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ABSTRACT Recently, there is rapid integration of power electronic converter (PECs) into the power grid.
Most of these PECs are grid-following inverters, where weak grid operation becomes an issue. Research is
now shifting focus to grid-forming (GFM) inverters, resembling synchronous generators. The shift towards
converter-based generation necessitates accurate PEC models for assessing system dynamics that were
previously ignored in conventional power systems. Data-driven modeling (DDM) techniques are becoming
valuable tools for capturing the dynamic behavior of advanced control strategies for PECs. This paper
proposes using power hardware-in-the-loop experiments to capture dynamic GFM data in the application of
DDM techniques. Furthermore, the paper derives an analytical approach to obtaining a mathematical model
of GFM inverter dynamics and compares it with the DDM. A square-chirp probing signal was employed
to perturb the active and reactive power of the load inside an Opal-RT model. The dynamic response of
the GFM inverter, including changes in frequency and voltage, was recorded. This data was then used in a
system identification algorithm to derive the GFMDDMs. The effectiveness of DDM is cross-validated with
an analytical approach through experimental simulation studies, and the goodness-of-fit for both approaches
is compared. Both approaches show more than 85% accuracy in capturing the dynamic response of GFM
inverters under different loading conditions.

INDEX TERMS Data-driven modeling, grid-forming inverter, power hardware-in-the-loop, power system
dynamics, real-time digital simulator, system identification.
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NOMENCLATURE
DDM Data-driven modeling.
EMT Electromagnetic transients.
GFL Grid-following.
GFM Grid-forming.
GoF Goodness-of-fit.
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NRMSE Normalized root-mean-square-error.
PCC Point of common coupling.
PECs Power electronic converters.
PHIL Power-hardware-in-the-loop.
PLL Phase-locked Loop.
PWM Pulse-width modulation.
RTS Real-time simulator.
SysId System identification.
TF Transfer function.
UDP User datagram protocol.

I. INTRODUCTION
The increasing interest in renewable energy and batteries
has made power electronic converters (PECs) a critical
component of power distribution networks [1]. As converter-
based generation is used to meet the future energy demand,
having accurate models that represent the interaction between
the grid and PECs is crucial. The response of PEC-based
generation involves faster and more stochastic dynamics
compared to traditional power systems due to their fast-
switching mechanisms [2], [3]. In the past, these dynamics
were largely neglected because the percentage of PEC-based
generation was low, and the PECs had a passive role without
actively contributing to power system voltage and frequency
control. This neglect was possible because power system
dynamics were primarily governed by large synchronous
generators with well-defined models [4].
The electrical grid is undergoing a seamless transition

where rotating synchronous machines are being replaced
by PECs. This transition introduces a low-inertia system
with a novel type of dynamic behavior [5], [6]. PECs
control can be categorized into two types: grid-following
(GFL) and grid-forming (GFM). GFL inverters, commonly
used in grid-connected applications with current control,
regulate the ac-side current by following the phase angle and
frequency of the existing grid voltage using a phase-locked
loop (PLL) mechanism [7], [8]. On the other hand, GFM
inverters manage the ac-side voltage and play a crucial role
in forming a controllable voltage source, allowing them to
set the grid’s reference voltage and frequency. They achieve
synchronization with the rest of the grid using frequency
droop control (typically P − ω droop), similar to traditional
synchronous generators [9], [10], [11]. Various GFM control
methods have been proposed in the literature, including
droop control, virtual synchronous machines, and virtual
oscillator controllers [12], [13], [14]. In the electrical grid,
GFL inverters primarily function as current sources and
can provide auxiliary services according to IEEE 1547,
such as droop-based reactive power support [15]. They are
commonly used for integrating renewable energy sources
like wind and solar energy into power systems due to their
straightforward control scheme, established PLL technology,
and ability to operate at a specific current. However, the
PLL can cause instability issues in the grid, especially
when the grid impedance is high [16], [17]. With the

increasing replacement of synchronous generators by PECs,
this problem is becoming more prevalent and challenging.
Consequently, there is a growing focus on GFM inverters,
which exhibit synchronous generator-like characteristics and
can operate in weak grids without relying on rigid voltage
sources or forming independent grids [9], [11], [18], [19].
Furthermore, GFM inverters can address grid instability
issues, including significant frequency fluctuations caused by
low inertia and uncertainty in distributed energy resources.
Hence, the shift towards converter-based generation neces-
sitates accurate PEC models for assessing system dynamics
that were previously ignored in conventional power systems.
Therefore, modeling of GFM inverters plays a vital role in
studying system-level dynamics.

For precise modeling of PECs, a comprehensive under-
standing of multiple aspects of the converter is neces-
sary. This includes knowledge of its physical topology,
intricate models of voltage/current control loops, PLL
models, employed protection schemes, etc. [20]. Despite
the known control architecture, these factors and control
parameters exhibit significant variations across different
manufacturers. This variability can lead to inaccurate
modeling and simulation of power systems, resulting in
flawed analysis and erroneous outcomes. The availability
of accurate converter models is crucial for predicting
system instability, ensuring component compatibility [21],
and facilitating proper design of controllers and protection
systems.

