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Why Demand-Side Flexibility is Critical for =a

L iNREL

Decarbonizing the Power Grid? Tanstorning ENERGY

>> Demand-side flexibility, being a fast-responsive, cost-effective, and zero-emissions resource, is

expected to play a key role in resource adequacy and variabilities & uncertainties management for
decarbonizing the power grid.

National potential for cost-effective flexible demand capacity in 2030 (GW)

m Smart thermostat

= Large commerical & industrial
manual demand response
2030 = Time-varying pricing
Flexible demand
capacity potential Automated demand response
m Smart water heating

= Electric vehicle charging
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Savings potentlal from managing natlonal cost-effective ﬂexnble
demand capacity in 2030, $B

2030 m Generation Capacity
Savings i)otenﬁal = Distribution
per year ® Transmission
Energy
mAncillary Services

Source: DOE, Pathways to Commercial Liftoff: Virtual Power Plants

Source: MIT news, https://news.mit.edu/2017/virtual-batteries-cheaper-
cleaner-power-0324

>> A recent DOE report reveals 180 GW capacity potential and 13 Billions saving potential of
demand-side flexibility in 2030.
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What are the Key Challenges Faced by Aggregating = NREL
Demand-Side Flexibility Tanstorning ENERGY

There are three challenges to fully unlock the demand-side flexibility:

Pt
Lack of market incentive t J Technical challenge -
) IR

Deficiency in market incentives that address the The management of a large number of small and
heterogenous devices is technically complex.

flexibility needs across all time frames: ranging
from short term (e.q., operating reserve) to long

term (e.g., seasonal demand flexibility).
)
[ eofge [ e
Reliability issue
(NI

System operators and regulators often perceive demand-side
flexibility as unreliable due to its dependency on user behaviors,

which are uncertain and not entirely controllable.
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How the NREL-led ARPA-E PERFORM Project Address o

::NREL

the Challenges? Tonsorming ENERGY

An Integrated Paradigm For The Management Of Delivery Risk In Electricity Markets
Inform flexible loads aggregation

DER risk scores Delivery risk aware DERSs Wholesale flexibility option
participation model

Measure the reliability of Enable system-wide flexibility
DER assets in delivering Facilitate DERs flexibility trading at transparent prices to

contracted flexibility scheduling and dispatch mitigate DA-RT netload imbalance

Baseline portfolio
il @ @ @ Flexibility region
)

Data analytics and scoring

Power

> Hedging

LINREL Ty JorNs Hopkins (=2 Inform flexible loads flexibility
— offering and dispatch NREL | 4
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Framework of the Flexibility Option
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Option
premium
Renewables Flexible Loads
Buyer Seller
Right to sell or
buy energy at the
Negative strike price in RT Positive
imbalance / \ imbalance
V § \
V4 N
2 A
Exercise Exercise
-::é::-. payment E§E payment ﬂ!
@ Energy @ Energy
Flexibility up Flexibility down
(call option) Cash flow (put option)

Flexibility/Energy flow

>> Renewables (buyer) purchase flexibility
up/down in day-ahead (DA) from flexible
loads (seller) in exchange of the right to
buy/sell extra energy in real-time (RT) at
strike prices, resembling call and put
options in the finance market.

Renewables
overestimated

Exérr'c'ise
Flexibility up
Redﬁce
consumption
(charging)

Renewables
underestimated

Exercise
Flexibility down
Increase
consumption

(discharging)
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Framework of the Delivery-Risk-Aware DERs v
Y NREL

. . . ‘\ l‘
Participation Model Tansrming ENERGY
— = = = DAprocess Aggregator Market
m= == == =P RT process
Setpoints/ NAe .
DA Flexibility Offering DA Flexibility Offers
Deadbands/ — e s
End users rated powers » DA Flexibility Option
. o - = —_—_ e — Clearing
(EleCt"c walar heater) -~ DA Flexibility Awards
- - t 1
OCHRE Historical . Historicql .
P 2 _opeﬁtinLdag Load and market prices < __market prices Load, wind and solar
forecasting forecasting
I W& W ¥ v
[l e R Temperatures RT FIexibiIity Dispatch RT F'/exit')i/ity
> « = "<V . RT Flexibility Exercises
- W ¢ = = = =
2 i i ON/OFF controls

