In aggregate capacity frameworks, this spatial and temporal representation is captured in a 
resource adequacy model, which is used to help calculate individual, aggregate capacity credits 
and planning reserve margins. However, the resource adequacy model captures interactions only 
of a single portfolio—it is not designed to consider multiple options of resources. 

Conversely, spatial and temporal detail is inevitably lost when complete chronology is 
compressed into capacity credits, load duration curves, or representative days for use in a CEM, 
where portfolio options are evaluated. Thus, CEMs relying on these constructs do not explicitly 
capture portfolio interactions. This challenge is recognized and similarly described by ESIG’s 
New Design Principles for Capacity Accreditation in sections on disentangling portfolio effects 
and circularity (ESIG 2023). 

Solutions to portfolio challenges require exponential increase in computing needs. To 
address the challenge of evaluating portfolio options that rely on system interactions, 
practitioners (Nelson and Heath 2021; NWPCC 2021; Dison 2023) have sought to populate 
multidimensional capacity credit lookup tables for use in capacity expansion exercises. These 
approaches require precomputing aggregate capacity heuristics under many alternative resource 
portfolios. 
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While producing a single capacity credit may require several runs of a resource adequacy model, 
calculating the capacity credits of one full portfolio may increase computing in multiplicative 
terms. Calculating capacity credits for interregional systems adds another dimension of scale to 
computing. The approach to precompute capacity credits for multiple portfolio options increases 
computing needs exponentially. For relatively small systems with few options available to 
expand, this approach may be tractable. For larger systems—particularly those considering 
interregional options—an aggregate capacity framework would likely require significant 
simplifications in model representation (e.g., number of investment alternatives considered, 
interregional transmission constraints, etc.) to feasibly run. 
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3 Adaptive Stress Period Planning: An Alternative 
Framework 

In recent years, different planning paradigms have begun to emerge as alternatives to the 
aggregate capacity planning framework. This section compiles and supplements work from prior 
research into a single framework. It first presents ideas that address challenges identified in the 
previous section and then outlines practical considerations of such methods. 

3.1 Alternatives to aggregate capacity heuristics 
As described previously, a key underlying challenge of aggregate capacity frameworks is the 
need to compress spatial and temporal detail and related resource interaction effects into single-
attribute capacity heuristics. Alternatively, a growing body of work eliminates aggregate 
capacity heuristics, instead directly representing operational attributes for each resource type in a 
CEM. Calliope (Pfenninger 2018) and SWITCH (Johnston 2019) are two examples of CEMs that 
eschew capacity credits in favor of simply enforcing energy and power balance constraints in 
each chronologically modeled operating period, with an operating reserve margin applied in each 
timestep to enforce sufficient surplus so that the resulting system is resource adequate. 

Unfortunately, for all but the smallest systems, explicitly modeling every hour of the operating 
horizon—as would seemingly be required with this approach to guarantee the designed system is 
resource adequate—can require significant simplifications in other modeling dimensions to 
maintain computational tractability. To solve this problem, a diverse and growing body of 
literature has investigated the potential benefits of an iterative approach, where outputs from a 
reduced-chronology CEM are tested against a full-chronology operations model. 

Earlier versions of this concept used automated adequacy assessments to adjust a traditional 
CEM’s planning reserve margin (Frew et al. 2019), but later work improved on this to pass more 
information through the feedback loop and select new periods to explicitly model in subsequent 
iterations (Bahl 2017; Teichgraeber 2021; Li et al. 2022; Massachusetts Institute of Technology 
[MIT] 2022; Li et al. 2023). 

These approaches all leverage the fact that only the most stressful periods in the planning 
horizon drive system adequacy requirements; once these are accounted for and mitigated against, 
the remaining periods are also covered.3 Because not all periods checked in the assessment phase 
must be modeled in the investment optimization, planning tools can design cost-effective 
systems that are resource adequate under many years of operating conditions, despite being 
derived from much more compact computational problems. For example, Stephen (2023) 
describes applying this approach to design a large, multiregional, 100% wind/solar/storage 
power system that maintains resource adequacy under 7 years of hourly operating conditions, 
despite considering fewer than 1% of operating periods in the expansion problem. This approach 
also eliminates the requirement for speculative capacity credit precalculations under different 

 
 
3 Note this is the same logic behind traditional planning reserve margin constraints used in planning models— 
however, in that case, generating resources have uniform availability across the planning horizon, so there are no 
resource portfolio interactions and the period of greatest system stress is always the period with peak load. 
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resource portfolios, saving both computational cost as well as the need to make subjective 
choices in accreditation methodology. 