Modeling converter-based generation is further compli-
cated by the need to comply with grid interconnection
requirements and changes in grid codes. Manufacturers
can address these requirements by modifying the control
structure through software or firmware updates. For example,
according to the IEEE 1547 standard, converters can
actively contribute to voltage and frequency support through
advanced control functions [22], [23]. This introduces an
additional layer of complexity in modeling these converter
systems. Data-driven models can be employed to address
the aforementioned challenges. Recent advancements in
data-driven modeling for GFL inverters, as discussed in the
literature [18], [20], [21], [24], [25], [26], [27], primarily
focus on system analysis purposes. However, the literature
presents a lack of research concerning data-driven dynamic
modeling techniques applied to GFM inverters operating
under droop control strategies. Therefore, this paper presents
a novelty by developing a data-driven modeling approach for
GFM inverters.

The main objective of this paper is to develop a data-driven
modeling (DDM) approach that utilizes designed probing
signals to extract an underlying mathematical representation
of the dynamics of a GFM inverter. System identification
(SysId) methods are employed to obtain the GFM inverter
DDM operating in droop mode. Additionally, an analytical
approach is also derived for the GFM inverter DDM. The
obtained dynamic models from both the analytical approach
and the data-driven approach are then cross-validated to
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ensure their power sharing capability, along with virtual and
physical GFM inverters.

The novel contributions of this paper are as follows:
1) Formulated an analytical approach to derive a math-

ematical model describing the dynamics of GFM
inverters;

2) Developed an experimental power-hardware-in-the-
loop (PHIL) methodology for data collection, wherein
the load connected to the GFM inverter is excited
using designed probing signals. A DDM approach
is designed to extract mathematical models of GFM
inverter dynamics. The mathematical model is obtained
by collecting output frequency and voltage data from
the GFM inverter in response to changes in the active
and reactive power of the load at the point of common
coupling (PCC).

The paper is organized as follows: An overview of different
data-driven modeling of PECs are presented in Section II.
In Section III, the theoretical background on the dynamics
modeling of PECs and system identification is provided.
The analytical approach for modeling a system with two
GFM inverter are presented in Section IV followed by
data-driven approach to access the GFM inverter dynamics in
Section V. In Section VI, the experimental setup to evaluate
the performance of GFM inverter is discussed. The results are
presented in Section VII followed by the main conclusions in
Section VIII.

II. RELATED WORK ON DATA-DRIVEN MODELING
APPROACHES FOR POWER ELECTRONIC CONVERTERS
AND THEIR LIMITATIONS
PECs for grid integration of renewable energy sources can
consist of multiple and different cascaded and interconnected
converters [3]. The non-linearity of the switches used
in these power electronic systems greatly increases the
complexity of models. Detailed models of these converters
are often used to perform accurate electromagnetic transient
simulations. Though accurate, the complexity of thesemodels
are prohibitive to be used for long-term and/or large-
scale system studies [28]. Furthermore, the parameters to
accurately represent the exact dynamics are difficult to obtain
and these methods cannot be employed without knowledge
of the topology and control architecture used. In cases
where the switching dynamics are neglected, averaging
techniques (specifically state-space modeling techniques) are
often employed to derive small-signal transfer function (TF)
models [29]. However, depending on the analysis required,
even such state-space models may be computationally
prohibitive [28], [30].

Substantial efforts have been made to model the dynamics
of such systems [21], [31], [32], [33]. Detailed models can be
developed using techniques such as average state-space mod-
eling [31], [33]. These models are very accurate and useful
for component and converter level design [24], [28], but they
require detailed information about the converters [33], which
are often proprietary for commercial converters [32]. Even

if some of the internal parameters are known, the converter
properties and dynamics may have a wide range of variation
depending on load requirements, battery state-of-charge, and
renewable energy availability. For these reasons, developing
simplified models can be beneficial [28].

Data-driven modeling (or black-box modeling) is a useful
method for modeling PECs for system level studies [21],
[34]. Black-box models can be developed with little-to-no
information about the control or topology of a converter.
As an additional benefit, black-box models usually require
lower computational power compared to more detailed
component level models [24]. Linear time-invariant black-
box models are often designed using regression analysis and
curve fitting (described with more detail in [35]). Artificial
neural networks and other machine learning methods can
also be used to create black-box models [24]. Tools such
as those provided by MATLAB’s System Identification [36]
are widely used for black-box modeling. The available
modeling approaches range from simple linear models
based on TFs to non-linear models using approaches such
as the Hammerstein-Wiener model [35], [37]. Black-box
modeling of DC-DC converters has been widely explored
in the literature [38], [39] and more recently for DC-AC
converters [21], [31], [32], [33]. However, black-box models
alone are not always accurate for a wide range operation [21].
This variation over a wide operating range can be addressed
by combining multiple models to cover the dynamics over the
range-of-interest [20], [21], [32].

Data-driven modeling techniques from literature have
mostly focused on the converters operating in standalone
mode. These models may not be suitable when the converters
actively forming the grid or interact with the grid and
participate in grid ancillary services, such as providing
voltage and frequency support. This is especially concerning
for low-inertia power systems, where PECs will have a
larger share of voltage and frequency control. Hence, we are
proposing a probing signal-based data-driven modeling of
GFM inverters to extract their dynamics.

III. BASIC CONCEPTS OF DYNAMIC MODELING OF
GRID-FORMING INVERTER AND SYSTEM IDENTIFICATION
The dynamic modeling of a GFM inverter with their control
mechanism is introduced in this section, which is followed by
a basic description of SysId to obtain accurate PEC dynamics.