>> To ensure the successful participation of flexible loads in the flexibility option market, it requires:
1. A DA flexibility offering capability to accurately quantify the aggregated feasible operating region of flexible

loads and make strategic offers.
2. ART flexibility dispatch capability to efficiently disaggregate the unit-level control commands in response to

the flexibility activation.
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Definition of the Delivery Risk i:NREL
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Baseline control Modified control Flexibility offered at the
(Following the deadband control) (Overwriting the deadband control) fleet-level
T Tupper ’ A — — — = Baseline
e \ A % Reference

Miewoer / Tower // Actual

m mn 74 ~
Power ' 1 l 1 Power I 1 1 1 11 V4 A J s

= ' ' Reshapmg I I I L1 Aggregating /V\/"\l S
Water 1 power Water L the reshaped
withdrawal : : consumption  withdrawal : : power R
consumption -
7/
>> Priority stack based control (fleet-level): prioritize flexible / Disaggregating
. T-T ,
loads with lowest state of the charge, SoC = ———2¥¢" _ o Must off units / the control
Tupper—Tiower <IIT(, T=T ,/ commands
be turned on until the aggregated power consumption is ‘.. upper /
closest to the reference power consumption. o, o ¢ Flexible units / A
° T=T, Y
. . , . o ower

>> Delivery risk: occurs when there aren’t enough flexible . .
units available. (Driven by stochastic user behaviors and long- Must on units

duration flexibility activations)
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Stochastic Virtual Battery Model: How the Demand-Side = NREL
Flexibility is Quantified? e rensoming ENRey

Y @ Flexibility up
ao{ W ® Flexibility down

Energy State Transition: Eiiq =E; +n(P; — T){?aseline) \

300 | \ Et Vs P;nuston
Power constraints: fmustgﬂﬁtt?@Ptgpwd—fﬁgﬁf#}f@t)

E,: energy state; P,: power consumption; PP@seline. estimated baseline power consumption; 17500 17750 18000 18250 18500 18750 19000 19350
upper Energy
El°wer and E, PPET lower and upper bounds of the energy states;

prated. sum of rated power for all units;
Pgnuston and PtmquOff:

i upper
Energy constraints: El°veT < E, < E/PP

Pmuston (kW)

sum of rated powers for all muston and mustoff units 10000

® Flexibility up '
@ Flexibility down ”
» Pphaseline nrovides an interface for modeling the uncertainty in user . mustof f ,3
behaviors (e.g., hot water withdraw for EWH) / weather condition (e.g., & | EtVvsPy .3?

ambient temperature for HVAC) ?-'
> P;nuston and P:"usmf f -

are modelled as piecewise linear functions of 2000 - : :
E - 7
t: ol

T T T T T T T T
17500 17750 18000 18250 18500 18750 19000 19250
Energy

4000
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Intuition Behind the Unbalanced Power Constraints
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:

e |
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Distribution of SoCs across units varies over
time when the fleet is alternatively providing
flexibility up and flexibility down.

Charging
(Flexibility down)

Discharging
(Flexibility up)

Distribution of SoC
Moving direction
Driver of the SoCs

variation at the unit
level

Becomes narrower

Towards the 1.0 upper
bound

Greater driven by the
priority-stack control,
which is more certain

Becomes wider

Towards the 0.0 lower
bound

Greater driven by the
hot water withdrawal,
which is more
uncertain

b 4

The wider the spread of the SoC distribution
the tighter the power constraints
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SOTA Virtual Battery Model Based on Control Theory
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dL(t)
T — UU(t) — CZU(t)

L) <L@® <L)
U <U®=<U®)

Inner approximation:

CklTie—Txl k|T=Tkl

77
L) =-L®) = “k+|“ arl K > B B = Bk
P, (t
U = max(— Py( ))
k Bk

. Prated t
U = min( Pi(®)

k Bk

Compared with the state-of-the-art
VBM:

1. Rely on baseline consumption
forecasts at the aggregate-level,
which are more predictable.

2. Able to control the conservative
level of the model.

3. Can capture how the controls
from the previous time steps
affect the power constraints at
the current time step.

[1] Hale, Elaine, Matt Leach, Brady Cowiestoll, Yashen Lin, and Daniel Levie. Methods for Computing Physically Realistic Estimates of Electric Water Heater Demand
Response Resource Suitable for Bulk Power System Planning Models. No. NREL/TP-6A40-82315. National Renewable Energy Lab.(NREL), Golden, CO (United

States), 2022.

