

U.S. Department of Energy

April 2024

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

NREL/PR-5400-89751

Smart Charge Management and Vehicle Grid Integration: FUSE

EVrest Employee Charging Program Pilot

Updates on EVrest pilot with data analysis and insights

Office of ENERGY EFFICIENCY

& RENEWABLE ENERGY

U.S. DEPARTMENT OF

13:(

Nithin Manne, Jason D. Harper

ANL EV-Smart Grid Interoperability Center

-

Advanced Mobility and Grid Integration Technology April 4, 2024

EVrest: EV Reservation System Deployment

Complete Workplace EV Charge Reservation System (EVrest) ANL Alpha Pilot

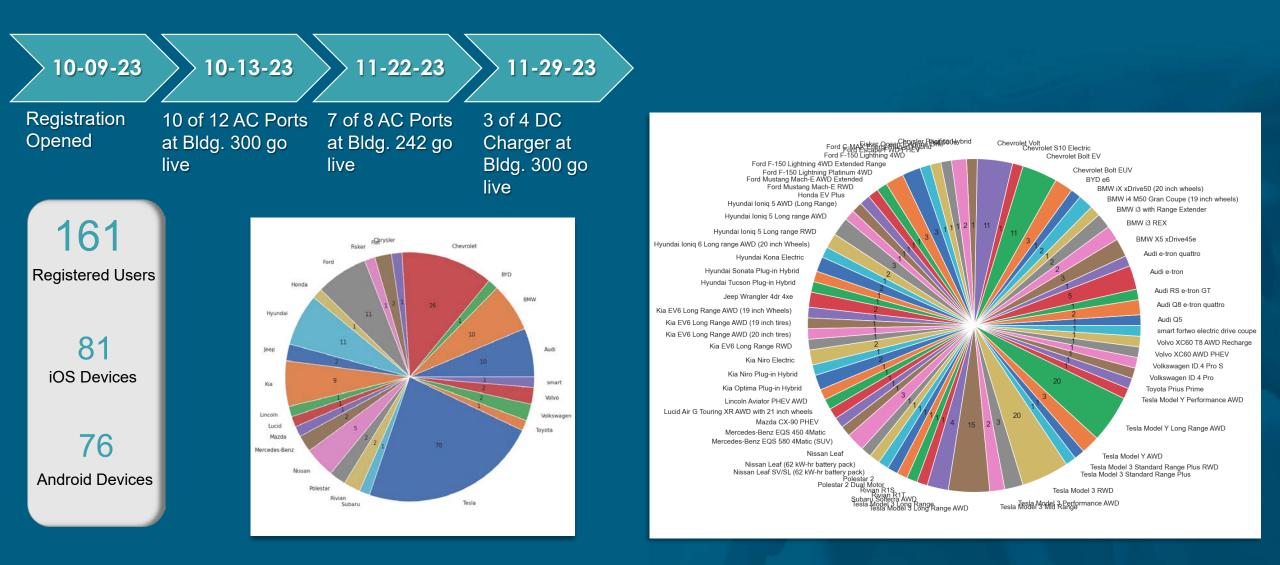
3

EVrest: EV Reservation System

EV/s@ Scale

ANL Deployment

- EV Charge Reservation Mobile App
 - iOS and Android
- Allows EV Drivers the Ability to Reserve a Specific Port/Station for Future Use
- Integrates with ANL's OCPP CSMS Platform to Enable Future Smart Charging Algorithm Development and EV Charging Behavior Research

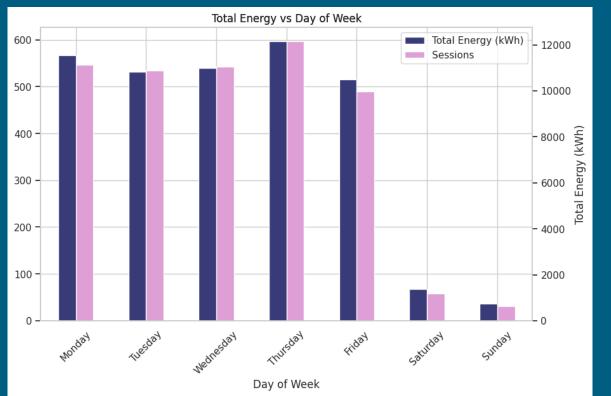


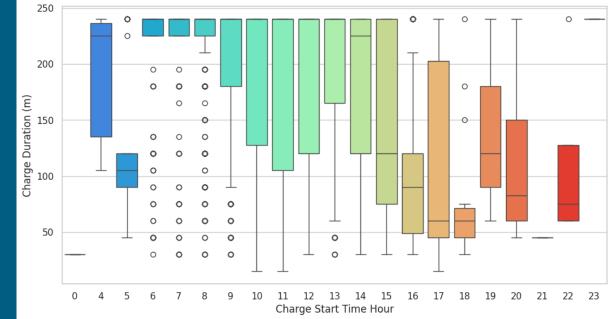
10/10/23 - 4/2/24

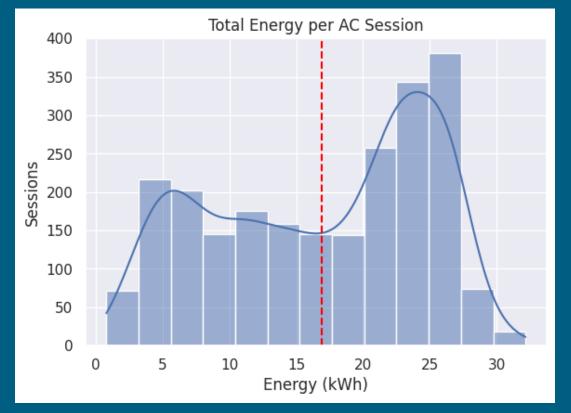
2799 AC and DC Charge Sessions

58 MWh Total Energy Dispensed

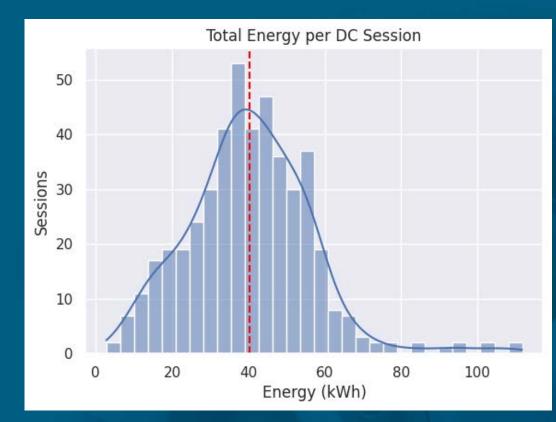
127 Registered Users who have completed at least one reservation



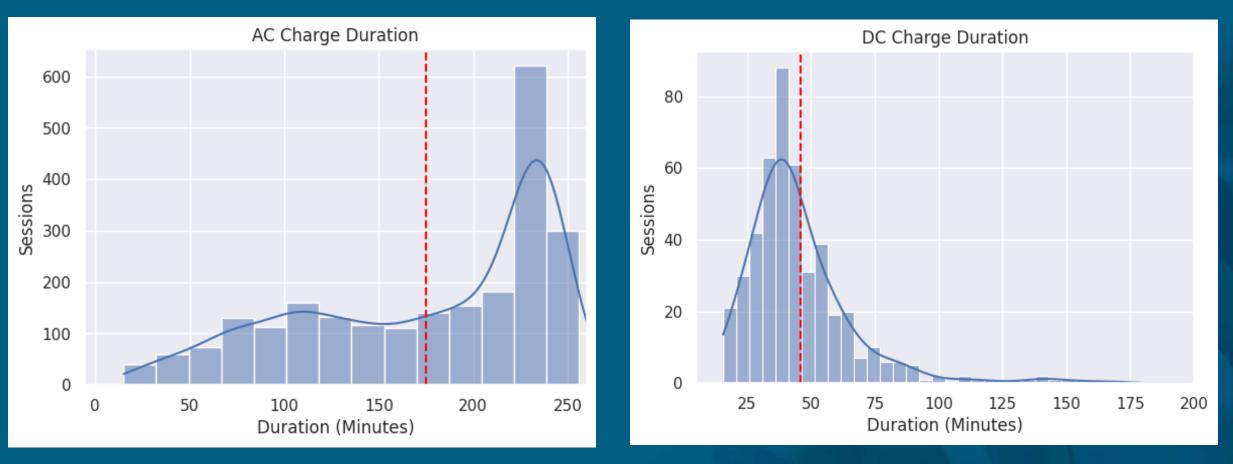




Mean: 16.88 kWh per session



Mean: 40.31 kWh per session



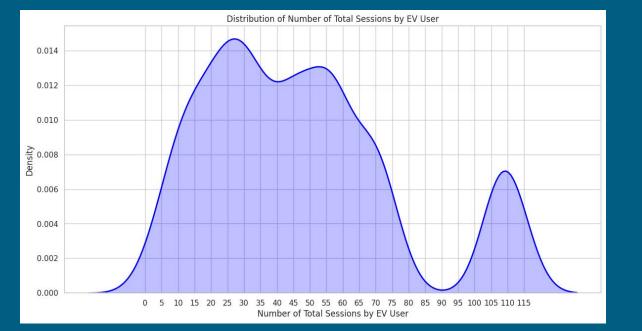
Mean: 175.51 minutes (~3 hours)