A. POWER CIRCUIT OF GFM INVERTERS
The power circuit of ith, 3-φ H-bridge GFM inverter
consists of six switches distributed among three legs as
shown in Fig. 1. The GFM is connected to the grid at
PCC with voltage, vabcPCC, via an LCL filter (Lf,i, Cf,i, Lg,i)
and associated equivalent series resistances (Rf,i and Rg,i
of inductors) and a coupling line with line parameters,
Lline,i, Rline,i. A dq-frame multi-loop controller is employed
that generates modulated voltage vector signal, mabc

i , to
pulse-width modulation (PWM) controller to generate

VOLUME 12, 2024 52269



N. Guruwacharya et al.: DDM of GFM Inverter Dynamics Using Power Hardware-in-the-Loop Experimentation

FIGURE 1. Diagram of the power circuit of i th GFM inverters connected to
a grid.

switching signals resulting in terminal voltages, vat,i, v
b
t,i

and vct,i.

B. CONTROL OF GFM INVERTER
The control layers of the GFM inverter are illustrated in
Fig. 2, depicting the various control mechanisms employed.
The following sections provide a description of each control
aspect of the GFM inverter.

FIGURE 2. Diagram of various control loops of i th GFM inverters
connected to a grid.

1) POWER CONTROLLER
To determine pi, and qi, v

dq
c,i and i

dq
o,i are used. The values pi

and qi are passed through low-pass filters with time constant,
τS,i ∈ R>0, to obtain Pi and Qi as described by

Pi = [1/(τS,is+ 1)]pi, Qi = [1/(τS,is+ 1)]qi, (1)

where pi := 1.5[vdc,ii
d
o,i + v

q
c,ii

q
o,i], qi := 1.5[vqc,ii

d
o,i − v

d
c,ii

q
o,i].

2) DROOP CONTROLLER
A droop controller in the GFM inverter is used to regulate the
output frequency and voltage of the inverter to match the grid
conditions. The droop controller operates by continuously
monitoring the grid voltage and frequency and adjusting
the inverter’s output accordingly. It provides a decentralized
control mechanism, allowing multiple inverters to work
together and share the load in a coordinated manner. The
droop controller employs a droop characteristic, which is a
linear relationship between the inverter output frequency (ω)

FIGURE 3. Droop control strategies. (a) P-ω droop (b) Q-V droop. P-ω
droop control adjusts the active power output of a GFM inverter based on
changes in frequency, maintaining a stable grid. Q-V droop control
modifies the reactive power output according to variations in voltage,
ensuring voltage stability in the grid.

and the active power output (P), as shown in Fig. 3(a), and
inverter output voltage (V ) and the reactive power output
(Q), as shown in Fig. 3(b). Typically, the droop characteristic
is represented as a slope that determines the rate at which
the frequency/voltage changes with respect to active/reactive
power variations, respectively.

When the grid frequency deviates from its nominal value,
the droop controller adjusts the inverter’s output frequency
by changing the power output proportionally to the droop
slope. If the grid frequency decreases, the droop controller
increases the inverter’s power output, causing the frequency
to rise back towards its nominal value. Conversely, if the
grid frequency increases, the droop controller decreases
the power output, bringing the frequency back to the
desired level. The droop controller also regulates the output
voltage of the inverter by monitoring the grid voltage and
adjusting the inverter’s voltage magnitude to maintain grid
synchronization. By maintaining a stable output voltage and
frequency, the droop controller ensures that the GFM inverter
operates in harmonywith the grid and provides reliable power
supply.

Basically, droop control is a proportional controller with
active and reactive power as control variables where the
control gains (also the droop gains) dictate the steady–state
power sharing of the inverters. The active power-frequency,
P-f , droop control is considered here as a proportional
controller (with proportional coefficient as ni) with error
signal eP,i := −Pi where Pi is the control variable.
Whereas, the reactive power-voltage magnitude, Q-V , droop
control is considered here as a proportional controller (with
proportional coefficients asmi) with error signal eQ,i := −Qi
where Qi is the control variable. The values of ni and mi are
typically chosen such that ωr,i and Vr,i are within the allowed
specification, defined by IEEE 1547 Standard [22].

3) OUTER-VOLTAGE-INNER-CURRENT CONTROLLER
The conventional outer-voltage-inner-current controller
architecture is employed for the GFM inverters [40]. For the
inner-current controller, idqL,i,ref is provided as the reference

signal to be tracked by the output signal, idqL,i. A proportional-
integral (PI) compensator is used for tracking the reference
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of the dq-axis inductor current. For a desired time constant,
τc,i, the parameters of the current controller are selected
as kpc,i = Lf,i/τc,i and kic,i = Rf,i/τc,i. Depending on
the switching frequency, τc,i is typically selected to be
in the range of 0.5-2 ms [40]. Additional feed-forward
signals, vdqc,i and∓ωLf,ii

qd
L,i facilitate the disturbance rejection

capability. For the outer-voltage controller,
[
Vr,i 0

]⊤ is the
reference signal to be tracked by the voltage signal, vdqc,i.
A PI compensator is used to enable reference tracking. For
a desired phase margin and gain cross-over frequency, the
parameters of the voltage controller (kpv,i and kiv,i) can
be designed based on symmetrical optimum method [40].
Similarly, additional feed-forward signals, vdqc,i and∓ωCf,iv

qd
c,i

facilitate the disturbance rejection capability for the outer
voltage control loop.

