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Abstract. We seek to obtain a second-by-second match between the simulated and mea-
sured structural loads of a utility-scale wind turbine. To obtain the one-to-one load simula-
tions, we start with the furthest upstream component of the modeling chain: the turbulent
inflow. We consider new and existing methods to generate constrained-turbulence flow fields.
The new method is based on large-eddy simulations (LES) and machine learning (ML). The ex-
isting methods include Kaimal-based TurbSim and the superstatistical wind field model. The
inflow measurements used to constrain these simulations are obtained with a nacelle-mounted
scanning lidar. We compare the flow fields for the different inflow simulation approaches and
validate their associated load predictions against measurements collected in the Rotor Aero-
dynamics, Aeroelastics, and Wake (RAAW) field campaign. We find that the rotor-position
control developed for this study is key in enabling the time match between measurements and
simulations. When this control approach is used, the load simulation performance tracks with
the inflow simulation fidelity, with LES+ML yielding errors ≤ 4% for the damage-equivalent
loads of flapwise bending moment, and tower fore-aft bending moments.

1 Introduction
It is extremely difficult to pinpoint the source of model errors when simulating large wind turbines
embedded in a real atmosphere [1]. Some of this difficulty is related to the model chain complexity, from
turbulent inflow through wind turbine response and control to wake morphology. Due to the coupling and
sequencing of these models, the performance of a downstream component might contain a summation or
cancellation of errors from the upstream model components, starting from the undisturbed inflow [2].

To improve the validation of aeroelastic models, it is therefore important to maximize the accuracy of
the entire chain. In this work, we start by addressing the modeling of the furthest upstream component:
the inflow. One way to improve inflow simulations is to rely on experimental measurements and force
numerical outputs to match measured values at specific points, leaving the underlying model to fill in
the gaps where observations are not available. Depending on the model and its application, this match
might target different spatiotemporal scales: mesoscale-microscale coupling methods were developed
for simulations of longer duration over larger domains [3], whereas the so-called constrained-turbulence
approaches are used to produce flow fields with a spectral energy content that matches observations in
at least one point for simulations of shorter duration in smaller domains [4, 5, 6, 7]. Regardless of the
application, the underlying numerical model is responsible for filling in the space around the observed
points, and the quality of the generated inflow is still bound to the limitations of the model itself.

Here, we compare the ability of different models to fill in the unobserved points around lidar mea-
surements of the inflow of a utility-scale wind turbine. One novelty of this work is the introduction
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of a reconstruction method based on large-eddy simulations (LES) and machine learning (ML). This
novel method, which we refer to as LES+ML here, was primarily developed to serve as an observation-
constrained boundary condition generator for high-fidelity, blade-resolved simulations. However, the
inflows generated with the LES+ML technique can also be directly used to drive mid-fidelity aeroelastic
simulations, as is done here. We compare the new inflow generation approach to a Kaimal-based re-
construction method [8] and to the superstatistical wind field model [7]. We assess the ability of each
method to simulate measured loads on the wind turbine. The intercomparison of several turbulence
reconstruction methods and their validation against measurements is also a unique asset of the work.

2 Data and Methodology
The data used for this study was collected during the Rotor Aerodynamics, Aeroelastics, and Wake
(RAAW) field campaign conducted in 2023 in Lubbock, Texas [9]. The wind turbine being simulated is
operating in isolation in flat terrain, has a rotor diameter of 127 m, and a hub height of 120 m.

2.1 Inflow Measurements
The period of study comprises 11 minutes and 44 seconds between 15:30:25 and 15:42:08 UTC (10:30:25
and 10:42:08 local time) on July 24, 2023. The time series duration is limited by the lidar measurements,
which were set to cycle through four different scanning geometries every hour, leaving only < 15 minutes
for the arc scans used here. Atmospheric conditions during this period are summarized in Table 1. The
horizontal layout of the available inflow instruments relative to the mean nacelle yaw and hub-height
wind direction is given in Fig. 1.

Table 1: Atmospheric conditions during the study period.