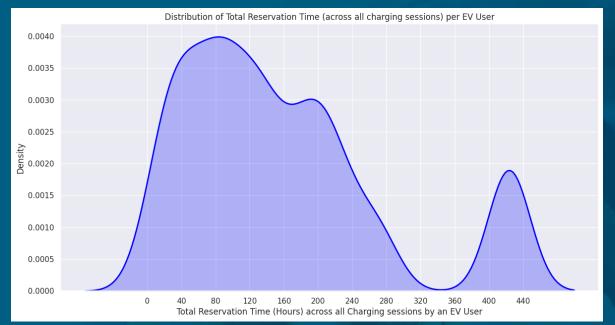
Mean: 46.07 minutes

Note: Employees can reserve up to 4 hours, but we allow up to 4 hours 15 min of charging because we allow charging to begin in the 15 minute window before their actual reservation if the port is available.

EVrest Reservation Usage

Distribution Plots





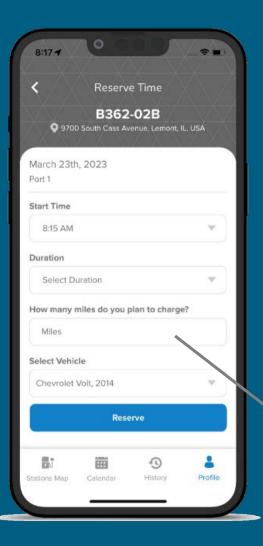
- 3 distinct peaks corresponding to groups of users
- Possible explanations:
 - Different launch dates at different locations around ANL
 - User Behavior

Distribution Plots



- 3 distinct peaks corresponding to groups of users
- Possible explanations:
 - Different launch dates at different locations around ANL
 - User Behavior

Flexibility



 $egin{aligned} ext{Pre-Flexibility} &= 1 - \left(rac{ ext{Requested Energy (kWh})}{ ext{Duration (h)}} imes rac{1}{ ext{EVmaxPower (kW)}}
ight) \end{aligned}$ $egin{aligned} ext{Post-Flexibility} &= 1 - \left(rac{ ext{Dispensed Energy (kWh})}{ ext{Duration (h)}} imes rac{1}{ ext{EVmaxPower (kW)}}
ight) \end{aligned}$

Pre-Flexibility: Calculated based on driver inputs and used in SCM algorithms

Post-Flexibility: Actual flexibility calculated after charge session has occurred, dispensed energy is <u>minimum of actual</u> <u>energy dispensed or requested energy</u>.

This requested miles is limited based on

- Max Power available to the EVSE (new)
- Max Power drawn by the vehicle (new)
- Range of the Vehicle

Flexibility > 0: SCM could be applied Flexibility <= 0: SCM can not be applied

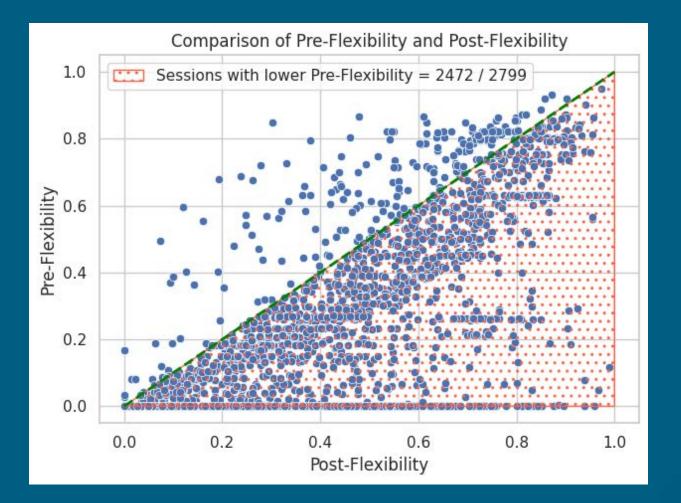
Q: How can someone charge less than requested (green) but still have flexibility? A: Driver or EV ends charging session before reaching driver's target energy.

Q: How can someone charge more than requested (red) but still have flexibility? A: Charge session is not stopped once the EV meets its requested mileage. Driver reserved the port longer than what was required to meet their mileage needs.

Q: How do we combat inaccurate requestsand physically impossible mileage requests?A: Apply a check on the reservation screen

Pre-Flexibility vs. Post-Flexibility

Comparison



- Points on the green line indicate that these sessions have accurate information.
- Points below this line, indicates that the request is larger than what was required, not allowing algorithms to take advantage of their actual flexibility
- Points above this line indicate an error in our estimation of the max power the vehicle can charge at (we base our estimation on historical data)

Correlation of EV Driver's Charging Attributes

Average

Some interesting correlations:

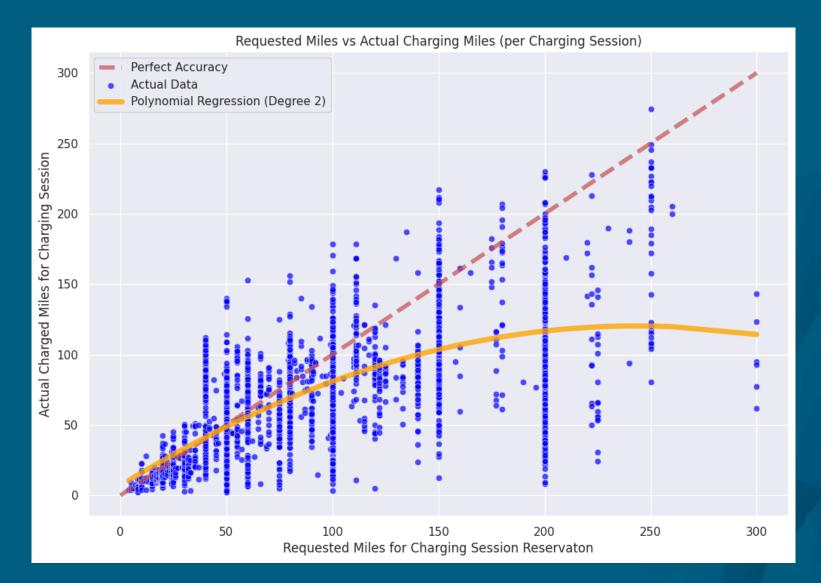
- Average Requested Miles
 & Average Actual Miles Charged
- Average Reservation / Session Duration
 & Pre / Post-Flexibility
- Average Accuracy
 & Average Actual Miles Charged per Session
- Total Number of Sessions by EV Driver
 & Post-Flexibility

	Number of Sessions	Average Requested Miles	erage Accuracy for Requested Miles	Average Actual Miles Charged	Pre-Flexibility	Post-Flexibility	Total Energy Across Sessions	Average Power Draw	Peak Power Draw	Average Reservation Duration	Average of Session Duration		
Average of Session Duration	0.28	-0.19	0.04	-0.21	-0.59	-0.76	0.17	-0.70	-0.40	0.91	1.00	0.6	
Average Reservation Duration	0.34	-0.24	-0.08	-0.34	-0.50	-0.55	0.16	-0.76	-0.41	1.00	0.91		
Peak Power Draw	-0.09	0.36	0.12	0.46	0.38	0.34	0.15	0.59	1.00	-0.41	-0.40	0.4	
Average Power Draw	-0.22	0.54	0.25	0.73	0.61	0.49	0.08	1.00	0.59	-0.76	-0.70	0.2	
Total Energy Across Sessions	0.85	0.19	0.05	0.29	0.11	-0.02	1.00	0.08	0.15	0.16	0.17	- 0.0	
Post-Flexibility	-0.08	0.05	-0.23	0.11	0.80	1.00	-0.02	0.49	0.34	-0.55	-0.76	- 0.2	
Pre-Flexibility	-0.02	0.02	0.20	0.38	1.00	0.80	0.11	0.61	0.38	-0.50	-0.59	- 0.4	
Average Actual Miles Charged	-0.05	0.77	0.40	1.00	0.38	0.11	0.29	0.73	0.46	-0.34	-0.21		
Accuracy for Requested Miles	-0.04	-0.06	1.00	0.40	0.20	-0.23	0.05	0.25	0.12	-0.08	0.04	- 0.6	
Average Requested Miles	-0.08	1.00	-0.06	0.77	0.02	0.05	0.19	0.54	0.36	-0.24	-0.19	- 0.8	
Number of Sessions	1.00	-0.08	-0.04	-0.05	-0.02	-0.08	0.85	-0.22	-0.09	0.34	0.28	- 1.0	