This approach has several benefits. In the presence of storage resources, enforcing hourly 
constraints as an effective load adder (an “energy reserve margin”) ensures the system has 
sufficient energy, not just capacity, available to satisfy the reserve requirement (Hawaiian 
Electric Company 2021; Stephen 2021). A transmission network can also be modeled when not 
relying on single-attribute heuristics, allowing congestion between areas to be considered 
directly in the planning problem. Directly representing these constraints within an assessment or 
procurement model provides the optimization process with additional (less “compressed”) 
information that can more economically address adequacy constraints. 

3.2 Process and method details 
The general framework proposed is illustrated in Figure 5. It is a six-step iterative process: 

1. Initialize the expansion decision process. 
2. Assess the system’s resource adequacy. 
3. Based on adequacy assessment results, identify times of system stress. 
4. Augment the CEM based on identified stress periods. 
5. Rerun the CEM to propose a better candidate resource portfolio. 
6. Repeat Steps 2–5 until the candidate portfolio is assessed to be resource adequate; then 

select that portfolio. 

Two modeling components are used in the process. First, a resource adequacy model (RAM) 
assesses system adequacy and identifies stress periods. Second, information about those stress 
periods is passed to a CEM to consider and make decisions about what resources to build to meet 
periods of inadequacy in the assessment phases. 

The remainder of this section outlines each step in greater detail. 
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Figure 5. Proposed general iterative framework. 

Step 1: Initialization 

The first step in the process is to establish the parameters of the expansion decision. These key 
inputs include the following: 

• What is the initial infrastructure state of the study system to which candidate investments 
will be added? 

• Under what conditions (weather, economic activity, policy constraints, and so on) is the 
expanded system expected to operate? 

• What are the probabilistic resource adequacy metrics and criteria (e.g., loss of load 
expectation [LOLE] = 0.1 event-day/year, normalized expected unserved energy [NEUE] 
= 1 part per million) (Electric Power Research Institute [EPRI] 2022) against which the 
system’s performance should be measured? This will determine at what point the system 
can be considered resource adequate. 

Once these have been determined, the existing resource portfolio and conditions under which it 
is expected to operate reliably are passed forward to Step 2. Note that this first step is performed 
only once. 

Step 2: System Adequacy Assessment 

Once an infrastructure buildout has been determined (either directly from the initial system state 
or in subsequent iterations as the result of a decision from the CEM), the portfolio’s resource 
adequacy performance can be assessed and compared to the established adequacy criteria. If the 
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assessment determines system adequacy matches its adequacy target (within some tolerance 
band), the process is complete, and the candidate portfolio becomes the final solution. If the 
candidate portfolio is inadequate relative to the criteria, the iteration process continues on to Step 
3. Alternatively, if the portfolio exceeds the defined adequacy thresholds, the process may either 
terminate or continue iterating to eliminate unnecessary investments and reduce overall system 
costs. 

In the stress period identification literature, the operations model used to test system performance 
is often not a dedicated RAM but rather an adjustment of the optimization based CEM with 
expansion decisions fixed and all time periods added. Using a dedicated RAM provides several 
benefits and is the recommended approach for this process. Class-leading RAMs are carefully 
designed for maximum computational performance and can usually evaluate adequacy risk 
across the operating horizon far faster than is possible with a one-shot optimization formulation, 
particularly as the size of the study system grows. Furthermore, this enhanced computational 
efficiency allows a dedicated RAM to quantify probabilistic adequacy risks—not just 
deterministic operating performance—which is necessary to comprehensively conclude a 
candidate system is in fact resource adequate according to the parameters described in Step 1. 

The representational fidelity of the chosen RAM, including transmission disaggregation and 
generator operating constraints, should be carefully considered relative to the representation used 
in the capacity expansion step. The resource adequacy assessment may involve simulating 
hundreds or thousands of times more operating periods than are run in the CEM (before even 
considering probabilistic assessment), so some simplifications to achieve acceptable 
computational performance are necessary. However, if the RAM simplifies too many operating 
constraints, it may lose the ability to identify certain aspects of system stress and so fail to inform 
the CEM about those conditions—even if the CEM could have mitigated against them had it 
known they were an issue. 

One possible solution may be to employ multiple parallel assessment models in this step, each 
screening for different kinds of operability challenges (e.g., energy and capacity adequacy versus 
flexibility challenges). Though it would be preferable for a single model to capture all factors 
holistically, there may be performance benefits to decomposing assessments in this way. 

Conversely, if the RAM considers factors not modeled in the CEM, there must be other 
mechanisms (beyond simply reproducing the problematic time) applied in the model 
augmentation step to communicate the nature of such issues. Otherwise, the planning model will 
fail to recognize the issue and be unable to mitigate against it. For example, the RAM may 
identify problematic conditions arising from stochastically modeled forced thermal outages, even 
though the deterministic CEM considers those time periods to be adequate given the average 
availability of thermal generation. In that case, some supplementary signal (e.g. explicitly 
representing the outage condition, increasing an energy reserve margin, or producing an internal 
estimate of the probabilistic risk) would be required to make the RAM outcome actionable to the 
CEM. 
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Key consideration in this step: 

• Given the system’s previously determined adequacy criteria, is the candidate system 
resource adequate under the scenario(s) to be studied? If so, no new adequacy 
investments are required. 

