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Learning Objectives

After this presentation, you will be able to:

IBPSA-USA is a Registered Provider with The American Institute of 

Architects Continuing Education Systems. Credit earned on 

completion of this program will be reported to CES Records for AIA 

members. Certificates of Completion for non-AIA members are 

available on request.

This program is registered with the AIA/CES for continuing 

professional education. As such, it does not include content that 

may be deemed or construed to be an approval or endorsement 

by the AIA of any material of construction or any method or 

manner of handling, using, distributing, or dealing in any material 

or product. Questions related to specific materials, methods, and 

services will be addressed at the conclusion of this presentation.

AIA Continuing Education

1. Envision how a residential building can be 
more efficiently controlled

2. Understand how shaping and shifting 
building loads can play a crucial role in a 
more effective grid

3. Learn the benefits of a multi-fidelity 
approach to building control

4. Conceptualize a Gaussian Process as a 
surrogate for a high-fidelity dynamical 
model of a building

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald
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Introduction

Multi-fidelity linear model (MFLM)

Learning on the fly

Discussion

Conclusion

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

Outline
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Introduction: building control

Motivation:
• Increased electrification of end uses1,2,3 

• Demand is higher, but is more flexible

• Increased renewable energy generation4 
• Available power is more intermittent

• A stable grid: demand = generation
• Challenging when generation is intermittent

• So, what can be done on the demand side?

End use example: buildings
• 38% of electrical demand in U.S. in 20221

• Can shift and shape this flexible demand 
using advanced control techniques5,6,7

• Potential to benefit the grid if done at a 
large scale8

• Requires computationally heavy large-
scale simulations

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald
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Introduction: model predictive control

Background:
• Model predictive control (MPC): 

• Popular method for HVAC control9, 10, 11

• Optimize objective, include constraints, …

• Linear MPC: 
• Uses linear model to simulate trajectory and 

get optimal control actions

• Nonlinear MPC: 
• Uses nonlinear model to simulate trajectory 

and get optimal control actions

Building systems are typically complex 
and nonlinear9

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

Linear MPC Nonlinear MPC
Benefits easy and cheap 

to evaluate12
more accurate 
predictions (if 
system is 
nonlinear)

Challenges less accurate 
predictions (if 
system is 
nonlinear)

complex and 
expensive to 
evaluate12
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Introduction: research goal

Goal:

Bridge the gap between 
computational burden and 

accuracy to more effectively 
control the HVAC system in a 
building or group of buildings

Proposed Solution:
• Exploit benefits of both MPC types:

• Preserve linear model efficiency

• Approach nonlinear model accuracy

• A multi-fidelity (MF) method13:
• Update a low-fidelity (LF) model with high-

fidelity (HF) information (a MF model)

• Adaptive computing14:
• Update the MF model on the fly

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald
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Linear model (LM) with static parameters

Building as a 1-D LM:
• Control action: 𝑢𝑢 ∈ ℝ1

• HVAC heat flow [kW]: 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

• State: 𝑥𝑥 ∈ ℝ1

• Internal temperature [C]: 𝑇𝑇𝑏𝑏

• Disturbances: 𝑑𝑑 ∈ ℝ3

• Outdoor air temperature [C]: 𝑇𝑇𝑜𝑜𝑜𝑜

• Solar heat flow [kW]: 𝑄𝑄𝑠𝑠𝑜𝑜𝑠𝑠

• Internal load [kW]: 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

𝐴𝐴 ∈ ℝ1𝑥𝑥1
𝐵𝐵 ∈ ℝ1𝑥𝑥1
𝐸𝐸 ∈ ℝ3𝑥𝑥1

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘 + 𝐸𝐸𝑑𝑑𝑘𝑘

image: Flaticon.com
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HF data driven model

A surrogate for a HF building 
model:
• Gaussian Process (GP) model: 𝑓𝑓𝐺𝐺𝐺𝐺 ⋅

• Maps HF inputs (𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑑𝑑𝑘𝑘) to HF outputs (𝑥𝑥𝑘𝑘+1)