٨ ٨

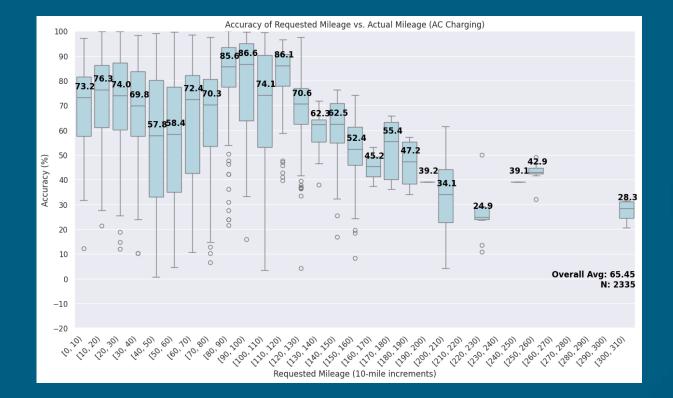
How Accurate are Driver Mileage Requests?

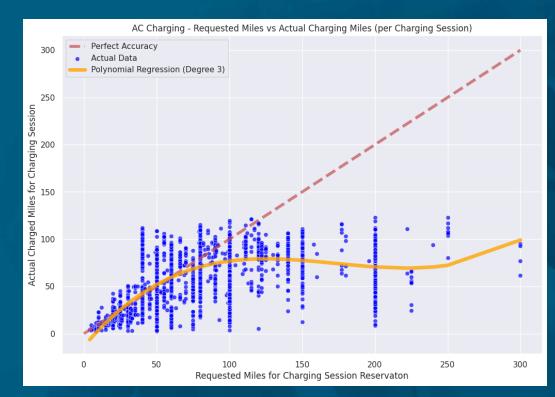
AC & DC sessions combined



- Variation in accuracy of requested miles across charging sessions
- Polynomial regression explains the varying trend:
 - Lower values of requested miles (< 100 miles) shows greater accuracy
 - Higher miles (> 150) shows significantly lower accuracy, possibly due to EV users choosing arbitrarily large mileage values during reservation

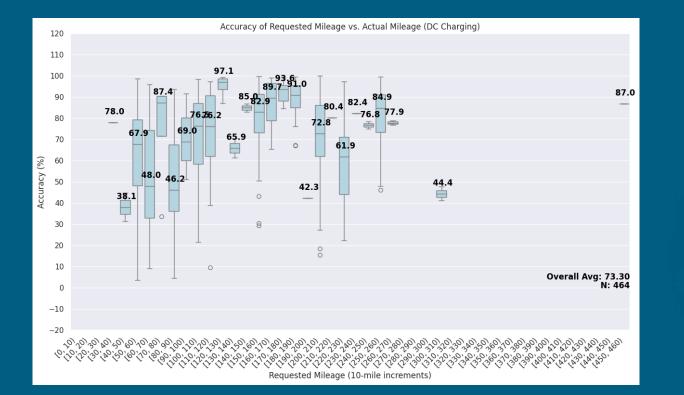
How Accurate are EV Mileage Requests for AC Charging?

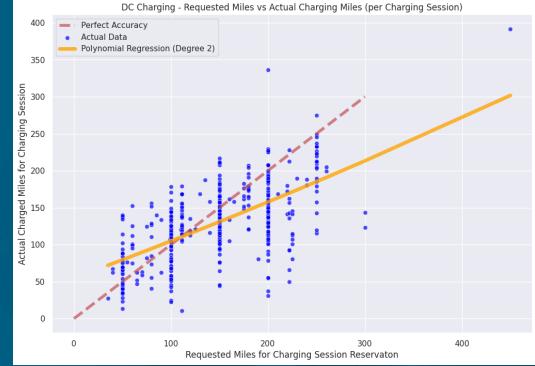




Accuracy diverges above 100 miles due to power rating of EVSE and ~4 hour time limit

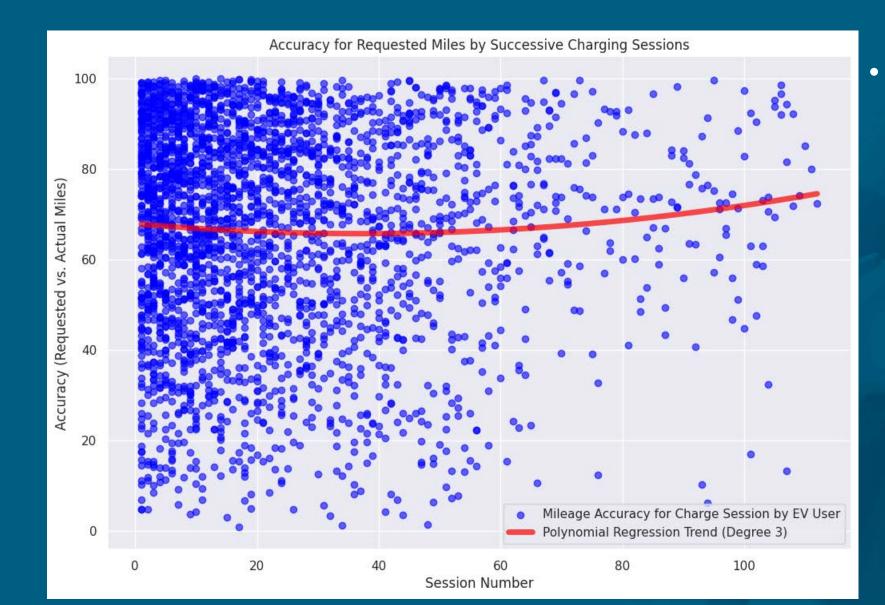
How Accurate are EV Mileage Requests for DC Charging?





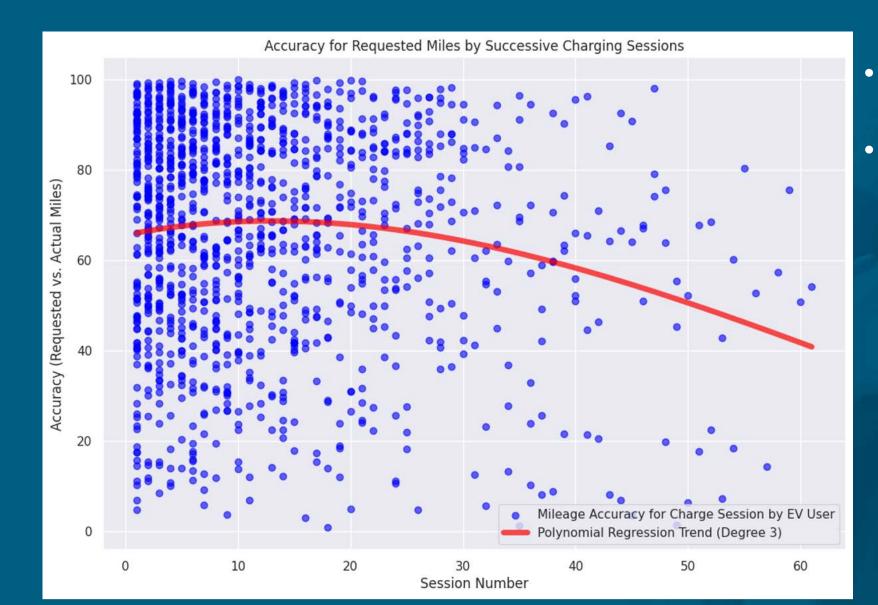
 $\mathrm{Mileage} \ \mathrm{Request} \ \mathrm{Accuracy} = 100 - \left| rac{\mathrm{Actual} \ \mathrm{Mileage} - \mathrm{Requested} \ \mathrm{Mileage}}{\mathrm{Requested} \ \mathrm{Mileage}} imes 100
ight|$

How accurate are the requested miles as drivers use EVrest more?



