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Abstract— The integration of power electronics-based 
interfaces presents challenges due to the absence of detailed 
models and the high computational complexity. Generic models 
used in system studies lack accuracy in capturing converter 
dynamics. This paper proposes a data-driven approach developed 
from experimental setup data. This approach enhances accuracy 
in photovoltaic inverter modeling. We used two types of PV 
inverters in the experiment. The recorded experimental data 
undergo processing through a machine learning model. Results 
from the model trained through machine learning is also 
presented.  

Keywords—Inverters, inverter under test, inverter black box 
model, machine learning, artificial intelligence, experimental setup.  

I. INTRODUCTION 
The increase of power electronics-based generation requires 

accurate converter modeling as solar photovoltaic (PV) inverters 
are becoming a key distributed energy resource. Yet, widely 
used generic inverter models in grid studies are oversimplified, 
lack accuracy, and fail to represent real converters with multiple 
dynamic subsystems, hierarchical control, and communication 
systems [1], [2]. 

One of the approaches to the problem is developing a black 
box model that can be fully parameterized by experimentally 
evaluating the converter response. Previous works have 
proposed the use of artificial neural Network-based IBR 
modeling. Authors in [3], [4], [5] used ANN to train and model 
commercial photovoltaic microinverters by converting time 
domain data from power Hardware-in-the-Loop (PHIL) into the 
frequency domain. Others in [6], [7] use ANN to build 

impedance models and proposed the techniques to solve 
operating point-dependent challenges 

This paper presents a data-driven approach to identify an 
accurate inverter model using an experimental setup with two 
off-the-shelf commercial inverters. A learning-based approach 
is used to accurately represent the inverter under test (IUT) 
behavior using recorded experimental data [3]. The 
experimental setup is detailed and serves as a template for 
testing utility-scale converters. The generated data are publicly 
available, enabling researchers to develop accurate converter 
models [8], [9], [10]. 

This paper details our contribution to generating datasets, 
formulating model architecture, and training models using high-
performance computing. Emphasis is on our data collection 
through power hardware-in-the-loop experiments that have 
enabled us to use empirical datasets in contrast to simulated data 
used to train converter data-driven models. 

II. EXPERIMENTAL SETUP TO COLLECT DATA 
This paper uses both a three-phase PV inverter and a split-

phase PV IUT for the experiments, as shown in Fig. 1. Both 
setups consist of a grid simulator, AC measurement box, IUT, 
DC measurement box, and DC power supply (PV emulator). 
Real-Time Digital Simulator (RTDS) and analog input cards 
facilitate the data collection. The first setup features a three-
phase PV inverter with a 600-V/25-A input curve, and the 
second setup employs a split-phase PV inverter with a 600-
V/15-A input curve. The PV emulator adjusts the irradiance 
levels from 100% to 75%, 50%, and 25%, while the grid 
simulator maintains constant voltage and frequency. A Python 
script automates the grid simulator control, synchronizing the 
irradiance changes with grid voltage and frequency adjustments. 
The flowchart of the experiment is shown in Fig. 2. 

 
Fig. 1. Inverter under test experimental setup. 

 
Fig. 2. Experiment flowchart. 
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A. Voltage Run 
The voltage ranges from 0.9 to 1.1 p.u. in 0.025-p.u. 

increments, maintaining a constant 60-Hz frequency. Data for 
the three-phase PV inverter were sampled every 1 ms for 
442.241 s and for the split-phase PV inverter every 1 ms for 
442.1885 s. Fig. 3 illustrates the AC voltage and current. 

In both setups, the voltage and current samples were squared, 
subjected to a rolling average, and the square root was taken for 
each, with one sample chosen from every 100 samples. In the 
three-phase setup, the reference voltages ranged from 0.9 to 1.1 
p.u. In the split-phase setup, the reference voltages varied from 
0.9 to 1.1 times 120 V with 3-V steps. 

The three-phase PV inverter root-mean-square (RMS) 
voltage amplitudes range from 247 V to 304 V between 
reference voltages (see Table I), with Voltage B exceeding 
Voltage A by 0.5 V and Voltage C by 0.8 V. The current RMS 
amplitudes range from 6.7 A to 25.7 A, with Current A 
exceeding Current C by 0.1 A and Current B by 0.2 A. In the 
split-phase setup, the RMS voltage amplitudes vary from 108 V 
to 132 V between the reference voltages, with Voltage A 
surpassing Voltage B by 0.7 V. The RMS current ranges from 
7.9 A to 32.5 A (see Table II). 