FIGURE 4. For the purpose of modeling and analysis, a system consisting
of two GFM inverters is being considered. The inverter’s output is directed
through an LCL filter, and a load is connected to the PCC via a coupling
line.

IV. ANALYTICAL MODELING OF A SYSTEM WITH TWO
GFM INVERTER
The system, as shown in Fig. 4, is considered in this
section for modeling and analysis. For analysis purpose, the
following remarks are made:
Remark 1: The outer-voltage-inner-current control loop

for GFM inverter is stable and has faster (> 10 times)
dynamics compared to the power and droop controller and
tracks its voltage reference with minimal (assumed zero)
tracking error as suggested in [40].
Remark 2: All abc-dq conversions are adopted w.r.t.

GFM 1.
Using Remarks 1 and 2, the following non-linear state-space
equations can be obtained for the entire system of Fig. 4:

θ̇2 = ωr,2 − ωr,1, where θ2 := θr,2 − θr,1, (2)

τS,1ω̇r,1 = ωnom − ωr,1 − ni[p1], (3)

τS,2ω̇r,2 = ωnom − ωr,2 − n2[p2], (4)

τS,1V̇r,1 = Vnom − Vr,1 − m1[q1], (5)

τS,2V̇r,2 = Vnom − Vr,2 − m2[q2], (6)

Ll,1 i̇do,1 = Vr,1 − Rl,1ido,1 − v
d
PCC + ωr,1Ll,1i

q
o,1, (7)

Ll,1 i̇
q
o,1 = −Rl,1i

q
o,1 − v

q
PCC − ωr,1Ll,1ido,1, (8)

idL = ido,1 + i
d
o,2, i

q
L = iqo,1 + i

q
o,2 (9)

FIGURE 5. The GFM inverter is represented in the model as a voltage
source that can control its phase, θr,i, frequency, ωr,i, and amplitude.
Additionally, a controlled load is connected to the PCC.

vdPCC = 0.5× [(Vr,1 + Vr,2 cos θ2)

− (Rl,1ido,1 + Rl,2i
d
o,2)

+ (ωr,1Ll,1i
q
o,1 + ωr,2Ll,2i

q
o,2)] (10)

vqPCC = 0.5× [(Vr,2 sin θ2)− (Rl,1i
q
o,1 + Rl,2i

q
o,2)

− (ωr,1Ll,1ido,1 + ωr,2Ll,2ido,2)], (11)

where θr,i is the GFM inverter internal phase angle, pi :=
1.5[Vr,iido,i cos θi + Vr,ii

q
o,i sin θi], qi := 1.5[−Vr,ii

q
o,i cos θi +

Vr,iido,i sin θi], and ωnom and Vnom are nominal frequency and
voltage, respectively. This results in a 7th-order non-linear
electromagnetic transients (EMT) model, allowing the GFM
inverter to be modeled as a voltage source with controllable
phase, θr,i, frequency, ωr,i, and amplitude, Vr,i [41], as shown
in Fig. 5.

While two GFM inverters are connected in parallel
supplying a load, the system can be modeled by a non-linear
system, ẋGFM = GGFM(xGFM), where, GGFM(.) consists of
equations (2)-(11). Considering the system linearized around
an equilibrium point, xeqGFM, such that

1ẋGFM = AGFM1xGFM + BGFM1uGFM
1ẏ

GFM
= CGFM1xGFM

and

AGFM = FGFM(xeqGFM)

BGFM =

[
Rl,1 ωr,1Ll,1

−ωr,1Ll,1 Rl,1

]
CGFM =

[
0 1 0 0 0 0 0
0 0 0 1 0 0 0

]
,

where FGFM(.) is the vector field of GGFM(xGFM). Here,

1xGFM = [1θ2 1ωr,1 1ωr,2 1Vr,1 1Vr,2 1ido,1 1iqo,1]
⊤

1y
GFM
= [1ωr,1 1Vr,1]⊤

1uGFM = [1idL 1iqL]
⊤

VOLUME 12, 2024 52271



N. Guruwacharya et al.: DDM of GFM Inverter Dynamics Using Power Hardware-in-the-Loop Experimentation

Therefore, the multiple input multiple output linearized
system can be written as:[

1ωr,1
1Vr,1

]
=

[
T1 T2
T3 T4

]
︸ ︷︷ ︸

T

[
1idL
1iqL

]
,

where T = CGFM[sI − AGFM]−1BGFM is the required TF
model obtained from the analytical approach.

V. DATA-DRIVEN APPROACH TO ACCESS THE GFM
INVERTER DYNAMICS
A. DATA-DRIVEN APPROACH TO ACCESS THE INVERTER
DYNAMICS
1) SYSTEM IDENTIFICATION OF POWER ELECTRONIC
CONVERTER
SysId is the process of obtaining a mathematical model
of an unknown (dynamic) system based on applied inputs
and the corresponding measured output response data.
Without knowing the actual control structure and/or control
parameters, a mathematical model of a PEC that captures the
dynamics of interest can be estimated by using the instrument
variable method.

FIGURE 6. The fundamental concept of SysId. To identify the unknown
dynamic process, the SysId method utilizes input and output
measurements. The GoF is then calculated by comparing the actual
outputs and estimated outputs.