An increasing trend in accuracy of requested miles (vs. actual miles charged during charging sessions) is visible with increasing usage of EVrest

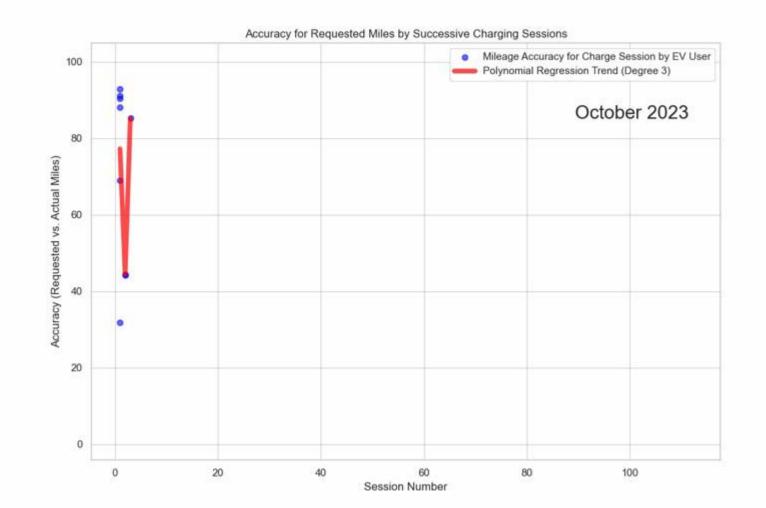
How accurate are the requested miles as drivers use EVrest more?



January 2024

A decreasing trend in accuracy of requested miles (vs. actual miles charged during charging sessions) is visible with increasing usage of EVrest

How accurate are the requested miles as drivers use EVrest more?



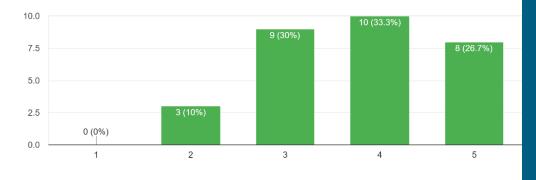
 An increasing trend in accuracy of requested miles (vs. actual miles charged during charging sessions) is visible with increasing usage of Evrest

- Continue operating EVrest at Argonne
- Look to harden platform, fix bugs, & add new features
- Implement Charge Scheduling on EVrest Platform (FY24 Q4 Deliverable)
- Explore ML predictive Analytics opportunities
- Explore other potential deployments outside the lab (Workplace or MUD)

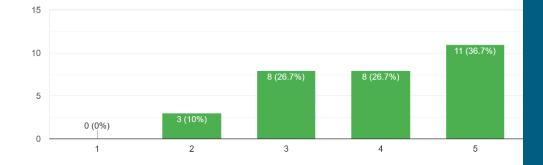
EVrest Employee Survey

30 Employees participated in Survey

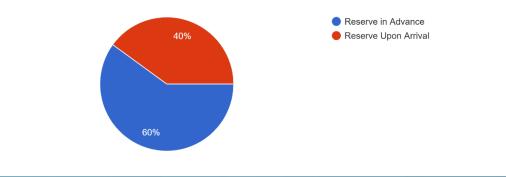
On a scale of 1 to 5, how would you rate the overall user-friendliness of the EVrest app? ^{30 responses}



How satisfied are you with the overall ease of making a reservation using the EVrest app? ^{30 responses}

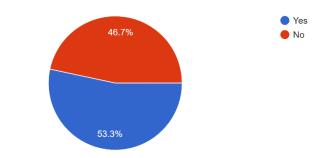


Do you make reservations in advance of pulling up to the station (i.e. hours, days, weeks in advance) or do you make a reservation once you arrive? 30 responses



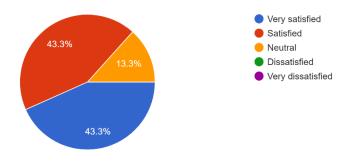
Are you satisfied with the conduct score system as a means to encourage adherence to reservation rules?

30 responses

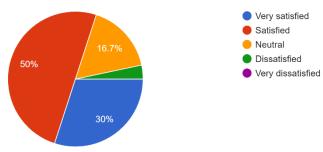


EVrest Employee Survey Feedback

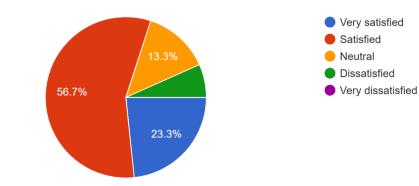
How satisfied are you with the real-time charging status updates provided by the EVrest app? 30 responses



How satisfied are you with the push notifications provided by the EVrest app? ^{30 responses}



Overall how satisfied are you with the EVrest app? 30 responses



Great work! thank you for developing the app and it makes charging much more convenient!

The app has been great I think in cutting down a lot of frustrations that users have had(people parking in your spot randomly even though you booked in advance is a big one).

I like that it will cancel a reservation if not activated within 15 minutes of start time. This allows for others to take a spot if someone reserved it but didn't show up for the appointment time.

Map is easy to deal with, good feedback from User interface

I like that I know the charging station will be free if I've reserved it, and I like that the app lets me know when my car is finished charging.

It's a great system (so much better than Vector)

Are there any specific improvements you would suggest for the user interface?

Can you add a payment feature to only charge for the kW used? I have a hybrid and typically only charge 2.5 hrs at 3x/week.

Allow user to start the session, say, up to 15 mins before the reservation starting time without the need to delete the session then rebook the reservation if the user arrives slightly early. The 4 hour window can be kept the same.

A copy and paste option. Or something similar. I have a set schedule at work so I charge at the same time everyday. I counted 15 taps just to make a single reservation. Also entering in the miles seems useless.

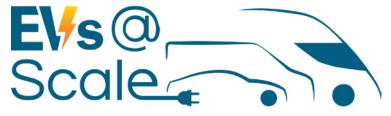
Not much value in the "miles you plan to charge" from a user perspective.

It always asks what mileage I want to charge for a session. I don't know the exact number, but I just want to charge it using the maximum power.

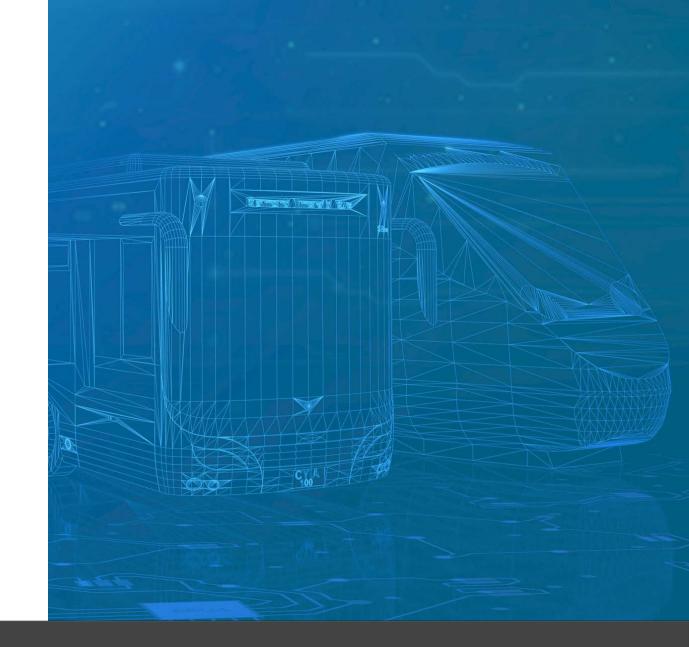
Nithin Manne <u>nmanne@anl.gov</u>

Thank You

Salman Yousaf yousaf@anl.gov Jason D. Harper jharper@anl.gov



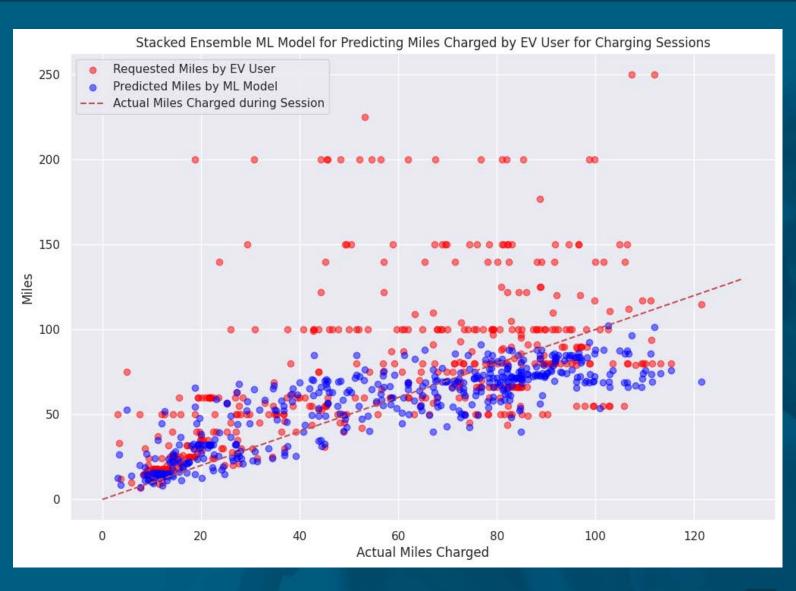
U.S. Department of Energy



U.S. DEPARTMENT OF Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Can Actual Energy for Charging Sessions be Explained and Predicted?