Quantity Value Unit Height Quantity Value Unit Height
Wind speed 8.9 m s−1 120 m Rotor-layer shear -0.45 m s−1 183.5 m
Wind direction 220.7 deg 120 m Rotor-layer veer -5.1 deg to 56.6 m
Turb. intensity 11.24 % 120 m Heat flux 0.184 K m s−1 2.5 m
Air density 1.03 kg m−3 120 m Inversion height 900 m 0 – 10 km

Figure 1: Layout of inflow instrumentation (a) in a horizontal plane relative to the mean wind and nacelle
yaw; and (b) in a vertical plane, relative to the inflow simulation grid (dots).

Figure 1 also shows the scanning lidar (Halo Photonics Streamline XR) measurements that are used to
constrain the inflow simulations: zero-elevation scans with 16 beams that span an azimuth arc of 30◦ with
a resolution of 2◦. These measurements undergo several processing steps to yield the velocities that are
ultimately used as turbulence constraints (Fig. 2). First, the radial velocities are quality controlled using
a dynamic filter [10]. Next, they are projected onto the center beam direction and thereby converted to
longitudinal (u) velocities. The projection error standard deviation due to wind direction variability is
estimated to range between 0.10− 0.27 m s−1 over this period, being proportional to the beam azimuth.
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Lateral (v) and vertical (w) flow components are not considered. The temporally disjunct umeasurements
are then regularized in time (t) and upsampled to 1 Hz [11]. Next, the measured arc (green circles in
Fig. 1) is interpolated onto a cartesian grid (green line in Fig. 1). At this point, several data gaps are
still present due to blade passage in front of the lidar. These gaps are filled in using a diffusion model
[12] that is trained on synthetic lidar scans derived from LES. We leverage the LES that was performed
for the LES+ML inflow generation (Section 2.3.3). The diffusion model learns the relationship between a
perfect scan and one that was intentionally corrupted to match the real-world measurements. As such, the
algorithm is able to address blade-passage gaps, noise, and Gaussian smoothing effects with an associated
uncertainty < 0.045 m s−1.

Figure 2: Lidar-derived longitudinal wind velocities u(y, t) three rotor diameters upstream of the wind
turbine at hub height. The dotted white lines mark the rotor span.

2.2 Wind Turbine Measurements
Operational and structural load measurements used in this study correspond to the period between
15:31:09 and 15:42:52 UTC. The offset of 44 s between the inflow and wind turbine measurements was
added to account for the approximate advection time over the three rotor diameters (381 m) that separate
the scanning lidar measurements and the rotor. The advection speed was taken as the laterally averaged,
time-averaged lidar-derived u = 8.66 m s−1.

The measured quantities used to constrain the wind turbine simulations include time series of blade
pitch and azimuth position. While the wind turbine did yaw during the period of interest (Fig. 3), the
simulated turbine does not perform any yaw maneuvers. This is justified by the fact that the inflow
is constrained on the scanning lidar measurements, which are always aimed along the dominant wind
direction because the lidar is mounted on the nacelle and yaws with it. The measured quantities used in
the validation include near-root (at ∼ 2% span) blade flapwise and edgewise bending moments, tower-
base (at ∼ 7% span) and tower-mid (at ∼ 46% span) fore-aft and side-side bending moments. All of the
wind turbine measurements used here were calibrated during the field campaign.

Figure 3: Time series of hub-height wind speed and direction as measured at the meteorological tower,
and nacelle yaw position. Time is relative to the start of the period of interest: 15:30:25 UTC for the
inflow and 15:31:09 UTC for the wind turbine.
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2.3 Inflow Simulations
Time series of two-dimensional (lateral-vertical) flow planes are generated with three different methods.
The extent of the planes is slightly different for each tool, but all of them follow the same grid spacing of
10 m in both directions, ensuring a point at the hub location. The time resolution is 1 s for all inflows,
a hard limit imposed by the lidar measurements.

2.3.1 TurbSim Here, the turbulence constraint is enforced using the time series option for the tur-
bulence model. The v and w velocity components are not simulated. The time-averaged wind speed
profile is set to match the cup anemometer measurements collected at five heights across the rotor span
at the meteorological (met.) tower. Davenport’s exponential coherence model [13] is used to ensure a
spatially coherent flow field. Instead of using default values, the coherence parameters are fit to in-situ
wind speed measurements vertically separated by one rotor radius (from hub height to top tip). The
fit considers a 4-hour window centered on the period of study. The best-fit values aK = 18.479 and
bK = 3.087× 10−4 m −1 (see [14] for a description) represent a good fit for multiple vertical separation
distances, ranging between 10 m and 127 m, which is the rotor diameter.