Workflow design decisions in this step: 

• Are the (likely simplified) operating constraints captured by the chosen RAM(s) 
sufficient to identify relevant system stress conditions for the CEM? 

• Can any risk factors considered by the RAM(s) but not explicitly represented in the CEM 
be communicated through other means? 

 
Step 3: Stress Period Identification 

If the system adequacy assessment concludes the system is in fact not adequate, as defined by the 
initialization step, the next step is to identify periods of greatest stress from the RAM to pass to 
the CEM. An inadequacy determination from the RAM implies the CEM’s simplified temporal 
or spatial representation may be missing information about conditions that lead to adequacy 
events and requires iteration (discussed more below). If the expansion step knew about these 
conditions, it could make mitigating investments to design a system capable of operating with 
sufficiently low shortfall risk. 

The key distinguishing feature of the decision process described here (relative to aggregate 
capacity frameworks used largely today) is that a complete time series of system risk is obtained 
from the adequacy assessment step and used to determine what information is most important to 
provide to the expansion decision step. For example, rather than modeling a limited number of 
typical days or time periods in the CEM, the RAM would flag a specific period of elevated 
system risk and provide the corresponding load, renewable output level, and other system 
conditions to the CEM to be considered directly. 

The process for prioritizing which periods to include in the expansion step will vary between 
implementations of the framework, but a typical approach could involve ranking contiguous 
blocks of time (e.g., 24-hour days) based on risk metrics such as expected unserved energy 
(EUE), as observed in the previous adequacy assessment step. Though a day-long stress period is 
sufficient to capture operational details of diurnal storage, longer time blocks may be needed in 
systems with multi-day reliability events or otherwise stronger cross-day energy coupling 
because of long-duration or seasonal storage. Alternatively, storage-specific ranking metrics—
such as deviations between expected (in the expansion model) and observed (in the adequacy 
model) storage state-of-charge evolution—could be used to capture key storage charging periods 
that may be temporally distant from shortfall events but still critical for system adequacy. 

This step assumes the candidate system is inadequate as designed and needs more information 
about risky operating conditions to improve its future decisions. In some cases, however, the 
workflow may be iterating on the system design because it is overly adequate and investment 
levels can be reduced. In that case, no new stress periods need to be identified. 
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Workflow design decisions in this step: 

• What are the criteria used for ranking stress periods (e.g., adequacy metrics, mismatched 
storage behavior)? 

• How should the duration of a stress period be defined (e.g., day, multiple days, week)? 
 
Step 4: Capacity Expansion Model Augmentation 

Once the previous system design’s adequacy has been assessed and operating periods have been 
ranked to reflect their importance for informing adequacy-aware expansion decisions, the next 
step is to update the expansion model to include the periods identified as most important. 

How many such periods to add, and whether these should augment or replace stress periods 
identified in previous iterations, are factors that must be specified as part of the workflow design 
process. On one hand, adding many risk periods at once may reduce the total number of 
iterations required to achieve a resource-adequate system. On the other hand, many of the top 
stress periods from one iteration may share similar underlying drivers and so provide redundant 
investment signals to the expansion problem. In this case, adding fewer risk periods at once and 
building up the problem more incrementally may yield a smaller but more diverse set of stress 
conditions, at the cost of additional resource adequacy and capacity expansion runs (even if the 
individual CEM runs may be faster). The optimal selection strategy will likely depend on the 
diversity of risks facing the system as well as the relative computational performance of the 
RAM and CEM used in the process. 

Other planning model parameters can also be adjusted in response to adequacy assessment 
results. For example, if the CEM includes operating reserve requirements or applies an energy 
reserve margin (ERM), the magnitude of those adequacy buffers may be adaptively adjusted in 
response to performance observations from the RAM (for example, increasing the ERM during 
already-modeled high-risk periods that are still causing adequacy issues). Alternatively, if the 
planning problem applies an internal adequacy constraint, such as an upper bound on estimated 
EUE, this constraint could be tightened or relaxed—or the internal estimator updated—to better 
align outcomes with the desired “true” adequacy metric measured by the RAM. 

Workflow design decisions in this step: 

• Should sets of stress periods identified in previous iterations be retained or replaced? 
• How many “top” stress periods (as identified in the previous step) should be added to the 

expansion model at a time? 
• Should the expansion problem’s endogenous reliability criteria be (re)adjusted based on 

feedback from the adequacy assessment and/or stress period identification steps? 
 