The basic concept of a SysId process is illustrated in
Fig. 6. The time domain input data u(t) and time domain
output data y(t) from the unknown dynamic systems to be
identified are first measured. The dataset is then divided into
training and testing datasets. The training dataset is fed to the
SysId algorithm, which estimates the system parameters (i.e.,
TF coefficients) byminimizing a defined cost function (in this
case, the least-square error). From the estimated parameters,
a TF is obtained which is then validated on the testing
dataset. Finally, goodness-of-fit (GoF) based on normalized
root-mean-square-error (NRMSE) is calculated to check the
accuracy of the TF.

The relationship between the input and output that can be
defined as:

y(t)+ a1y(t − 1)+ · · · + any(t − n)

= b1u(t − 1)+ · · · + bmu(t − m), (12)

where n and m represent the number of poles and zeros
of the system, respectively. Similarly, an and bm represent

the parameters of the difference equation of (12) or the
coefficients of the equivalent TF. Then, in general, a dynamic
system can be represented as:

ŷ (t | θ) = [φ(t)]T θ. (13)

In (13), θ represents the set of the unknown parame-
ters/coefficients of the system, and φ(t) represents the set of
inputs u(t) and outputs y(t) of the dynamic system defined as
follows:

θ = [a1, . . . , an, b1, . . . , bm]T (14)

φ (t) = [−y(t − 1) · · · − y(t − n) u(t − 1) . . . u(t − m)]T

(15)

Now, if we define ZN as the set of known measurements and
N is overall input-output data in the time interval 1 ≤ t ≤ N :

ZN = {u(1), y(1), . . . , u(N ), y(N )} , (16)

then the unknown parameters of the system, θ , can be
estimated by employing a least-squares method utilizing the
following cost-function [35]:

minimize
θ

VN
(
θ,ZN

)
, (17)

where

VN
(
θ,ZN

)
=

1
N

N∑
t=1

∥∥y(t)− ŷ(t | θ )∥∥2 . (18)

Based on the collected input-output data, a set of models
with different numbers of poles and zeros can be fit to the
data. The GoF of eachmodel can be calculated using NRMSE
as in (19), defined as [36]:

GoF = 100×

(
1−

∥∥y(t)− ŷ(t)∥∥2
∥y(t)−mean y(t)∥2

)
, (19)

where ∥.∥2 indicates the 2-norm.

2) PROBING SIGNALS
When parameterizing a DDM, using properly designed
probing signals to perturb the system response plays a crucial
role in understanding system behavior [42]. Simultaneously,
the probing signal must be designed within the constraints
imposed by the power system and SysId theory [43], which
involves placing the probing signal content within the
frequency band of interest by application without disrupting
the power system operations. Additionally, since the system
may have different time constants, using rectangular/square
probing signals are ideal for accurately estimating time
constant and emphasizing a particular frequency range based
on signal frequency [42], [44]. In [27], four different probing
signals were compared, and logarithmic square chirp was
found to be the most accurate for extracting the dynamics of
PECs. Therefore, in the current research, logarithmic square
chirp — a signal that involves logarithmically sweeping the
frequency of a square wave signal — will be used to perturb
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the system. The signal that is used in the research has the
following fundamental explanation:

x(t) = A× square(ωt). (20)

Here, A represents the peak amplitude of the square wave,
whileωt denotes the phase angle, which is modified using the
trapezoidal method as shown in the following Eq. 21.

(ωt)k = (ωt)k−1 +
tk − tk−1

2
× 2× π × (f(tk ) + f(tk−1))

(21)

Here, k denotes the discrete time instant (where k−1 refers
to the previous time instant), (ωt)k−1 and (ωt)k correspond to
the phase angle at the previous and current time respectively.
Additionally, tk−1 and tk represent the time at the previous
and current time instant respectively, while f(tk ) and f(tk−1)
denote the frequency at time tk and tk−1 respectively.
Similarly, the frequency f(tk ) is defined as in (22):

f(tk ) = f0 ×

((
f0
f1

) 1
T
)tk

, (22)

where f0, f1, and T denote the starting frequency, final
frequency, and duration of the chirp signal, respectively.

3) DESIGN CRITERIA OF CHIRP SIGNAL
According to the basic description of the signal, this paper
presents the design parameters of the chirp signal as f0, f1, T ,
and A.

a: FINAL FREQUENCY (F1)
The parameter f1 in a chirp signal is the final frequency at
which the signal has the shortest duration of constant value,
also known as the minimum hold time Th. However, it is
important to choose an appropriate value for Th, not too small
or too large; if it is too small, the system does not have enough
time to stabilize, and the resultingmodel would not accurately
describe the system’s static behavior. On the other hand, if it is
too large, the model will overemphasize low frequencies and
leave gaps in the input data, making it difficult for the model
to accurately capture the system’s behavior in those regions.
Therefore, it is recommended to set Th to be approximately
equal to the system’s time constant (τsystem) [42]. Thus, the
final frequency of the signal can be calculated as in (23):

f1 ≈
1

2× Th
≈

1
2× τsystem

. (23)

The reason for multiplying (23) by 2 is to account for both
the ON and OFF time of the signal. To determine the value of
τsystem, a step input is applied to the system and the settling
time ts is measured. The value of τsystem can then be calculated
based on the chosen tolerance band as in [45]:

τsystem =
ts
3

(for 5% tolerance band)

or

τsystem =
ts
4

(for 2% tolerance band).