• Fast to evaluate

• Captures nonlinear or complex dynamics

• Easy to adapt and update on the fly

• Provide uncertainty quantification

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

𝑌𝑌 = 𝑓𝑓𝐺𝐺𝐺𝐺 𝑋𝑋

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓𝐺𝐺𝐺𝐺 𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑑𝑑𝑘𝑘

≡
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Multi-fidelity linear model (MFLM)

MFLM idea:
• Parameters are time-varying
• Differentiate the GP at current 

building conditions 𝜌𝜌𝑘𝑘 = 𝑥𝑥𝑘𝑘 𝑢𝑢𝑘𝑘 𝑑𝑑𝑘𝑘

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

�̂�𝐴 =
𝜕𝜕𝑓𝑓𝐺𝐺𝐺𝐺 𝜌𝜌𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

�𝐵𝐵 =
𝜕𝜕𝑓𝑓𝐺𝐺𝐺𝐺 𝜌𝜌𝑘𝑘
𝜕𝜕𝑢𝑢𝑘𝑘

�𝐸𝐸 =
𝜕𝜕𝑓𝑓𝐺𝐺𝐺𝐺 𝜌𝜌𝑘𝑘
𝜕𝜕𝑑𝑑𝑘𝑘

𝑥𝑥𝑘𝑘+1 = �̂�𝐴𝑥𝑥𝑘𝑘 + �𝐵𝐵𝑢𝑢𝑘𝑘 + �𝐸𝐸𝑑𝑑𝑘𝑘
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MFLM – Learning on the fly

Possible challenges with MFLM:

• GP Training
• Computation time increases by 𝒪𝒪 𝑁𝑁3

• Access to limited data

• High-performance computing
• Certain computational time/budget 

allocation

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

Obtain smallest dataset that results in 
best GP/MFLM performance
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MFLM – Learning on the fly

Process:
1. Train GP on small initial dataset

2. Track variance of current conditions

3. Learn on the fly
a. If Var 𝝆𝝆𝒌𝒌 ≥ �𝑽𝑽: add current condition to initial 

dataset, re-train GP with new dataset

b. If Var 𝝆𝝆𝒌𝒌 < �𝑽𝑽: continue simulation

4. Compute MFLM parameters

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

1.
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MFLM – Learning on the fly

Process:
1. Train GP on small initial dataset

2. Track variance of current conditions

3. Learn on the fly
a. If Var 𝝆𝝆𝒌𝒌 ≥ �𝑽𝑽: add current condition to initial 

dataset, re-train GP with new dataset

b. If Var 𝝆𝝆𝒌𝒌 < �𝑽𝑽: continue simulation

4. Compute MFLM parameters

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

2.
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MFLM – Learning on the fly

Process:
1. Train GP on small initial dataset

2. Track variance of current conditions

3. Learn on the fly
a. If Var 𝝆𝝆𝒌𝒌 ≥ �𝑽𝑽: add current condition to initial 

dataset, re-train GP with new dataset

b. If Var 𝝆𝝆𝒌𝒌 < �𝑽𝑽: continue simulation

4. Compute MFLM parameters

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

3. a.
3. b.
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MFLM – Learning on the fly

Process:
1. Train GP on small initial dataset

2. Track variance of current conditions

3. Learn on the fly
a. If Var 𝝆𝝆𝒌𝒌 ≥ �𝑽𝑽: add current condition to initial 

dataset, re-train GP with new dataset

b. If Var 𝝆𝝆𝒌𝒌 < �𝑽𝑽: continue simulation

4. Compute MFLM parameters

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

4.
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Results: no learning on the fly 

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

MFLM LM
0.706 0.295

Mean Absolute 
Error [C]:

MFLM LM
12.52 NA

Comp. time [sec.]:

In addition to LM
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Results: learning on the fly 

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

MFLM LM
0.251 0.295

MFLM LM
93.94 NA

Comp. time [sec.]:

Mean Absolute 
Error [C]:
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Discussion

