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• Defect graph neural networks
• Equilibria with interacting defects
• Interface structure prediction
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Energy transition

Kurtz et al, Revisiting the Terawatt Challenge, MRS Bulletin 2020 

2050 Energy Needs (average power)
• Current infrastructure 58,000 GW
• Trend extrapolation 32,000 GW
• Total electrification  12,000 GW

20% electricity / 80% fuels

2019 world final energy consumption 
by source

Key World Energy Statistics 2021, IEA report

2022 Pcap (GW) fcap (%) Pav (GW)
Hydro 1400 40 560
Wind 900 35 320
Solar (PV) 1000 15 150
Total 3400 1,030
Renewable Capacity Statistics 2023, IRENA report  

add/yr Pcap (GW) fcap (%) Pav (GW)
Hydro 30 40 12
Wind 80 35 28
Solar (PV) 220 15 33
Total 340 63
Renewables 2022, IEA report  
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Non-electricity solar fuels: Thermochemical Hydrogen

H2 + ½ O2  H2O

Reduction (solar heat)

Oxidation (H2 production)

Ideal gas law (H2, O2, H2O)

(1) Materials Discovery
 Down-selection of candidate materials
 Broad screening of materials databases

(2) Quantitative and mechanistic models
 Specific materials systems
 Understand the underlying physics
 Assess potential and limitations 
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(1) Screening and discovery
ML models for defects

Supercell calculations
• O vacancy formation energy

Mn-O-Mn (°) ∆HD
ref (eV)

O1 174.3 3.27
O2 171.1 3.27
O3 82.0 2.33
O4 82.1 2.35

• Model limitations to specific chemistries and/or
structure types

• Limited scaling of accuracy of regression-based approaches 
• Explicit structure dependence needed to

differentiate symmetry sites

Phenomenological models can be quite successful

Linear Model works well for ABO3 perovskites:

Deml et al, JPCL 2015
Wexler et al, JACS 2021

Crystal 
bond 
dissociation

Crystal reduction
Band gap Stability

features

∆HD
ref = ED − EH + µO

ref
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Defect Graph Neural Network

H2 storage

Explicit structure dependence via graph neural networks
• Crystal Graph Convolutional Neural Networks
• Automated feature extraction

Xie and Grossman, PRL (2018)

Crystal structure -> energy
• Need defect structure
• Accuracy of energy differences?

−VO hostsupercells
~100 atoms

DFT: ∆HD = EDFT(XD) − EDFT(XH) + µO
ref

ML using only host structure:

 Node-level pooling
 Extract defect feature vector
 Use host’s global properties, 

𝒗𝒗𝑔𝑔 = {Eg, m*, ∆Hf}

O Mn
𝒆𝒆12 𝒗𝒗2𝒗𝒗1 Example graph:

 Encode the graph (step 𝑡𝑡 = 0):
𝒗𝒗1𝑡𝑡=0 = 𝑟𝑟O,𝜒𝜒O, … , 𝑠𝑠1

Accuracy boosting, site-specific 
inputs (i.e. oxidation state)

 Convolutions (𝑡𝑡 = 1 …𝑇𝑇)

Δ�𝐻𝐻D = 𝑓𝑓GNN(𝑿𝑿ℎ, 𝑖𝑖′;𝜃𝜃)

M. Witman et al., Nat Comp Sci (2023)
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Structurally and compositionally diverse training data
First-principles DFT workflow is robust but time consuming (using NRELMatDB hosts)

Calculated oxide space:
~200 host structures 

~1500 defect relaxations
Existing oxide space:

~10,000s host structures 
~1Ms defect relaxations
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Benchmarking

Encoding strategies
• Element only: Crystal structure and 

atomic type
• Full: Additional local (si) and global (vg) 

properties 
Cross-validation
• Defect-wise vs compound-wise 
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Metric Requirement

Frac. of defects w/Δ𝐻𝐻𝑑𝑑O > 2.3 eV 𝑥𝑥min = 1 

Frac. of defects w/Δ𝐻𝐻𝑑𝑑O ∈ [2.3, 4.0] eV 𝑥𝑥rng > 0 

𝑃𝑃O2  operating conditions for STCH Δ𝜇𝜇O2
′

𝑃𝑃O2  where host’s GC energy above hull < X Δ𝜇𝜇O2
𝜙𝜙𝐻𝐻<𝑋𝑋

Host stability criteria (ranges intersect) Δ𝜇𝜇O2
𝜙𝜙𝐻𝐻<𝑋𝑋 ∩ Δ𝜇𝜇O2

′

Co-design of defects and stability for water-splitting

Materials Project screening 
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High-throughput thermodynamics
Thermodynamic analysis
• Sum over non-equivalent 

sites

• Inversion of ∆µO –> [VO] 
relationship

• Ideal gas law for (pO2,T) 
diagrams

• Entropy analysis

SL, JCP 2018

Witman, Goyal, Ogitsu, McDaniel, Lany
Nat Comp Sci (2023)
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Quantitative and mechanistic models

hex dMn-O (Å) Mn-O-Mn (°) ∆HD
ref (eV)

O1/O2 1.89-1.92 82 2.37
O3/O4 1.87-1.89 171-174 3.30
perov
O1 1.90 180 2.04

δ = 2.4 @ 1400 °C

[VO]

Role of repulsive
defect interactions?