2.3.2 Superstatistical The superstatistical wind field model [7] was developed to reproduce the em-
pirically observed anomalous, non-Gaussian wind field fluctuations with a superposition of Gaussian-
distributed wind field statistics that are compliant with International Electrotechnical Commission (IEC)
standards. The advantage of this model is that the statistical significance of extreme wind gusts measured
from a met. mast or lidar, which common IEC wind field models greatly underestimate, can be precisely
controlled by matching the so-called intermittency coefficient (µ) to measurements. Here, this and other
model parameters (such as the correlation length, L and the Hurst coefficient, H) were estimated from an
18.5-hour time series of u as measured by an ultrasonic anemometer located on the met. tower (Fig. 1).
The extent of this time series was sufficient to determine µ = 0.17 ± 0.03 from a fit of the flatness〈
(δτu)

4
〉
/3

〈
(δτu)

2
〉
∼ τ−4µ/9 of wind speed fluctuations δτu = u(t + τ) − u(t). For a Gaussian wind

field (e.g., Kaimal or Mann), the flatness is strictly 1, whereas the superstatistical wind field captures the
measured increase in the occurrence of fluctuations δτu at small-scale separations τ . Furthermore, since
the superstatistical wind field model is based on a scale mixture of Gaussian-distributed wind fields, it
can also be constrained on real-world measurements. The u-component of the superstatistical wind field
was constrained on the lidar measurement, whereas v and w components were left unconstrained with
standard deviations matching the Kaimal model. As the measurements indicated no clear presence of
wind shear, the latter was not incorporated in the u-profile. In contrast to integral length scales of wind
field models in the IEC standard, which are typically assumed to be on the order of 101 − 102 m, here
we obtain a larger value of roughly 1.5 km.

2.3.3 Large-eddy simulation and machine learning In the LES+ML inflow generation approach, we fill
in the unobserved points above, below, and off to the side of the lidar measurements using a combination
of LES and machine learning. To do this, we first simulate the atmospheric boundary layer with an LES
that approximately matches upwind hub-height wind speeds, turbulence intensity, rotor-disk shear, and
surface heating. During this initial simulation, we sample the domain to match the layout of the real-
world measurements. This sampling is performed repeatedly over the entire LES domain to maximize the
amount of data that can be used to train the machine learning model. This sampling includes: a lateral
line at hub height representing the lidar measurements and the two-dimensional plane that intersects
the line representing the desired inflow plane. We train a diffusion model [12, 15] to generate planes
from time series of the hub-height lines. More details on the model implementation can be found in a
published repository [16]. The LES+ML approach generates inflows with all three correlated velocity
components and air temperature, as these are available from the LES dataset. Temperature is not used
for the present study. Once the ML model is trained, the real-world lidar measurements (Fig. 2) are used
as input to the diffusion model, producing the lidar-constrained flow field.

2.4 Wind Turbine Simulations
The wind turbine model used here was implemented into OpenFAST version 3.5.1. The model was
extensively tuned to reference data provided by the wind turbine manufacturer and subsequently vali-
dated against long-term measurements [9]. To enable a time-domain comparison, we use a rotor-position
controller (RPC) that is implemented in ROSCO [17] version 2.9.0 [18]. This control feature enables
the simulated blades to have the exact position and pitch angles of the blades in the field. The pitch
time series are directly prescribed to OpenFAST, and the generator torque is controlled to minimize the
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error in blade azimuth position. All simulations were also performed without RPC, using the ROSCO
controller that was developed for this wind turbine and calibrated against extensive reference data. All
simulations are performed for the 704 s of available inflow and employ the geometrically exact beam
model BeamDyn for the blades, the reduced-order beam model ElastoDyn for the tower, the dynamic
blade-element momentum theory with unsteady airfoil aerodynamics in AeroDyn15, and the control fea-
tures from ServoDyn.