Accuracy:
• MFLM can make more accurate 

predictions than a LM in terms of MAE

• Given adequate training data

Computation time:
• MFLM > LM in general

• MFLM w/ on-the-fly learning takes 
longer to compute than w/o …

• Much faster than training on entire year

Result implications: Immediate 
benefit:

• MPC can use MFLM to get more 
accurate state trajectory

• MPC can then produce more effective 
control actions

• More efficient HVAC operation in a 
single building

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald
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Discussion

Result implications:
• Bigger picture benefit:

• Objectives are better met
• Many buildings, each more efficient, each 

communicating, can benefit the grid

• Possible applications:
• A neighborhood or community of residential 

buildings
• Different building types (commercial, 

industrial, ...)
• Different end use devices (EV charging, 

storage, …)

Result implications:
• Immediate benefit:

• MPC can produce more effective control 
actions

• More efficient HVAC operation in a single 
building

• Bigger picture benefit:
• Objectives (load shifting) are better met

• Many buildings, each more efficient, each 
communicating, can benefit the grid

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald



Conclusion

Contact
Dylan Wald
dylan.wald@nrel.gov, dylanwald@mines.edu 
LinkedIn: www.linkedin.com/in/dylan-wald-046293172 

A multi-fidelity method can bridge the gap between 
computational complexity and accuracy to more effectively 
control buildings and provide grid services

mailto:dylan.wald@nrel.gov
mailto:dylanwald@mines.edu
http://www.linkedin.com/in/dylan-wald-046293172
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Building and data info

• Building type: single family home

• Building location: Phoenix, Arizona

• Building specifications:

• HVAC: central AC, ducted heating

• Natural gas heating

• Southeast facing

• HF simulator: EnergyPlus

• Simulation resolution: 1 minute

• Gaussian Process model: GPytorch

• Data resolution: 5 minute (sampled, 
averaged across timestep)

• Kernel: white noise + const * RBF

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald
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Future work

Current research:
• MF-MPC:

• Currently working on linking the MFLM to 
an existing MPC controller

• Will act as a supervisory controller (sends 
temperature setpoints to a building plant 
model)

• Compare performance of MF-MPC to 
linear MPC (control action effectiveness)

Future research:
• MF-DMPC:

• Create a distributed version of MF-MPC

• Multiple buildings would 
communicate/coordinate to achieve global 
objective

• Individual buildings still achieve local 
objectives

• Analyze load shaping/shifting effectiveness

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald
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Surrogate Model Tuning

Purpose:
• Properly tuned hyperparameters 

crucial to GP performance

• Hyperparameters (HPs): noise prior, 
constant value, length scales

• Popular HP tuning method:
• Maximize the marginal log likelihood (MLL) 

function

• Has proven to be best method for HP tuning

Problem:
• Chooses HPs such that GP fits output very 

well

• Gradients of GP surface are highly variable

• MFLM thus does not perform well

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald
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Surrogate Model Tuning

Process:
• Custom objective function using the 

Optuna hyperparameter tuning 
software

Purpose:
• Regularize the GP tuning process
• Smooth out gradients (smooth the GP 

surface)
• More conservative GP, but more 

accurate MFLM

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald
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Surrogate Model Tuning - Results

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald

MLL Method Custom Method
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Introduction

Background:
• Model Predictive Control (MPC): 

• popular method for HVAC control9, 10, 11

• Optimize objective, include constraints, …

• Linear MPC: 
• uses linear model to simulate trajectory and 

get optimal control actions

• Nonlinear MPC: 
• uses nonlinear model to simulate trajectory 

and get optimal control actions

Benefits:
• Linear MPC: 

• Computationally cheap to evaluate12

• Nonlinear MPC: 
• Highly accurate predictions

Challenges:
• Linear MPC: 

• Less accurate predictions (if true system is 
nonlinear)

• Nonlinear MPC: 
• Computationally expensive to evaluate12

• Building systems are typically complex 
and nonlinear9

M u l t i - f i d e l i t y  m o d e l i n g  a n d  c o n t r o l  f o r  b u i l d i n g  t e m p e r a t u r e  c o n t r o l
Dylan Wald
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