- Stacked-ensemble Machine Learning model trained on EV User's historical attributes, such as:
 - total number of sessions,
 - historical accuracy of requested miles
- used to predict energy requirements (in miles) for charging sessions
- Results show ML can predict actual energy requirements significantly better than EV User's own expectations
- Mean Absolute Error (MAE) improved by 47.3% with ML-based predictions:
 - MAE for User Expectation: 34.8%
 - MAE for ML Predictions: 18.3%



Can Actual Energy for Charging Sessions be Explained and Predicted?

- Shows the potential for predictive power in historical EV user behaviour
- Larger dataset of Evrest user history with fine-tuned modelling could provide even more interesting results
- Predictions for energy required and user flexibility for charging sessions could become inputs for charge scheduling models and greatly improve impact

Smart Charge Management and Vehicle Grid Integration: FUSE

- Predicting Requested Energy (Mileage) for Reservations using Machine Learning
- Smart Charge Scheduling

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Salman Yousaf (yousaf@anl.gov)

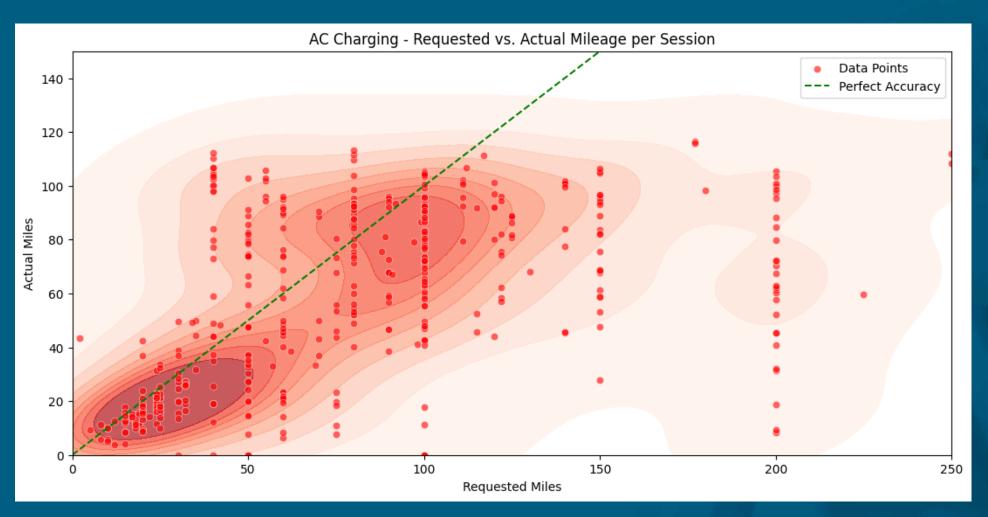
U.S. DEPARTMENT OF

Salman Yousaf, Nithin Manne and Jason D. Harper ANL EV-Smart Grid Interoperability Center

Advanced Mobility and Grid Integration Technology April 4, 2024

-

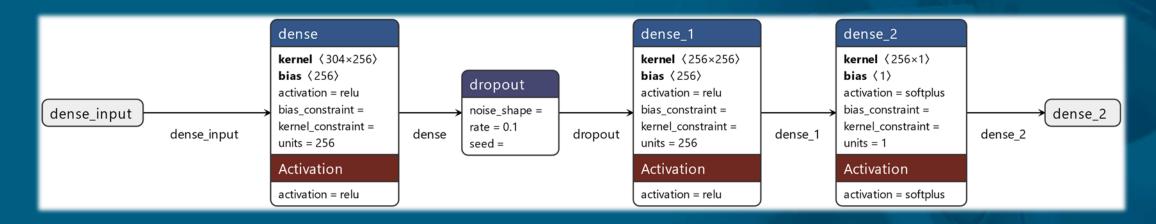
- EVrest user's own estimations for energy for charging reservations are inaccurate:
 - Root Mean Squared Error for AC Charging: 51.23



- Users often
 <u>overestimate</u> their
 energy
 requirements.
- Actual energy received during charging sessions is often <u>lower</u> than requested energy.

EVs@ Scale

- Using historical reservation and charging sessions data, we developed a Deep Neural Network that **predicts requested energy (mileage) for an EV reservation**
- Deep Neural Network Architecture



Actual Miles Charged: The actual mileage charged during the session, serving as the label for predicting user behavior and charging needs

Predicting Requested Energy (Mileage) for Reservations using Machine Learning

Training Data Overview

Source: Real Time Data from EVrest reservations and charging session records

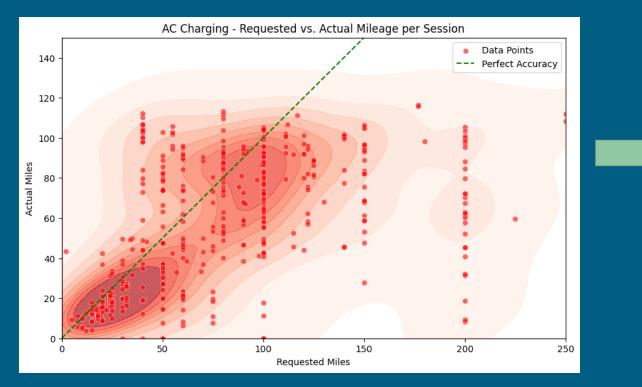
Data Features:

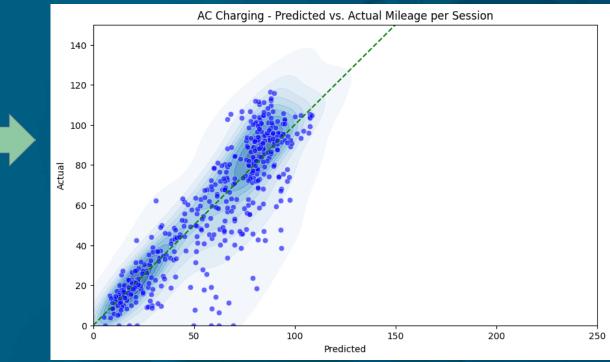
- **User Information** •
 - EV User ID: Unique identifier for each user.
 - Historical User Characteristics:
 - Historical Average Energy Request Accuracy: Assessment of user's past request accuracy, measured by comparing requested to actual energy needs.
 - Total Number of Sessions: Cumulative count of user's charging sessions, reflecting user experience and frequency
- **Vehicle Details** •
 - Vehicle ID: Unique identifier for each vehicle.
 - Make & Model: Vehicle's brand and model name, providing insights into vehicle type and potential charging needs.
- **Reservation Metrics** •
 - **Start Time:** Hour and day of the week when the charging session is reserved, highlighting peak usage times and patterns.
 - **Duration**: Length of reservation, offering insights into charging behaviour and station occupancy.
- **Reservation Type (AC / DC Charging)** •

Prediction Target

• AC Charging: Improved RMSE (Root Mean Squared Error) by ~68%

EV User's Estimations

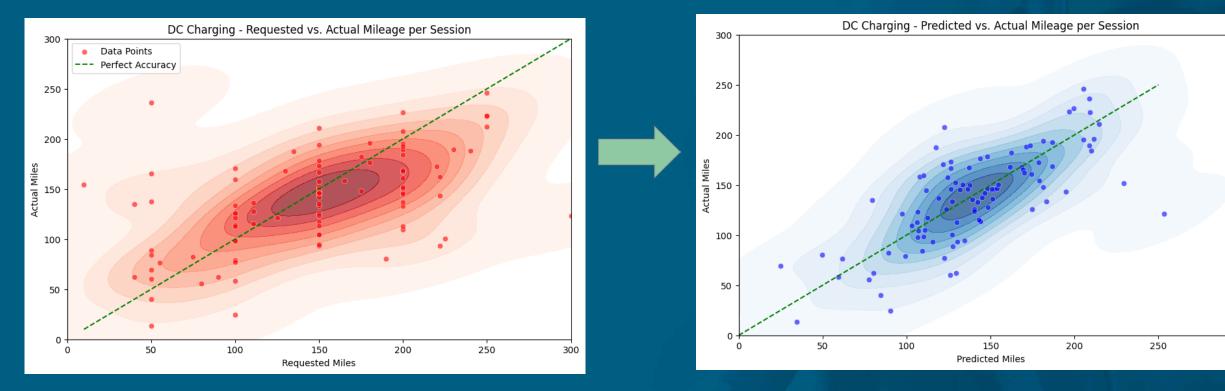




EV/s@ Scale

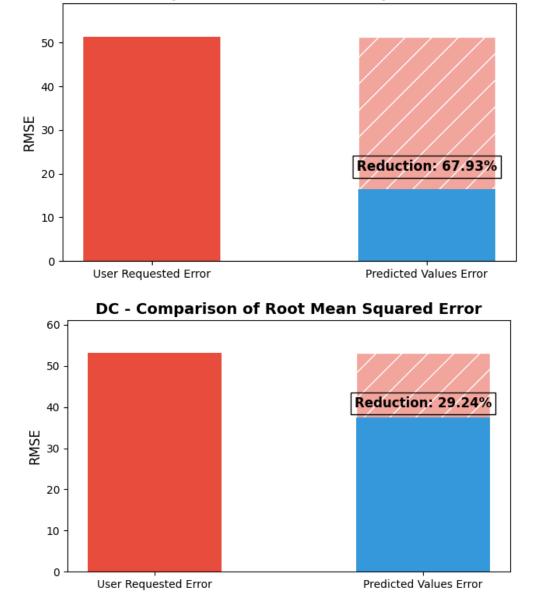
• DC Charging: Improved RMSE (Root Mean Squared Error) by ~30%