3 Results
3.1 Inflow
Time series of vertical profiles of longitudinal wind velocity are shown for the three simulation approaches
in Fig. 4. Time series of lateral profiles are not shown, as they are identical for all simulation methods
and follow the lidar constraint (Fig. 2). In Fig. 4, the flow fields are sampled at the lateral location
of the wind turbine (y = yhub = 0) and span slightly above and below the vertical extent of the rotor.
Every method was set up to enforce the lidar-derived constraint at hub height, as marked by the white
lines. The constraint led all simulation approaches to generally agree on when to speed up or slow down
the flow, but the vertical extent of the turbulent structures turned out different for each tool. TurbSim
produced the most vertical heterogeneity, and the superstatistical model the most vertical homogeneity.
Some vertical heterogeneity is also present in the LES+ML approach in the form of vertical wind shear
due to ground effects and due to the fact that it is not possible to enforce a specific shear value in
the LES. Rather, the LES shear is a consequence of the lower boundary conditions: surface heat flux
(0.184 K m s−1, refer to Table 1) and roughness length (set to 0.1 m for this work).

Figure 4: Time series of turbulent inflow generated with the three methods and sampled at the lateral
location of the wind turbine over the vertical span of the rotor. The rectangle marks the area where the
lidar constraint was enforced. The lidar data are not overlaid onto the figure.

To better visualize the differences in spatial heterogeneity, take for example the low-speed period
between 200 s and 250 s in Fig. 4 and corresponding to 15:33:45 UTC – 15:34:35 UTC in Fig. 2. The
lateral-vertical snapshots during this time (Fig. 5) further emphasize the differences between the inflow
simulation approaches, revealing similar findings laterally to what was seen vertically: smoother flow
fields for the superstatistical method, and the most spatial variability for TurbSim. The higher vertical
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shear of LES+ML apparent in Figs. 4 and 5 is quantified in Fig. 6a: approximately 1.25 m s−1 across the
rotor span. The other methods more closely match the negligible shear observed during the period. The
measured shear of −0.45 m s−1 between rotor bottom and top is comparable to the standard error on the
mean, which was estimated to be ∼ 0.2 m s−1. This error metric was obtained from σu/

√
Neff where

σu is the standard deviation of u and Neff = T/ (2Tu) is the effective number of samples, a function of
time series duration (T = 704 s) and the flow timescale (Tu ∼ 16.5 s at hub height) [19].

Figure 5: Snapshot of turbulent inflow generated with the three methods, shown 210 s after the simulation
start (equivalent to 15:33:55 UTC in Fig. 2). The dashed line marks the rotor area and the rectangle
marks the area where the lidar constraint was enforced. The lidar data are not overlaid onto the figure.

Figure 6: Wind shear (a) and power spectra (b-c) for met. tower anemometers and simulations. The
shear is given by the average over time and the lateral dimension. The simulation spectra are computed
for every lateral point spanning the rotor extent (15 points) considering the Welch method and 60-second
segments. The shaded area shows the maxima and minima of the 15 spectra and the line marks the
mean. The spectra are evaluated at the grid points closest to the rotor bottom (b) and top (c).

These spatial variability findings can be further confirmed with a spectral analysis of the time series
of longitudinal velocities, shown in Figs. 6b and 6c for two heights: rotor bottom and top. The TurbSim
spectra are different for the two heights, with substantially more high-frequency energy below than above.
The spectral energy content of the other two methods does not vary as much across the vertical extent
of the rotor disk, which is also true for the measurements. Note that the measurements in Fig. 6 are
obtained at the met. tower because lidar scans were limited to hub height. The superstatistical inflow
yielded the lowest spectral power content for frequencies f < 0.1 Hz, but produced the best match to
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measurements above that frequency. The LES+ML and TurbSim show a better match to measurements
at low frequencies but drop off near 0.05 Hz. Spectra at hub height are not shown, as they are identical
for all methods due to the enforced constraint.

3.2 Wind turbine response
The lateral and vertical velocities are not shown but are different depending on the simulation approach.
TurbSim does not simulate these components, as they are not part of the constraint. The superstatistical
method produces v and w fields that are uncorrelated with u. LES+ML produces flow fields that are
physically consistent for all three components, because the full velocity vector was considered when
training the ML model. These differences in the wind vector affect the rotor aerodynamics, leading to
rotor inflow skew angles that range 0◦ − 20◦ in LES+ML and 2◦ − 13◦ for the superstatistical inflow,
while remaining constant near the shaft tilt angle in TurbSim.