FIGURE 7. Flowchart to design probing signal for SysId.

b: STARTING FREQUENCY (F0)
The minimum frequency of a chirp signal is represented by
f0. It is determined through an iterative process and requires
updating in each iteration until the value of τmodel matches
that of τsystem, as shown in Fig. 7.

c: TIME LENGTH OF SIGNAL (T )
The time duration of the chirp signal is denoted as T
and represents the time elapsed between two specific
instantaneous frequencies f0 and f1. This value can be
expressed as shown in [46] and can be calculated as in (24):

T =
1

D%× f0 × log
(
f1
f0

) , (24)

where D is the percentage rate of exponential change in
frequency of the signal.

d: PEAK AMPLITUDE OF SIGNAL (A)
The amplitude of the square chirp signal is denoted by A
and its value depends on the signal-to-noise ratio of the
system [47], which can vary. The selection of A should be
done carefully so that the output signal has the minimum
possible noise after applying the designed signal to the
system. If A is not chosen properly, additional filters may be
required to eliminate noise, which will be discussed in more
detail in Section VII. The flowchart of designing the probing
signal for DDM parameterization is illustrated in Fig. 7.

B. PARTITIONED MODELING OF DROOP CONTROLLER
Due to the presence of nonlinearities in GFM inverters,
modeling of GFM inverter with droop controller over the
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FIGURE 8. Demonstration of linear partitioning of the GFM inverter. The
P-ω and Q-V droop curve are divided into several ranges.

operating regions results in intricate dynamic models, and the
complex dynamics of the whole operating region are effec-
tively captured by dividing the operating regions further into
small linear ranges [20], [48], as shown in Figs. 8(a) and 8(b),
where Pp1,Pp2, . . . ,Ppk represent ranges corresponding to
load active power changes, and Qq1,Qq2, . . . ,Qqk represent
ranges associated with load reactive power changes.

Algorithm 1 Active Power Variation to Generate
Probing Signal for Frequency Variation
Input: Operational limits← [Plow,Pmax]
Simulation clock time← t
Initialization:
Time interval for each partition← T
Lower active power starting value Pk1← Plow
Higher active power for same partition Pk2
Difference between active power dp← Pk2 − Pk1
while True do

k ← floor(t/T )
p1← Pk1 + k × dp/2
p2← p1 + dp
if p2 > Pmax then

p1← Pmax − dp
p2← Pmax

end
end

With the selected operating limits, the desired active power
signal is generated according to Algorithm 1 to extract
reduced-order linear dynamic models of the GFM inverter for
frequency variations. Additionally, the reactive power signal
is generated based on Algorithm 2 to obtain reduced-order
linear dynamic models of the GFM inverter for voltage
variations.

C. FLOWCHART TO ASSESS GRID-FORMING INVERTER
DYNAMICS
The flowchart to identify the TF of a GFM inverter from the
SysId algorithm is shown in Fig. 9. Logarithm square-chirp
probing signal is used to perturb the load to extract dynamics
of PECs [27]. Fig. 10 shows the load active power variation,
which is varied from 0 to 20 kW for 15 seconds, after which
it is increased by 10 kW in subsequent ranges until reaching

FIGURE 9. Flowchart to identify TF using SysId.

Algorithm 2 Reactive Power Variation to Generate
Probing Signal for Voltage Variation
Input: Operational limits← [Qlow,Qmax]
Simulation clock time← t
Initialization:
Time interval for each partition← T
Lower reactive power starting value Qk1← Qlow
Higher reactive power for same partition Qk2
Difference between reactive power dq← Qk2 − Qk1
while True do

k ← floor(t/T )
q1← Qk1 + k × dq/2
q2← q1 + dq
if q2 > Qmax then

q1← Qmax − dq
q2← Qmax

end
end

a total of 200 kW. This power variation follows the droop
curve characteristics of the GFM inverter. The frequency of
the square-chirp signal ranges from 1 Hz to 32 Hz, with
values selected based on the settling time response parameters
of the GFM inverter. Similarly, Fig. 11 illustrates the load
reactive power variation, which is varied from 0 to 20 kVAr
for 15 seconds, and then increased by 10 kVAr in subsequent
ranges until reaching a total of 200 kVAr. This reactive power
adjustment aligns with the droop curve characteristics of the
GFM inverter.

To determine the TF of a commercially available 3-φ,
480 V, 60 Hz, 125 kVA Dynapower GFM inverter [49]
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TABLE 1. Transfer functions of GFM 1 inverter obtained from both analytical and data-driven approach.

FIGURE 10. Sq-chirp probing signal, generated using Algorithm 1, was
employed to excite load active power ranging from 0 to 200 kW.

FIGURE 11. Sq-chirp probing signal, generated using Algorithm 2, was
employed to excite load reactive power ranging from 0 to 200 kVAr.