EV User's Estimations



300

- Model's predictions reduced RMSE (Root Mean Squared Error) when compared with user's own predictions by:
 - 68% for AC Charging
 - 29% for DC Charging



AC - Comparison of Root Mean Squared Error

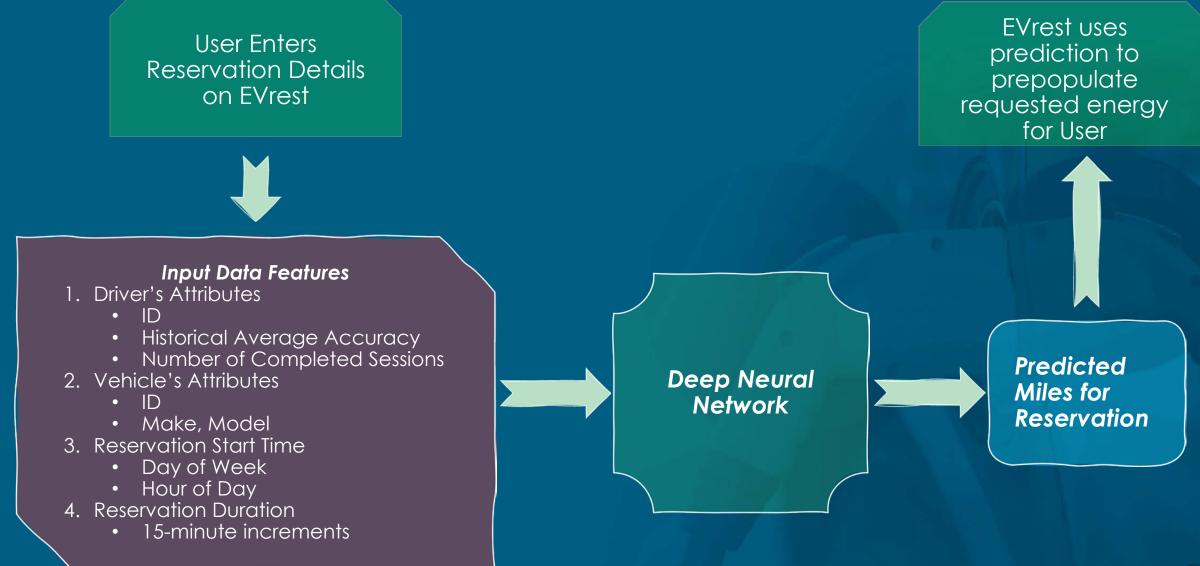
Fle

U.S. Department

- <u>Prepopulate</u> predicted *'miles planned to charge'* to assist users while creating a reservation
- Users <u>can choose to change</u> the prepopulated value based on their needs
- ML-based prepopulated predictions take into account historical trends and attributes, such as:
 - User's historical reservations
 - User vehicle's historical characteristics
 - Reservation timing and duration
- Deep Learning Model is trained with new data and new predictions are generated with a <u>daily frequency</u>

	♥P268+2C	Darien, IL, USA	
April 3r Port 1	d, 2024	XX	
Start Tin	ne		
02:00	PM		
Duration	1		
3 Hou	urs 30 Minutes		v
How ma	ny miles do you p	plan to charge?	
Select V	ehicle		
			V
	Re	eserve	

rediction



Deployment Insights: Predicting Requested Energy (Mileage) for Reservations using Machine Learning

From March 27 – April 3, 2024:

- Total of 158 Sessions
- 56.4% of users chose to proceed with ML-prepopulated requested energy mileage while creating EVrest reservations
- Accuracy comparison:

Session

Actual Miles Charged during

•

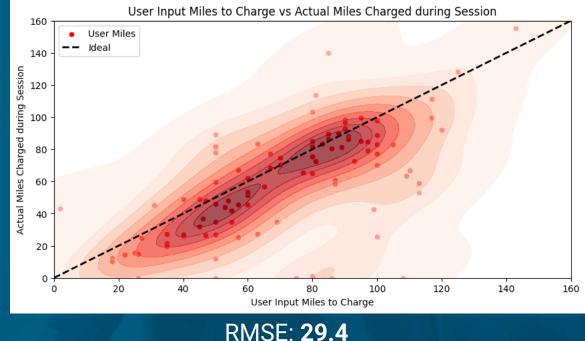
Sessions with ML-Prepopulated Values

ML Predicted Miles to Charge vs Actual Miles Charged during Session

160 160 ML Predictions Idea Idea 140 140 Session 120 120 during 100 100 Actual Miles Charged 80 60 40 40 20 20 20 60 80 100 120 140 160 20 ML Predicted Miles to Charge RMSE: 25.9

Reservations that used ML-Prepopulated Requested Energy reduced (RMSE) error by ~30%

Sessions with Users' Manually Entered Values

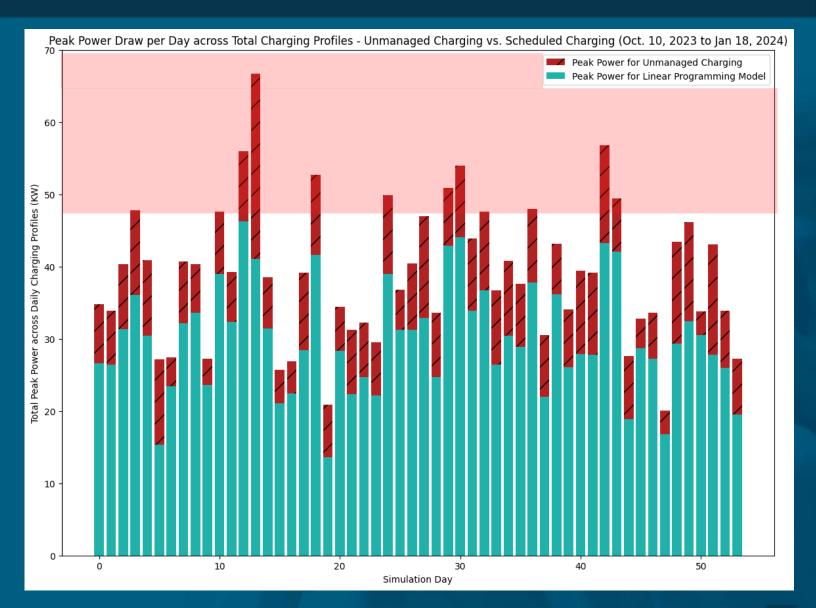


Predicting Requested Energy (Mileage) for Reservations using Machine Learning

- Initial Deployment Insights:
 - The platform was launched 8 days ago, offering early but valuable insights.
 - **Continuous accumulation of usage data** will enrich our understanding and drive deeper analysis
- AI Model Evolution:
 - Our Machine Learning (ML) model is in **ongoing training with live data** from EVrest reservations and charging sessions.
 - This dynamic training approach ensures constant improvement and optimization of our Deep Neural Network, adapting to evolving user needs and behaviors.
 - Continouous training of ML Model allows us to monitor and analyze the training and further optimization of our Deep Neural Network
- User Experience and AI Integration:
 - User's confidence with ML-prepopulated energy requirements provides insightful ideas on behaviour
 - Exploring the potential of making ML-prepopulated energy suggestions the default, encouraged by their accuracy and user reception.
- Future Considerations:
 - Assess the long-term impact of AI-prepopulated options on user behavior and platform efficiency.
 - Continuously evaluate user feedback to refine and enhance the AI's accuracy and usefulness.