Step 5: Capacity Expansion (Re)Optimization 

The CEM is formulated to select the new resources required to balance supply and demand in all 
time periods identified by the RAM. Among other factors, the model considers availability of 
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candidate resources during stress periods and selects resources that meet overall system needs 
while minimizing total capital and operating costs. 

This explicit representation of stress events eliminates the need for precomputed heuristics such 
as capacity credits and instead directly assesses potential investment contributions based on 
resource availability profiles and other explicitly modeled factors such as transmission 
congestion or chronological storage operations. 

As discussed in Step 2, the level of fidelity represented in the planning model should be 
considered in concert with the representation available in the RAM. If operations in the CEM are 
substantially more detailed than the RAM, the iteration process may fail to identify important 
classes of operating conditions for the CEM to consider, even though the CEM is theoretically 
capable of mitigating those classes of issues. Similarly, if the CEM operations representation is 
substantially less detailed than the RAM, and no alternative way to signal those issues is 
available (e.g., parameter recalibration), the CEM will not be able to mitigate adequacy issues 
identified by the RAM—preventing the iteration process from terminating. 

A concrete example of this is the chronological representation of long-duration or seasonal 
storage applied in the CEM. If a RAM (running with full storage chronology) is identifying 
energy adequacy challenges arising from an inability to charge interday storage resources, a 
CEM that considers only individual days of operations with periodic boundary conditions would 
be unable to reproduce these issues and would therefore be unable to mitigate the adequacy 
issues identified. In this situation, the CEM would need to be enhanced to use a “sparse” 
chronological storage representation that allows tracking and constraining the evolution of a 
storage device’s charge state over an arbitrarily large number of time periods—while explicitly 
representing system operating conditions and dispatch decisions only for the set of time periods 
modeled (Kotzur et al. 2018; Gonzato et al. 2021). 

Step 6: Iterate and Finalize Result When Adequacy Is Achieved 

After an initial assessment of stress periods, CEM adjustment, and resource reselection, the 
adequacy of the updated candidate system can be reassessed to determine whether the new 
results are acceptable according to the chosen adequacy criteria. If the updated system adequacy 
is sufficiently close to the target, the process terminates, with the most recent system design 
reported as the final result. Otherwise, the RAM results are used to readjust the CEM, and the 
iteration process continues. The final result reports the types of technologies, sizing, and 
locations of new resource investments that together meet the system’s preestablished 
performance criteria.  

Relative to other heuristic-based approaches, designing a system to mitigate concrete adequacy 
risks provides a more economically efficient solution because resource investments can be sized 
to address specific events drawn from a large meteorological dataset rather than relying on 
preprocessed, reduced-form estimates of resource availability—which may not provide 
sufficiently detailed information to inform optimal investment decisions—during times of system 
need. Eliminating the need for preprocessed static availability estimates also presents 
computational savings, which can become substantial when attempting to accurately characterize 
adequacy contributions of individual resources in a high-dimensional decision space. Because 
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the number of periods required for capturing adequacy needs is much smaller than the full 
operations horizon—and optimization problem complexity increases superlinearly relative to 
problem size—repeatedly solving several small planning problems can also be substantially 
more computationally efficient than solving a single, much larger planning problem. 
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4 Conclusions and Future Work 
This paper describes the opportunity and method details for an alternative framework of power 
system planning for resource adequacy needs, called Adaptive Stress Period Planning (ASPP). 
The framework overcomes the challenges of compressing evolving spatial and temporal detail of 
modern power systems by identifying the most stressful periods and directly modeling detailed 
system interactions in a capacity expansion model. In doing so, it eliminates aggregate capacity 
heuristics (i.e., capacity credits and planning reserve margins) that add computational burden and 
challenge the ability to consider portfolio options in the planning process. The goal of this 
method is to achieve greater model representation within computing bounds so that the ultimate 
power system solution accurately models resource adequacy needs and achieves lower-cost 
solutions than are possible under current planning paradigms. 

This paper is part of an ongoing body of research on the ASPP framework. Additional work is 
underway at NREL exploring applications of the ASPP framework in producing more robust, 
cost-effective, and computationally simpler power system planning solutions. Future work would 
be beneficial to further compare ASPP applications to aggregate capacity solutions. 

Another key area for future work is to explore the appropriate tuning of workflow considerations 
and parameters for different levels of system complexity. As noted previously, technological 
evolutions in the grid have prompted the need for more detailed modeling of grid interactions, 
such as chronological operations for storage resources. Depending on the number of unique 
viable generator types and the size of a system, parameters in the ASPP framework can be tuned 
to include more detail with the trade-off of computing burden. Some parameters include the 
length of stress periods, the selection criteria for stress periods, and number of periods added per 
iteration. It would be useful to explore the sensitivity of solutions to various parameters within 
the context of a highly connected and complex system versus one with fewer interactive 
components. Like Carvallo et al. (2023), this could help prioritize model considerations and fit 
the framework to specific planning needs. 
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