∆HD = ∆HD
ref + ∆µO

VASP-SCAN+U
UMn-d = 2 eV
UCe-f = 1 eV Sr1−xCexMnO3−δ 

HydroGEN seedling
School of Mines
R. O’Hayre
M. Sanders
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Modeling interacting 
defects

Attractive defect interactions
• Electrostatic or strain energies
• Defect pair/complex binding energy
• Law-of-mass-action
Disorder and solid solutions
• Distribution of defect energies
Repulsive defect interactions
• Concentration-dependent

formation energy2023

2022

2022
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Defect model
Free energy of defect interaction

parameterization
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SrMnO3 reduction
Interacting defect model
• δ moderately underestimated

in both phases

• Very good description of 
T-dependence

• Slight adjustment of ∆HD yields
perfect agreement for all T

Hexagonal-perovskite phase transition

• ∆Epoly = 0.16 eV/fu in SCAN+U
∆Gtot =  0.13 eV/fu

• Possible additional contributions:
- vibrational free energies and ZPE
- polymorph energies beyond DFT
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Ce alloying in Sr1-xCexMnO3-δ

Mixing enthalpy
• Positive ∆Hmix as expected

for solid solution

• x = 1: CeMnO3 is unstable wrt CeO2+MnO 

• Hexagonal-Perovskite transition at x = 0.1 
(experimentally at x = 0.05) 

O vacancy formation energies

• Strong x dependence

• Superposition of defect interactions: 

SCM

∆Gint(T) = (a0 + a1T ) δ + (a0
’
 + a1

’ T ) xCe
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SCM reduction and H2

• δ decreases with Ce fraction

• Near quantitative agreement with 
experiment Bergeson-Keller et al, 

Ene. Tech. (2022) 

• Reduction: T = 1400 °C, pO2 = 10-4 atm
Oxidation: T = 850 °C, pH2O = 1 atm

• Ideal gas law: H2 + O2  H2O
• Water splitting only under dilute H2:H2O

pH2 < 10-2 atm
• Increasing pH2 threshold with xCe  

A. Goyal, M.D. Sanders, R.P. O’Hayre, S. Lany, PRX Energy 3, 013008 (2024)
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Materials Discovery – structure prediction

Oganov, Pickard, Zhu, Needs,
Nature Reviews Materials 4, 331 (2019)

KLM sampling

Kinetically limited minimization (KLM)
• Hybrid random search and basin hopping
• DFT total energy (VASP-PAW)
• Metastable materials
• Reduction of phase space (min distance)
• Applications

– ternary nitrides
– oxynitrides

seed

crystal 
structure Ti2ON2 (sg 139)

Eg = 1.74 eV

New metastable binary nitrides

Oxynitrides Sharan, SL, JCP (2021)
Chen, SL, et al, Cell 
Reports (2022) 

Ce3N4 (sg 166)
Eg = 2.15 eV

SbN (sg 29)
Eg = 2.21 eV

Structure
prediction 

for
interfaces?
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Construction of interfaces structures (literature)

coincidence site lattice
(CSL)

Gao et al, Sci Bull (2019)

Zur, McGill, JAP (1984)

free-surface joint
(free surfaces, translation) 

Gao et al, ACS Appl Mat Int (2020)

Zahiri et al, Nat Mater (2021)

structure sampling

randomization
region

SrTiO3 
grain

boundary

Schusteritsch, Pickard, PRB (2014)
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Interface structure prediction: SnO2/CdTe Sharan et al, SL,
Appl Phys Rev (2022) 
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• Band gap corrected calculation
• Definition of 1 nm interface layer
• Band alignment data

enters device modeling
• CdCl2 interlayer changes device 

behavior
• η approaches  SQ limit

Reference

From first-principles 
to device modeling

Sharan et al, SL,
Appl Phys Rev (2022) 
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ConclusionsEnergy Transition
• Need for direct, non-electricity renewable fuels (H2)

Machine learning of defect formation energies
• dGNN approach uses crystal structure of defect-free system
• Database screening and targeted experimental and theoretical studies 

for STCH (NREL, Sandia, LLNL)
M.D. Witman, A. Goyal, T. Ogitsu, A.H. McDaniel, S. Lany, 
Nature Comp. Sci. 3, 675 (2023) 

Thermochemical equilibria with interacting defects
• Free energy of defect interaction ∆GD

int(δ,x,T) for Sr1−xCexMnO3−δ

• Thermodynamic modeling of H2 yield vs pH2
A. Goyal, M.D. Sanders, R.P. O’Hayre, S. Lany,
PRX Energy 3, 013008 (2024)

Interface structure predictions 
• Opportunities in “Interface Discovery”
• Atomically thin interlayers to connect otherwise incompatible materials
A. Sharan, M. Nardone, D. Krasikov, N. Singh, S. Lany,
Appl. Phys. Rev. 9, 041411 (2022)
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