[2] Hao, He, Borhan M. Sanandaji, Kameshwar Poolla, and Tyrone L. Vincent. "Aggregate flexibility of thermostatically controlled loads." IEEE Transactions on Power

Systems 30, no. 1 (2014): 189-198.
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Delivery Risk Aware DA Flexibility Offering :NREL
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1 1
E ﬂ‘ma-}fleu DApremium + RTexecrise - RTpenalty E EXpeCted
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'n - B; and By: flexibility up and down strike
our Day-ahead flexibility up and down prices price offers
RT R 12 T B Pflex, ﬁ Pflex, 1 - 6tr,sM,sP: Delivery risk. _
execrise 4 M t t - P79 DA energy bids, mean of Pb,‘,”el'"e
Sm t’ET15m btaselme
Real-time flexibility activation indicators -Pt sp : Baseline consumption forecast
RT 1 z - z - 15, under scenario Sp
penalty = 4 SP M ' smse| - s, and T, : probabilities of the baseline
!
Se s ‘ ET,%esgl time energy price consumption and market scenarios.
Y !, peps I
__Subjectto: | 0, and 0y: probqbllltles when flexibility up
: Eor —E. P (Pestlmatwn -) - anci jgxr:l c(zere activated.
: e +Llsmsp mltn SM> s’; stlmatufn SM> stax  Virtual -Py : reference consumption
1 < < 1
; Py P cvsp Py , Battery - P‘:“;m‘s‘t"’" estimated actual consumption
! min < E.iv < Emax ' Model M:=P
: t”,SM,Sp = "t sy.Ssp — t”,SM,Sp :
[l e e - e estlmatwn * T . .
: 3 EMETEIEE _PIETT . pﬂe"'T+-. pflexi E Reference >> P Sasp will intentionally deviate
| t's it t' t' 1 : system_ref,* .
e ... ™MW " == 1 Consumption from P , causing expected
P T T _6'_ o _ I',é;&{n}&{o'n' o ;;r_eféfe_rfc_e """"""""""" | Delivery Risk delivery risk, which is different from
I t.smsp t'.sm.sp t'sm | unexpected delivery risk.

 Quantification

t, t', t'" indicate the time indexes at hourly, 15-min and 5-min resolutions, sp and s, indicate the baseline consumption scenario and market scenario, respectively. NREL | 11



Delivery Risk Aware RT Flexibility Dispatch i:NREL

Transforming ENERGY
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Performance of the VBM i i:NREL
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0.0006

= o S
> A highly heterogeneous and uncertain e o
water heaters fleet with 2000 units has been ™
simulated using OCHRE. -
> With inputs from ResStock considering - .
realistic assumptions on device T e e w we R B R B N
Annual energy consumption (kWh) Event energy consumption (kWh)

w

1500

heterogeneity and user behavior
uncertainties in the New England area. S’ |

B OCHRE QR }

— Packetized Median 1400

—=- Packetized Maan
1300

Packetized IOR

w

1200

> Distributions of the simulated
consumption data has been validated against
field data collected by Packetized Energy.
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Performance of the VBM i i:NREL
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Over a one-day period with 14,122.7 kWh baseline energy consumption

Proposed VBM Baseline VBM
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Expected power consumption trajectories and power constraints obtained from two VBMs
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Performance of the VBM i i:NREL
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Over a one-day period with 14,122.7 kWh baseline energy consumption

Pronosed VBM Baseline VBM
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Expected energy state trajectories and energy constraints obtained from two VBMs
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Performance of the DA Offering and RT Dispatch e
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Performance of the DA Offering and RT Dispatch e
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Conclusion and Future Works i iNREL
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= An easily deployable virtual battery model has been proposed.

= An integrated delivery-risk-aware demand-side flexibility participation model has

: been derived.

Conclusion = Performance of the proposed solution has been validated against a high-fidelity end
use modeling tool taking highly heterogenous demand-side resource and realistic
user behavior models into account.

* Integrating with price forecasting.

* Implementing DER scores-informed aggregations and analyzing how the DER scores
can help improve the total payoff.

= Conduct annual simulation. Future work

=  Further improve performance of the delivery-risk-aware demand-side flexibility
participation model through learning-based optimization.
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