(represented as GFM 1 onwards), the measured inputs,
including the active and reactive power supplied by the GFM
1 and the output frequency and voltage at the terminal of the
GFM 1, are logged using a real-time simulator (RTS) system
fromOpal-RT. The collected data is divided into small ranges

for analysis. Then, the data is filtered using a mean filter
to smooth the logged data. Furthermore, the mean of both
active power and reactive power, and frequency and voltage of
GFM 1 measurements are eliminated to obtain more accurate
TF model. This allows SysId to focus on the real variations
caused by the probing signals. The dataset is divided into
two parts for cross-validation: a training set for computing
TF model, and a validation set for validating the resulting
TF model. The number of poles and zeroes of TF model for
data-driven approach are chosen based on the TFfinding from
analytical approach.

VI. EXPERIMENTAL SETUP
The hardware experimental setup is developed as shown in
Fig. 12. An ideal transformer model-based PHIL [50] setup
is employed, which comprises an OP5707 RTS, an Ametek
grid simulator, and GFM 1. The grid simulator utilized in
this experiment was a controlled AC source amplifier with
a capacity of 270 kVA. The RTS, grid simulator, and console
PC were used collectively to which GFM 1 was connected.
Additionally, the AV900 bidirectional DC supply, which was
available in the power system integration lab at the National
Renewable Energy Laboratory, was connected to the DC
terminal of GFM 1. The console PC and OP5707 RTS
communicated using the User Datagram Protocol (UDP) over
Ethernet.

Fig. 12 is used to assess the TF of GFM 1, which includes
an Opal-RT with a virtual GFM (GFM 2) and virtual load.
GFM 1 is linked to the model through PHIL. The active
and reactive power of the load were perturbed using a
square-chirp probing signal, as shown in Figs. 10 and 11,
respectively. These probing signals were used in Fig. 12
to excite the GFM inverters, which consequently affect the
frequency and voltage produced by the GFM inverters. These
probing signals were generated using Algorithms 1 and 2.
The settings for the Ametek grid simulator, GFM 1, GFM 2,
inverter filter parameter, and load are shown in the appendix
in Table 2.
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FIGURE 12. Experimental setup to assess the TF of GFM Dynapower inverter (GFM 1) as analyzed in Fig. 4. Loads P and Q are excited by the Sq-chirp
probing signal.

FIGURE 13. Active power supplied by GFM 1 due to perturbation of load
active power.

FIGURE 14. Frequency response of GFM 1 due to perturbation of load
active power.

VII. RESULTS AND ANALYSIS
The TF of GFM 1 inverter which operates in droop mode
is obtained from the SysId algorithm and the response
(frequency/voltage) of GFM 1 inverter with the change in
load active/reactive power are analyzed in this section.

Active power supplied by the GFM 1 inverter due to
change in active power of load is depicted in Fig. 13,
while GFM 1 frequency response is illustrated in Fig. 14.

FIGURE 15. Reactive power supplied by GFM 1 due to perturbation of
load reactive power.

FIGURE 16. Voltage response of GFM 1 due to perturbation of load
reactive power.

It can be observed that as the active power of the load
increases, active power supplied by the GFM 1 inverter also
increases but the frequency decreases, aligningwith the droop
curve characteristic of the GFM inverter. Similarly, Fig. 15
represents the reactive power supplied by the GFM 1 inverter
due to the variation in the reactive power of the load, and
Fig. 16 showcases the response ofGFM1 voltage. It is evident
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FIGURE 17. Experimental setup to validate the TFs obtained from analytical and data-driven approach of GFM 1.

FIGURE 18. Implementation of obtained TF from analytical and
data-driven approach in the EMT simulation.

FIGURE 19. Implementation of load in the EMT simulation.

that as the reactive power of the load increases, GFM 1
inverter supplied more reactive power which results in drop
in the GFM 1 terminal voltage, aligning with the droop
curve behavior of the GFM inverter. Table 1 displays the TFs
corresponding to the GFM 1 inverter. These TFs were derived
from analytical and data-driven modeling approach.

A. VALIDATION OF GFM 1 TF WITH ONE PHYSICAL GFM
INVERTER
The validation of the GFM 1 inverter’s TF, as obtained
in Table 1, is subsequently incorporated into an EMT
simulation using Opal-RT, as illustrated in Fig. 17. This
simulation is employed to verify the power distribution
among the TF-based GFM, GFM 1, and GFM 2 under
different load scenarios. In Fig. 18, the TF-based GFMmodel
is implemented in the EMT simulation using Opal-RT RTS.

FIGURE 20. Active power shared by GFM 1, GFM 2, and TFs-based GFM
obtained from the analytical and DDM approach.

FIGURE 21. Reactive power response comparison for TFs-based GFM
obtained from analytical and DDM approach.

Here, the load current is passed to the abc − dq0 block,
where the direct and quadrature axis currents (iLd , iLq) are
calculated. These currents are fed into the TF-based GFM
model, and the output of the TF-based GFM model provides
estimates for voltage and frequency (vi, ω). Subsequently, vi
is conveyed to the dq0− abc block to generate the reference
voltage (Vabc_ref ). Vabc_ref is then supplied to a controllable
voltage source, and its output passes through an LCL filter to
produce the PCC voltage (VPCC ).
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FIGURE 22. Experimental setup for validating the DDM TFs-based GFM inverter in a system with three physical GFM inverters.