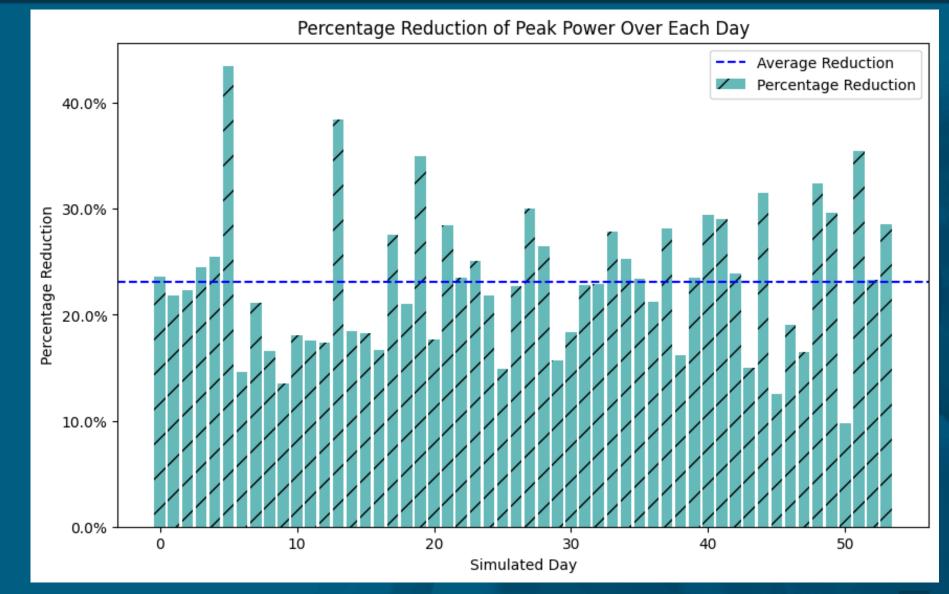
Smart Charge Management

- Argonne's Building 300 Peak charging loads are becoming <u>unsustainable</u>, and can potentially lead to hardware failures
- Simulations on historical charging data using a Linear Programming scheduling algorithm shows:
 - smart charge management can <u>successfully reduce</u> <u>peak demand</u> to stay within constraints



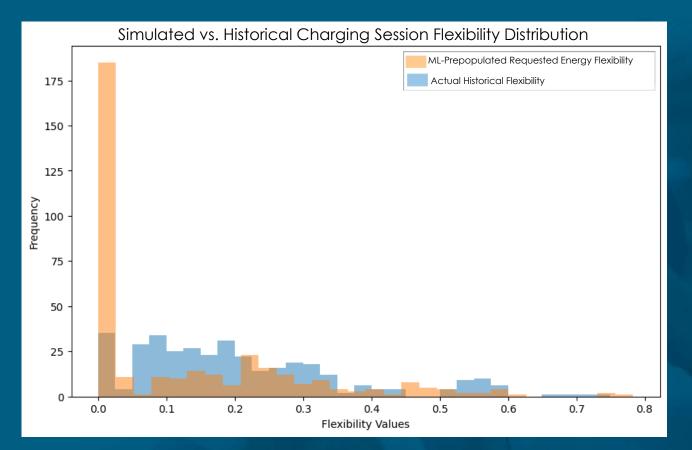
Smart Charge Management

 Simulations using smart charge scheduling show average peak power reduction of ~22% across days where charging is above 20kW



ML-based Requested Energy (Mileage) Predictions to drive Smart Charge Management

- ML-based requested energy predictions for reservations can be used to drive Smart Charge Management
- Analysis on historical data shows ML-based requested energy predictions for reservations <u>improve flexibility</u>:
 - Average Original Flexibility: **0.127**
 - Average ML Predictions Flexibility: 0.206
 - Average Flexibility Change: +61.6%
- Flexibility offered through ML-based requested energy predictions is <u>sufficient for managing</u> <u>peak demand</u> for ANL Building 300
- Next steps include <u>deploying</u> a Smart Charge Management platform integrated with ML-based requested energy predictions



Salman Yousaf yousaf@anl.gov **Nithin Manne** nmanne@anl.gov Jason D. Harper jharper@anl.gov EVs@ Scale **U.S. Department of Energy**

Thank You

Open for Questions!

U.S. DEPARTMENT OF Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Bryan Nystrom

ANL EV-Smart Grid Interoperability Center

Advanced Mobility and Grid Integration Technology April 4th, 2024

-

Smart Charge Management and Vehicle Grid Integration: FUSE

OCPP 2.0.1 development work

44

What is OCPP?

- Open Charge Point Protocol (OCPP) is a communication standard for electric vehicle (EV) charging stations.
- Think of it as a common language for chargers and charging network software to talk to each other.

Problem OCPP Solves:

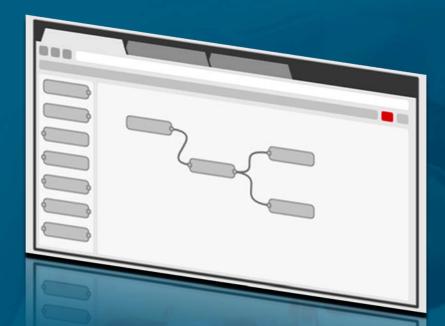
- Promotes interoperability: Any OCPP-compliant charger can work with any OCPP-compliant network software, regardless of manufacturer.
- Avoids vendor lock-in: Businesses are not limited to using a single provider for chargers and software.
- Simplifies network management: OCPP allows for centralized control and monitoring of charging stations from different vendors.

OCPP Message Types Message Request (CALL)						Message examples
	Msg Type (2)	Unique ID	Comr	nand Name	Json Payload	[2, "19223201", "BootNotification", { "reason": "PowerUp", "chargingStation": { "model": "SingleSocketCharger" , "vendorName": "VendorX" } }]
	esponse (CALLRES Asg Type (3)	ULT) Unique ID	Json P	ayload		[3, "19223201", { "currentTime": "2013- 02-01T20:53:32.486Z", "interval": 300, "status": "Accepted" }]
	ge (CALLERROR) Asg Type (4)	Unique ID	Code	Description	Details	[4, "162376037", "NotSupported", "SetDisplayMessageRe quest not implemented", {}]

What is Node-RED?

- A visual programming tool for wiring together hardware, APIs, and online services.
- Uses a web browser interface no complex coding required!
- Great for building event-driven applications.

Why Node-RED? Perfect for Prototyping and Production



- Rapid Prototyping: Quickly test your ideas by dragging and dropping nodes to create workflows.
- Easy to Learn: Intuitive interface lowers the barrier to entry for non-programmers.
- Wide Range of Nodes: Pre-built functionality for common tasks saves development time.
- Scalable: Start small and scale your applications to production use.
- **Deployment Ready:** Flows can be deployed with a single click.
- **Customizable:** Create your own nodes to extend functionality for your specific needs.

Node-Red OCPP2 Nodes "101"

What it is:

OCPP

- Node-Red "nodes" that support the sending and receiving of OCPP messages, including the connection and authentication of the underlying WebSocket layer.
- Separate "nodes" for implementation by either a charge station (CS) or a charge station management system (CSMS).
- Support for OCPP 2.0.1.
- Packages OCPP message arrays based on a defined Json structure
- Handles tasks like creation of unique message Ids and can direct OCPP responses based on those Ids to the appropriate functions/nodes.
- Can be used in addition to the existing Node-Red OCPP 1.6 nodes previously available.

What it isn't:

- They do not implement a fully functional CS or CSMS.
 - It is not a full software stack like the Linux Foundation EVerest project.
 - It is up to the user/developer to implement the full business logic based on the OCPP message being passed and the available hardware and data storage.
- Usage requires the user/developer to have an understanding of the OCPP protocol.
- Nodes do not interpret or act upon OCPP messages themselves.

~ осрр	OCPP 1.6	OCPP 2.0.1	~ OCPP
CS request SOAP CP Request SOAP	 Security not required but supported (see OCA OCPP Security White Paper) 	 Security Profiles #1 Basic (user/password) #2 Basic + TLS CSMS #3 Basic + TLS CSMS + TLS CS 	CSMS CS
CS server	• SOAP & JSON [{}]	JSON [{}] only	
server response	Multiple OCPP nodes for message handling	Single node for message handling	
SOAP	OCPP SOAP schema validation only	OCPP JSON schema validation	
CS request JSON CP client JSON	 Custom dynamic commands (non-ocpp commands like connect, disconnect, etc.) 	 OCPPCommCtrlr and SecurityCtrlr dynamic variable settings for WebSocket and security functionality 	
JSON JSON	 Open Source for 6 years used by other labs, open- source projects, and 3rd parties CS server (CSMS) Used for ANL Smart Energy Plaza CSMS prior to EVrest rollout CP client (CS) Used in ANL OptiQ EVSE project. 		