Fig. 4 illustrates the DC voltage and current for both the 
three-phase and split-phase PV inverters with the data sampled 
at intervals of 1 in every 100 samples.  

In the three-phase system, the DC voltage and current has a 
repeating pattern every 43 s, with the voltage ranging from 843 
V to 956 V and the current from 7.3 A to 28.2 A (see tables III 
and IV). In the split-phase system, a loosely repeating pattern 
occurs every 44 s, with the DC voltage varying from 338 V to 
418 V and the DC current fluctuating between 1.6 A and 23.4 A 

(see tables III and IV). Fig. 5 shows the AC voltage, with the 
data truncated to show only the first 1/60 samples. 

TABLE I AC RMS VOLTAGE 
Three-phase PV inverter 

𝒕𝒕(𝒔𝒔) 891 934 978 1022 1066 1110 1154 1198 1242 1286 
𝑽𝑽𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 (𝑽𝑽) − 247 250 257 264 271 278 285 292 299 
𝑽𝑽𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 (𝑽𝑽) 247 250 257 264 271 278 285 292 299 304 

Split-phase PV inverter 
𝒕𝒕(𝒔𝒔) 2733 2776 2820 2864 2908 2952 2996 3040 3084 3128 

𝑽𝑽𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 (𝑽𝑽) − 247 250 257 264 271 278 285 292 299 
𝑽𝑽𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 (𝑽𝑽) 247 250 257 264 271 278 285 292 299 304 

TABLE II AC RMS CURRENT  
Three-phase PV inverter 

𝒕𝒕(𝒔𝒔) 891 930 973 1016 1059 1102 1145 1188 1231 1247 
𝑰𝑰𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 (𝑽𝑽) − 8.0 8.0 7.7 7.5 7.4 7.2 7.1 6.9 6.7 
𝑰𝑰𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 (𝑽𝑽) 25.7 25.7 25.7 25.6 25.6 25.1 24.5 23.9 23.3 22.8 

Split-phase PV inverter 
𝒕𝒕(𝒔𝒔) 2733 2773 2817 2861 2905 2949 2993 3037 3081 3125 

𝑰𝑰𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 (𝑽𝑽) − 19.7 18.8 18.2 11.1 8.3 8.1 7.9 12.9 15.6 
𝑰𝑰𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 (𝑽𝑽) 32.0 31.9 32.5 32.2 31.6 31.7 30.9 30.3 31.4 28.1 

 
In the three-phase PV inverter setup, the AC voltages are 

three phase waveform each at approximately 60 Hz and phase-
shifted by 120° from one another. The amplitudes of these 
waves remain constant within a selected portion. Similarly, in 
the split-phase PV inverter setup, the observed voltages are bi-
phase waveforms, each at approximately 60 Hz and phase-
shifted by 180° from one another. The amplitudes of these 
waves also remain constant within the selected portion. 

 

 
Fig. 3. AC voltage and current RMS over time (s)—(a) y-axis (left): 

voltage A, B, C (V), current A, B, C (A); (b) y-axis (left): voltage A, B 
(V), current A, B (A) 

 
Fig. 4. AC voltage truncated over time (s)—(a) y-axis: voltages A, B, and 

C (V), (b) y-axis: voltages A and B (V) 
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TABLE III DC VOLTAGE 

Three-phase PV inverter 
𝑡𝑡(𝑠𝑠) 929 972 1015 1058 1101 1144 1187 1230 1273 1322 

𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  (𝑉𝑉) 874 869 869 863 859 853 848 853 859 856 
𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  (𝑉𝑉) 955 954 951 948 947 947 947 947 947 947 

Split-phase PV inverter 
𝑡𝑡(𝑠𝑠) 2733 2773 2818 2862 2906 2950 2994 3038 3082 3126 

𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  (𝑉𝑉) − 343 345 351 355 360 366 371 376 380 
𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  (𝑉𝑉) 405 367 388 398 398 368 374 379 392 390 

TABLE IV DC CURRENT 
Three-phase PV inverter 

𝑡𝑡(𝑠𝑠) 929 972 1015 1058 1101 1144 1187 1230 1273 1322 
𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  (𝑉𝑉) 7.6 7.7 7.6 7.8 7.8 7.9 8.0 8.0 7.9 7.9 
𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  (𝑉𝑉) 25.0 25.1 25.9 27.2 27.5 27.5 27.6 27.5 27.2 27.3 

Split-phase PV inverter 
𝑡𝑡(𝑠𝑠) 2733 2773 2818 2862 2906 2950 2994 3038 3082 3126 

𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  (𝑉𝑉) − 6.5 6.4 6.2 6.1 5.9 5.8 5.6 5.6 5.4 
𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  (𝑉𝑉) 17.9 16.1 17.0 15.7 20.4 22.7 22.3 21.8 20.7 13.6 

 

B. Frequency Run 
 In the frequency run experiments, the frequency is varied in 

steps at 59.4 Hz, 59.6 Hz, 59.8 Hz, 60.2 Hz, 60.4 Hz, and 60.45 
Hz while maintaining a constant voltage amplitude of 1 p.u. In 
the three-phase PV inverter setup, data were recorded at 1-ms 
intervals over 247.653 s. In the split-phase PV inverter setup, 
data were recorded at 1 ms intervals for 247.968 s. Figs. 6 and 7 
depict the Phase A voltage and current using a computed short-
time Fourier transform (STFT) for the frequency domain 
analysis at various intervals. The color in the figures represents 
the signal’s amplitude within the frequency bucket over time.  

The STFT involves applying a window input function, 
performing the Fourier transform, and repeating the process with 
window shifts. For Figs. 6 and 7 (a) with amplitude prioritized, 
a 20,000-point discrete Fourier transform (DFT) with a 
rectangular window is computed every 20,000 samples. 

In Figs. 6 and 7 (b) prioritizing amplitude, a 5,000-point DFT 
with a rectangular window is computed every 5,000 samples. 
For Fig. 6 (a) with time prioritized, a 20,000-point DFT with a 
Gaussian window is computed every 500 samples. In Fig. 7 (a) 
prioritizing time, a 40,000-point DFT with a Gaussian window 
is computed every 500 samples. For Figs. 6 and 7 (b) prioritizing 
time, a 25,000-point DFT with a Gaussian window is computed 
every 1,250 samples. 

In the three-phase PV inverter setup, the signal shows 
discrete frequency jumps between 59.4 Hz, 59.6 Hz, 59.8 Hz, 
60.2 Hz, 60.4 Hz, and 60.45 Hz at specific times (see Table V) 
as programmed in the controllable supply. Similarly, in the split-
phase PV inverter setup, the signal undergoes discrete frequency 
transitions, briefly reaching 60 Hz and then switching between 
59.4 Hz, 59.6 Hz, 59.8 Hz, 60.2 Hz, 60.4 Hz, and 60.45 Hz, as 
shown in Table V. 

In this paper, we used the three phase PV inverter data set to 
train a model. Split phase inverter data was not used for the 
training. Trained split phase inverter model will be presented in 
a different report.  

TABLE V VOLTAGE AND CURRENT FREQUENCY 
Three-phase PV inverter 

𝒕𝒕(𝒔𝒔) 580 622 663 704 743 
𝒇𝒇𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 (𝑯𝑯𝑯𝑯) 59.4 59.6 59.8 60.2 60.4 
𝒇𝒇𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 (𝑯𝑯𝑯𝑯) 59.6 59.8 60.2 60.4 60.45 

Split-phase PV inverter 
𝒕𝒕(𝒔𝒔) 1170 1212 1255 1297 1338 

𝒇𝒇𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 (𝑯𝑯𝑯𝑯) 59.4 59.6 59.8 60.2 60.4 
𝒇𝒇𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 (𝑯𝑯𝑯𝑯) 59.6 59.8 60.2 60.4 60.45 

 
Fig. 5. DC voltage and current over time (s)—y-axis (left): voltages (V), y-

axis (right): currents (A) 

 
(a) 

 
(b) 

Fig. 6. Frequency of Phase A voltage 



4 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

III. MACHINE LEARNING SETUP 
Central to developing accurate PV inverter models is 

building a mapping from input to output variables. Specifically 
for this paper, a mapping from the three-phase voltage, DC 
current, and DC voltage to the three-phase current was built 
using a simple feed-forward neural network with two hidden 
layers. The reason for choosing this model was to demonstrate 
that accurate inverter models can be built even with simple 
models such as standard feed-forward neural networks. Setting 
up and training such a model is fast and straightforward using 
libraries such as TensorFlow using the Keras interface, which 
was used in this paper. The rest of this section briefly describes 
the architecture and training of the neural network PV inverter 
model. 

The workflow for training the machine learning model is 
illustrated in Fig. 8. Each step in Fig. 8 is described in detail in 
the following discussion. First, data collected from the inverters 
were first preprocessed, i.e., first split into training and testing 
data, and the training data were subsequently normalized. Once 
the data preprocessing step was completed, the neural network 
architecture was chosen. The neural network PV inverter model 
architecture consists of an input layer with five inputs: three-
phase voltage (a, b, c), DC current, and DC voltage. and the 
resulting input layer was connected to two layers (fully 
connected) consisting of 100 nodes each.  

