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Outlook for PV Models in the North
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• All models over-estimate N-S vertical irradiance in Colorado
• 2D view factor models under-estimate E-W vertical irradiance in both Colorado and Alaska
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The Challenge:

Golden, Colorado, 40ºN 105ºW

Testbeds
• Accurate modelling of photovoltaic systems is critical for the design, financial analysis, and monitoring 

of solar PV plants

• Bifacial PV models must additionally offer robust rear-side irradiance algorithms

Especially true for:

Bifacial irradiance models have yet to be validated for 
vertical systems or at high latitude

The North [3]

East-west vertical systems 

become competitive with 

traditional equator-facing 

tilted systems at high latitude

Morning & afternoon 

production can help with 

matching load demand

Agri-PV [2]

High Latitude Conditions

25°N 35°N 45°N 55°N 65°N 75°N G
H

I (W
/m

2)

0

1000

750

500

250

Global Horizontal
Irradiance

Latitude
Trends

Main algorithm Ray tracing 2D view factor 2D view factor 3D finite element
Spectral albedo ✓   

Specular reflections ✓   

Rear-irradiance non-
uniformity

✓   ✓

Rack shading ✓  ✓ ✓

Edge effects ✓   ✓

Speed (time/timestamp) 6 s 3 s < 1 s 6 s
Version used v0.4.2 v0.1.8.1 v4.2.0 v0-research
*Speed test is completed using the Golden E-W vertical test-site on a Windows 10.0 Dell OptiPlex 7020 computer with an Intel Core i5-4690 
processor (4 cores) and 16GB of RAM.

DUET

• Simple geometry, computationally inexpensive

• Calculates the amount of sky & ground visible 

from a point on the panel, captures module 

and ground shading

• Commonly used in industry

View Factor Ray Tracing
• Custom geometry, computationally expensive

• Backwards ray-tracing: traces rays from a 

point on the module outwards to the ground, 

sky, other objects. Scattering properties of the 

materials are captured [4]

Model-predicted insolation deviates more for:

• High latitudes

• Vertical PV systems

• Compared annual model-predicted insolation in 250+ locations

• Typical meteorological year data

Fairbanks, Alaska, 65ºN 148ºW
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1 E-W Vertical Bifacial Testbed

N-S Vertical Bifacial Testbed

E-W Vertical Bifacial Testbed

• Designed & assembled a 3-row vertical testbed 

composed of 80/20 frame, plywood, and 6 IMT silicon 

reference cells 

• Reflective material simulates ‘snow’ 

• Vertical testbed is rotatable and additionally tested 

in N-S orientation

• NREL Measurement and 

Instrumentation Data Center

• 15-minute resolution

• 70 days of data per orientation

• Maintained by Alaska Center for Energy & Power, 

described in Ref. [8]

• 2 E-W vertical modules

• 2 silicon reference cells measuring east & west irradiance

• Co-located with E-W vertical testbed

• 4 south-tilted modules (bifacial & 

monofacial)

• 2 silicon reference cells measuring 

front & rear irradiance

Meteorological Data

• On-site heated pyranometers, 

pyrheliometer, and albedometer

• 15-minute resolution

• 1 full year of data, 2019-2020

Meteorological Data

Ex) Clear Sky Day

All Data Comparing modelled vs measured irradiance data, without filters. 

Colorado systems = ~3000 timestamps, Alaska systems = ~18,000 timestamps.

[4] [5] [6] [7]

PV fences [1]
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Comparing modelled vs measured 

irradiance on example clear sky days

All models over-estimate: 
   South-irradiance for N-S vertical

Comparing modelled vs measured  irradiance data, with filters

All models under-estimate: 
  Diffuse irradiance in Alaska

Highest error for low irrad.
≤5% of insolation

High snow error in Alaska 
17% of annual insolation

Snow covering the world with sparkles, including useful sensors

Fairbanks, Alaska

• Average measured albedo = 0.62

Arctic Circle Θ = Lat - 10°

E-W Vertical

N-S Vertical

Equator-Facing 
Fixed-Tilt

E-W Vertical, CO N-S Vertical, CO E-W Vertical, AK South-Tilted, AK

Model Error Trends

RMSE =
Τ1

𝑁 σ 𝑦𝑖−𝑥𝑖
2

Τ1
𝑁 σ 𝑥𝑖

MBE = Τ1
𝑁 σ 𝑦𝑖 − 𝑥𝑖

with 𝑦𝑖 modelled values,

 𝑥𝑖 measured values

       N  timestamps

Mean Bias Error

Root Mean Square Error

Snow on ref. cells → 
models over-estimate

All 18,000 timestamps
All models show the same feature

Insolation included in filter (%)
< 100 W/m2 Clear sky Snow Winter

Colorado
EW 3 30 14 -
NS 1 57 30 -

Alaska 5 33 17 10

E-W Vertical, CO

N-S Vertical, CO

E-W Vertical, AK

South-Tilted, AK

Av. error drops 14% rel. 
(vertical), 29% rel. (S-tilted)

More error associated 
with cloudy conditions

Irradiance Sky Conditions Snow Site Maintenance

(Nov. – March) 
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• Must allow larger margins of uncertainty for designing systems & financial planning

• Revisit model assumptions and consider adaptations for high latitudes

• High latitudes, where there is an increased fraction of the year with high ground albedo

• Emerging E-W vertically oriented bifacial PV systems, where receiving direct beam solar 

irradiation swaps at solar noon

30°N
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June 20

Jan. 20

70°N
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RMSE varies between 11-28% 

2D view factor models under-
estimate E-W vertical irradiance

Highest error 
for south-tilted 

Alaskan 
testbed
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bifacialVF
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Model choice depends on the application

DUET
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Coeff. of variation = 
St. deviation between models

Average model predicted insolation

dA1

dA2

n1

n2
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Best case filtering: 
RMSE varies between 5-13%

>100 W/m2, clear sky, no snow

All models struggle with low irradiance conditions, clouds, snow → prevalent at high latitudes

http://www.ise.fraunhofer.de/en/research-projects/pvwins.html
https://next2sun.com/en/agripv/
https://sunnagroup.com/en/project/norrskenet/
https://sam.nrel.gov/