Similarly, in Fig. 19, the load current (iLd , iLq) is calculated
from active and reactive power (P and Q) of load, which is
then passed to abc − dq0 block to generate the reference
current (iabc_ref ); iabc_ref is then passed to a controllable
current source to generate the PCC voltage (VPCC ).
To validate the TFs-based GFM, initially the TF obtained

through the analytical approach is implemented in Fig. 17
and then TF obtained from DDM approach is implemented.
The comparison of active power shared by GFM 1, GFM 2,
and TFs-based GFM obtained from analytical and DDM
approaches is depicted in Fig. 20. Here, the active power of
the load is changed from 200 kW to 300 kW at 378.8 sec
and then reverted back to 200 kW from 300 kW at 389.7 sec.
The results indicate an equal power sharing across all three
GFMs. Initially, 66.67 kW of active power is shared, followed
by 100 kW, and then again 66.67 kW of power distribution,
corresponding to the load changes. Fig. 20 also shows
that active power shared by TFs-based GFM obtained from
DDM exhibits similar dynamics compared to the analytical
TFs-based GFM approach. However, the dynamics is slightly
different compared to GFM 1 dynamics. This difference
might be due to the challenge of capturing some of the
non-linearities of the GFM 1 inverter dynamics that are not
being fully captured in this large signal event, which is a
limitation for the current implementation of this method
that should be addressed as future work. However, both

models converged in steady state with the GFM 1 and
GFM 2 implementations. To compare the performance of
TFs-based GFM obtained from the analytical and DDM
approaches, GoF based on NRMSE as given in Eq. 19 is
calculated. For this, active power supplied from both the
TF-based GFM models is compared with the GFM 1 active
power. The GoF for the analytical approach and data-driven
approach is calculated to be 89.09% and 87.97% respectively.
This demonstrates that both approaches can accurately
capture the dynamic response of GFM inverters under
different loading conditions.

Similarly, in Fig. 21, we compare the reactive power
responses of the TFs-based GFMobtained from the analytical
and DDM approaches. The reactive power of the load is
changed from 50 kVAr to 150 kVAr at 378.8 sec and then
reverted back to 50 kVAr from 150 kVAr at 389.7 sec. The
DDM TFs-based GFM approach exhibits similar dynamics
compared to analytical TFs-based GFM approach.

B. VALIDATION OF GFM 1 TF WITH THREE PHYSICAL GFM
INVERTERS
The validation of the TFs-based GFM obtained from DDM
with three physical GFM inverter is illustrated in Fig. 22.
The experimental hardware setup involves three physical
Dynapower GFM inverters, specifically GFM 1, GFM 3,
and GFM 4. The RTS, grid simulator, and console PC were
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FIGURE 23. Active power shared by GFM 1, GFM 2, GFM 3, GFM 4, and
TFs-based GFM obtained from the analytical and DDM approach.

collectively employed to connect GFM 1, GFM 3, and GFM
4 in the EMT simulation. Utilizing three PHIL blocks, these
inverters were interconnected with the EMT simulation. This
arrangement facilitates the integration of GFM 2, TFs-based
DDM GFM inverter, and the load into the system. The grid
simulator utilized in this experiment was a controlled AC
source amplifier with a capacity of 270 kVA. Additionally,
the AV900 bidirectional DC supply, Anderson, and Magna
Power DC supply which were available in the power system
integration lab at the National Renewable Energy Laboratory,
were connected to the DC terminal of GFM 1, GFM 3,
and GFM 4 respectively. The console PC and OP5707 RTS
communicated using the UDP over Ethernet.

The comparison of active power shared by GFM 1, GFM 2,
GFM 3, GFM 4, and DDM TFs-based GFM is depicted
in Fig. 23. During start-up, none of the physical GFM
inverters are connected to the Opal-RT simulation model.
Thus, 200 kW load power is shared by GFM 2 and DDM
TFs-based GFM (Each GFM injecting 100 kW active power).
At time 26.6 sec, 49.6 sec, and 77.4 sec, GFM 1, GFM 3,
and GFM 4 are connected to the EMT simulation, resulting
an equal power sharing of 66.67 kW, 50 kW, and 40 kW
respectively across all GFMs. When all the GFM inverters
are connected, the active power of the load is changed from
200 kW to 300 kW at 114.2 sec and then reverted back to
200 kW from 300 kW at 125.2 sec. The results indicate an
equal power sharing across all five GFMs. Initially, 40 kW
of active power is shared, followed by 60 kW, and then again
40 kW of active power, corresponding to the load changes.

VIII. CONCLUSION
This paper presents an analytical approach and DDM
approach to obtain mathematical model of GFM inverter
dynamics. A DDM modeling approach uses PHIL exper-
iments to capture dynamic GFM data in the application
of DDM techniques. A square-chirp probing signal was
employed to perturb the active and reactive power of the
load inside the Opal-RT model. The dynamic response
of the GFM inverter, including changes in frequency and
voltage, was recorded. This data was then used in system

identification algorithm to identify the dynamic models of
the GFM inverter. Furthermore, the mathematical model of
GFM inverter dynamics obtained from analytical approach
andDDMapproach are then compared based onGoF. GoF for
the analytical approach and DDM approach was calculated to
be 89.09% and 87.97% respectively. Hence, both approach
demonstrated accuracy in capturing the dynamic response of
GFM inverters under varying loading conditions.

APPENDIX
Table 2 displays the parameters related to GFM inverters
(GFM 1, GFM 2, GFM 3, and GFM 4), including the
droop controller parameter, inverter filter parameter, and load
parameter.

TABLE 2. GFM Inverter, LCL filter, and load parameters 1.
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