Figure 7: Time series of inflow skew angle at the rotor, a quantity computed by AeroDyn during the
OpenFAST simulations.

The aerodynamic differences, in turn, affect the fore-aft structural response of the tower and blades.
The remainder of this section considers statistics, spectra, and time series of structural load signals.
The loads analysis discards the first 60 seconds of simulation, leaving 644 s for analysis. All results
are normalized to protect the proprietary nature of the data. To obtain an equivalence between the
measurements and simulations, the simulated bending moments at discrete tower (from ElastoDyn) and
blade (from BeamDyn) nodes are linearly interpolated to the location of the strain gage measurements.
The blade moment statistics are given as an average of the three blades. The damage-equivalent load
(DEL) calculations consider a Wöhler exponent of 10 for the blades and 4 for the tower. The power
spectra uses 120-second segments and the Welch method with a Hanning window.

Load statistics normalized by the measured values are given in Fig. 8. These results indicate that
the means (Fig. 8a) are less sensitive to inflow differences, with the ratios for a given quantity staying
approximately constant as the inflow changes. The mean errors stay below 10%, with the simulations
overestimating the mean load for the tower and underestimating it for the blades. The mean was also
not very sensitive to the control strategy used. When using the RPC, the mean loads were consistently
higher by a few percent: 2% − 4% higher across inflow strategies for blade flap moment, and 1% − 3%
for tower fore-aft moment.

The standard deviations were more sensitive to inflow and controller approach (Fig. 8b). The use of
RPC considerably reduces the load standard deviations. For the superstatistical and LES+ML inflows,
this reduction brings the ratios closer to unity. For TurbSim, it does the opposite, leading to a decrease
in performance in terms of statistics. For the simulations with RPC, the error in load fluctuations
tracks with the level of fidelity in the model, with TurbSim yielding the largest errors in the form of
underestimations. The superstatistical and LES+ML results are similar, with ratios of 1.0 for blade flap
and 1.1 for the tower fore-aft moments. The DEL results are similar to the standard deviation results
in that RPC model performance tracks with model fidelity, with LES+ML showing a ratio of ∼ 1 for all
load signals considered. Hereinafter, we only consider results from the simulations with the RPC.

Load spectra (Fig. 9) indicate that the lower load variability of TurbSim is likely related to the
inflow, by revealing lower values at low frequencies for this simulation approach. Note that TurbSim
did not show an underestimation of spectral power in the wind speed (Figs. 6b and 6c). Therefore,
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Figure 8: Ratio between simulated and measured fore-aft load statistics: mean (a), standard deviation
(b) and damage-equivalent load (c). In each subplot, ratios are given for three quantities (marker shapes),
three inflows (marker colors) and two controller approaches (marker thicknesses).

this load variability underestimation by TurbSim is likely related to the lack of lateral and vertical
flow components in this inflow. Starting at the frequency of one blade passage (P), TurbSim matches
the mesurements well, capturing the frequency and magnitude of spectral peaks better than the other
inflows. The superstatistical inflow yielded the opposite results from TurbSim for the three quantities
considered: a good match for frequencies < 1P, and a growing underestimation of spectral power for
higher frequencies. Consistent with the statistical analysis of Fig. 8, the LES+ML results show the best
performance here: a close match to measurements at low frequencies that is maintained until 5P for the
blades and 3P for the tower.

Figure 9: Power spectra of near-root blade flapwise bending moments (a), tower base (b) and tower mid
(c) fore-aft bending moments. The tower (b and c) spectra are on the same axes.

4 Discussion
The main novelty of this work is the level of detail that was dedicated to reproducing in a simulation envi-
ronment the second-by-second structural response of a multimegawatt wind turbine. This effort addresses
the need for a comparison procedure in the time domain between calculated and measured properties
under turbulent inflow, which was identified by experts working on International Energy Agency Wind
Task 29 [20]. This undertaking can be separated into four main thrusts: (i) a comprehensive field cam-
paign with a strong emphasis on inflow characterization, the development of (ii) computational methods
to assimilate the measured inflow into a high-fidelity simulation environment, of (iii) a robust, validated
wind turbine model, and of (iv) an RPC capability that enables precise time-space matching between
the real-world and simulated blades (Fig. 10). While the work presented here required the execution of
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these four efforts, the objective of the analysis was to assess the value of (ii), the development of data
assimilation techniques for high-fidelity simulations. A portion of the results also quantified the added
benefit of (iv). Note that the motivation behind the development of these methods goes beyond the work
presented here: It is meant to enable time-resolved validation of high-fidelity wind turbine simulations.
Here, we do not undertake any high-fidelity wind turbine simulations. Rather, we focus on the precursor
to these simulations: the high-fidelity, turbulence-constrained inflow. We compare such inflows to those
generated with existing, lower-fidelity approaches and to measurements.