Rectified linear activation functions were used (see, e.g., 
[11]) for the hidden layers, and, finally, the last hidden layer was 
connected to an output layer consisting of three nodes, one for 
each phase of the three-phase output current.  

For training the neural network, mean-squared error was 
selected for the loss function, and an Adam optimizer was 
employed [11] to fit the data using 100 epochs as a termination 
condition. After the 100 epochs of training completed, the 

authors determined that no further training or updates to the 
neural network architecture  were required, and the model was 
evaluated against the test data set. The results of the training, 
including the mean-squared error loss values for the training and 
test data, are shared in the next section. 

The data set for the voltage step change experiments were 
split into a training data set consisting of two-thirds of the data 
and the testing data set consisting of one-third of the data. 
Because the data consist of time-series output, the test-train split 
was performed by taking the first two-thirds of the data for 
training and the last one-third for testing instead of a randomized 
split across the extent of the data.  

We emphasize the utility of a simple machine learning-based 
PV inverter model: The goal was to demonstrate that useful 
results can be obtained even using basic (and not finely tuned) 
machine learning models that are easily trained. Indeed, this 
model should be improved upon in practice, and the authors 
encourage interested readers to experiment with more advanced 
neural network topologies and machine learning methodologies, 
and to finely tune their models, with the goal of improving upon 
the results demonstrated in this paper. 

IV. MACHINE LEARNING RESULTS 
For the voltage step example, training the neural networks 

for 100 epochs resulted in an average mean-squared error 
(averaged over the three phases) loss of 0.0104 for the training 
data and 0.0838 for the test data. For the frequency step example, 
training the neural networks for 100 epochs resulted in an 
average mean-squared error loss of 0.0762 for the training data 
and 0.0655 for the test data. Outputs from the machine learning 
models trained using the voltage step and frequency step data 
sets are shown in Figs. 9 to 12, respectively. 

 
(a) 

 
(b) 

Fig. 7. Frequency of Phase A current 

 
Fig. 8. Machine learning workflow for training artificial neural networks 

(ANNs). 
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 After 100 epochs of training, the models built using the voltage 
step and frequency step data capture the major features 
contained within the output current data sets; however, there is 
still room for improvement. In both models, near the tops of the 
oscillations (see Figs. 9 and 11), there are visible over- and 
undershoots. Further, it is evident from the zoom-in on the Phase 
C data from Fig. 10 that the model trained using the frequency 
step data could potentially benefit from further training. Visible 
in Fig. 9, the model also misses some events in the final third of 
the time-series data. Recalling that the final third of the time-
series data were kept out of the model training, the plots in Fig. 
9 suggest that the training data might not have provided 

sufficient information for the model to capture such events. At 
this time, more investigation is required to understand whether 
a lack of sufficient training data, an insufficient model 
architecture, or an insufficiently trained model are responsible 
for the model missing the events in the final third of the time 
steps in Fig. 9. 

V. CONCLUSION 
This paper presented a novel method for accurately 

modeling PV inverters using experimental data processed 
through a machine learning-based model. The model employs 
measured voltages, and currents as input data to predict the 

 
Fig. 9. Three-phase (a, b, c) current from voltage step experiments overlaid with AI-based PV inverter model output.  

 
Fig. 10. Three-phase (a, b, c) current zoomed in from voltage step experiments overlaid with AI-based PV inverter model output.  

 
Fig. 11. Three-phase (a, b, c) current from frequency step experiments overlaid with AI-based PV inverter model output. 

 
Fig. 12 Three-phase (a, b, c) current zoomed in from frequency step experiments overlaid with PV inverter model output. 
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optimal current representing the IUT’s behavior. The inverter 
model is developed using TensorFlow via the Keras interface. 
The currents are generated through a neural network application 
programming interface. Using a simple feed-forward 
architecture with two fully connected hidden layers, the model 
accurately reproduces most of the events contained in the output 
current; however, some events in the test data were missed, and 
more work is required to understand how to update the model to 
capture such events while avoiding overfitting.  

Future work on this topic will include experimenting with 
more advanced neural network architectures and more carefully 
tuning the machine learning model. Convolutional neural 
networks and long short-term memory-based networks both 
present interesting paths forward in terms of new models to use 
with these data sets [11]. 
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