Figure 10: Zoom into time series of near-root flapwise (a,c) and edgewise (b,d) blade bending moments
over 30 seconds for measurements and simulations with ROSCO (a,b) and ROSCO+RPC (c,d). Shown
for only one blade.

The main takeaway from the work performed here is that using an RPC and higher fidelity inflows
substantially improves the accuracy of the simulated structural loads. When an RPC is used and the
inflow stays the same, the fore-aft load variability decreases substantially. This decrease represents an
improvement in the simulations with higher-fidelity inflows (superstatistical and LES+ML) but increases
the error magnitudes for the low-fidelity inflow (TurbSim). The greatest improvement was seen for the
standard deviation of LES+ML, where RPC alone reduced the errors from 60% to less than 10%. When
an RPC is used, we see that model accuracy tracks with inflow fidelity for standard deviations and DELs,
with LES+ML yielding the best performance for the quantities considered here. While the load averages
were also considered, they were not very sensitive to controller strategy or inflow choice.

We conclude that the techniques developed to produce high-fidelity inflows constrained on field mea-
surements work well: They reproduce the constraint and fill in the unobserved space with physically
consistent flows. However, we keep in mind that the simulated flow field can only be as good as the
inflow measurements themselves. The limited spatial (10 m) and temporal (1 Hz) resolution of the lidar
measurements available for this study impose a hard limit on how faithful to the real world the simulated
inflow can be.

To further expand on the differences between the inflow simulation approaches and pinpoint areas for
model improvement, the analysis presented here needs to be expanded. Further work will consider: (i)
more cases with different atmospheric inflow conditions; (ii) multiple seeds in the inflow generation; (iii)
structural load sensitivity to the spatiotemporal resolution of the inflow; (iv) other existing turbulence-
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constraint inflow generation techniques; (v) more load quantities such as edgewise blade loads, side-side
tower loads, and mainshaft loads for which measurements are available. In the meantime, we envision
that the case presented here becomes a model validation benchmark for single-turbine turbulent inflow
generation and loads simulation.
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[11] Beck H and Kühn M 2019 Remote Sensing 11 867

[12] Song Y, Sohl-Dickstein J, Kingma D P et al. 2021 arXiv preprint 2011.13456

[13] Davenport A G 1961 Quarterly Journal of the Royal Meteorological Society 87 194–211 ISSN 1477-
870X

[14] Jonkman B 2016 Turbsim user’s guide v2 unpublished report URL
https://www.nrel.gov/wind/nwtc/assets/downloads/TurbSim/TurbSim v2.00.pdf

[15] Rybchuk A, Hassanaly M, Hamilton N et al. 2023 Physics of Fluids 35

[16] Rybchuk A 2024 GitHub repo: Latent Diffusion Models for Atmospheric Large Eddy Simulation On-
line URL https://github.com/rybchuk/latent-diffusion-3d-atmospheric-boundary-layer

[17] Abbas N J, Zalkind D S, Pao L et al. 2022 Wind Energy Science 7 53–73

[18] Zalkind D 2024 GitHub repo: ROSCO v2.9.0 Online URL
https://github.com/NREL/ROSCO/releases/tag/v2.9.0

[19] George W K, Beuther P D and Lumley J L 1978 Proceedings of the Dynamic Flow Conference 1978
on Dynamic Measurements in Unsteady Flows pp 757–800

[20] Schepers J G, Boorsma K, Madsen H A et al. 2021 IEA Wind TCP Task 29, Phase IV: Detailed
Aerodynamics of Wind Turbines Tech. rep. URL https://zenodo.org/records/4813068

Acknowledgments
This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy,

LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S.

Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. Support for

the work was also provided by GE Renewable Energy under CRADA 21-18140. The views expressed in the article do not

necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by

accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable,

worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government

purposes.