Node Setup

CSMS Node Config

Edit CSMS node						
Delete	Cancel Done					
Properties						
I Name	CSMS1					
# Port	8863					
Path	/ocpp2					
OCPP Logging						
Authentication List						
CS Auth	{} {"CS1":"test1","CS2":"test2","BadTaco":"badt					

Edit CS node Cancel Done Delete 🌣 🖹 🖾 Properties Name Name (defaults to cbld) CS1 🖋 cbld OCPP Logging ✓ Target CSMS **~** Q Url CSMS1 Auto Connect **Basic Auth** Password Retry Backoff O Min (sec) 20 C Times to inc 3 X Max Random Range 0

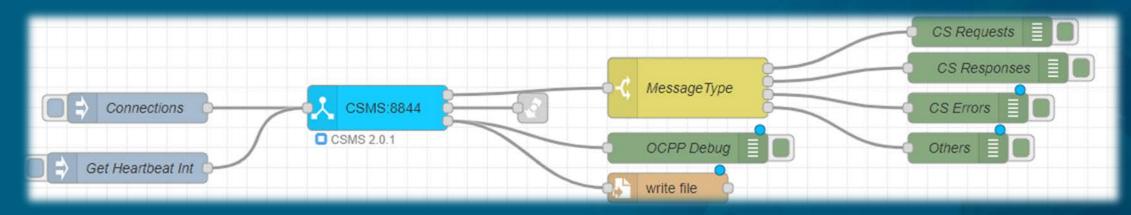
CS Node Config

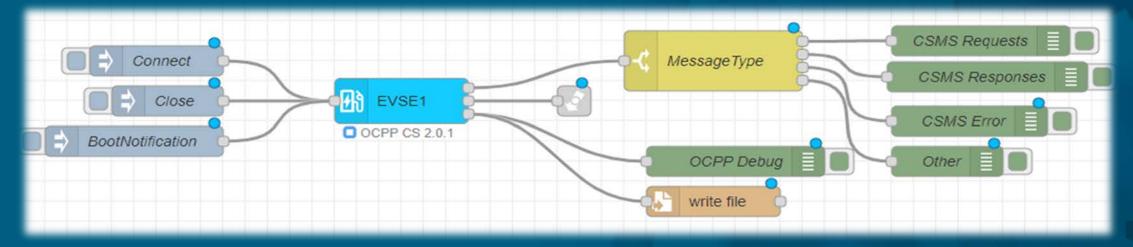
Output ports:

- 1. Standard non-directed
- 2. Dynamically linked
- 3. Optional OCPP logging

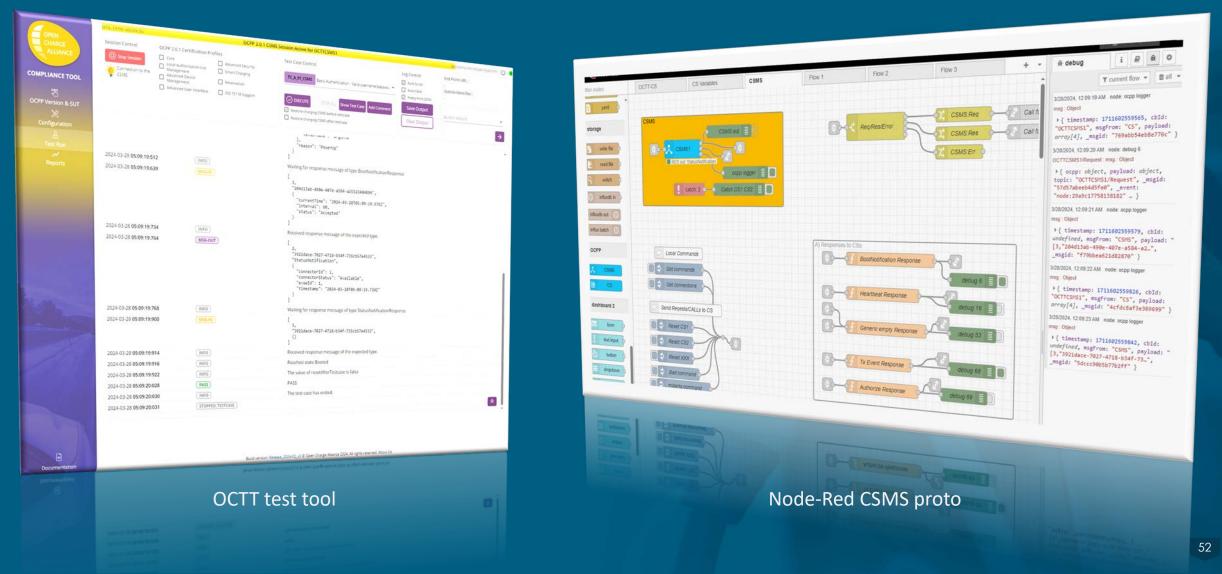
Recommendation:

Make use of the new Node-Red "Link" node capabilities like dynamic linking





OCTT tested



Installation in Node-Red:

- Use the "Manage Palette" menu
- Search and Install
 - node-red-contrib-ocpp2

-or-

- cd ~/.node-red installation folder
- npm install @anl-ioc/node-red-contrib-ocpp2

Git Repository:

• github.com/Argonne-National-Laboratory/node-red-contrib-ocpp2

Bryan Nystrom

<u>bnystrom@anl.gov</u>



U.S. Department of Energy

Concentrated charging infrastructure: reconstructing trip sequences from traffic data that reflect use patterns

Jeewon Choi, Thad Haines, Matt Lave, Andrea Mammoli, Emily Moog, Will Vining

EV@Scale Deep Dive Meeting, April 4, 2024

ENERGY Office of ENEI

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

UNCLASSIFIED UNLIMITED RELEASE SAND2024-039630

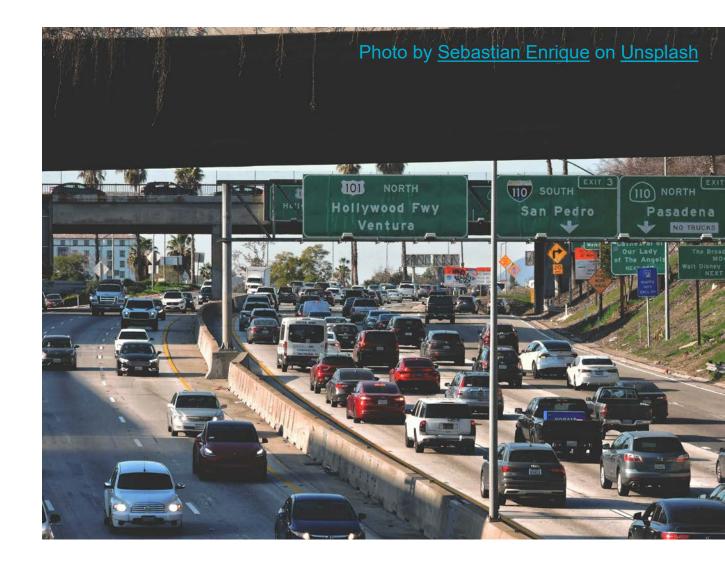
Overview

- Why we need synthetic trip generation
- Required characteristics of a synthetic trip
- What the trip sequences look like in reality
- Methodology to reconstruct trips that respect statistics and also look like typical routes
- What synthetic trip sequences look like
- Distinguishing between EV users with different charging access
- Do the synthetic trip sequences look like the real ones?
- Dealing with trips that cross boundaries
- Trip endpoints to actual routes, including real addresses and speed

- What changes for MHDV schedules
- Reconstructed MHDV trips
- Hesitant EV driver workshop what we expect to get out of it
- How we plan to use this in our simulations

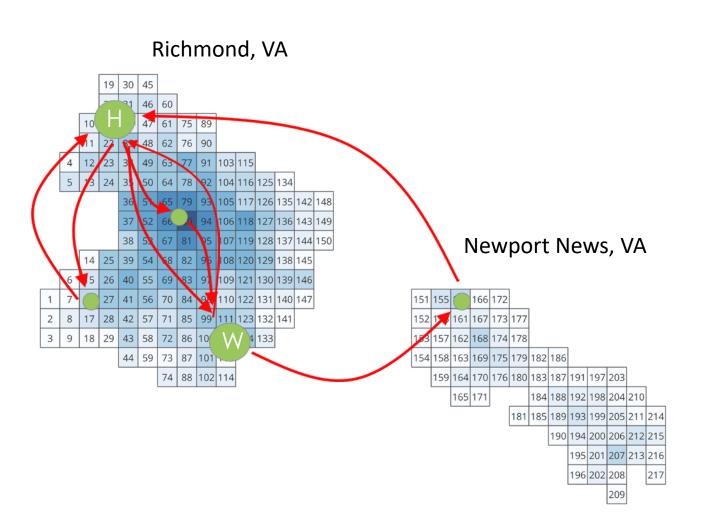
Why we need synthetic trip generation

- We are interested in the interplay of charging opportunities at home, at work and en-route
- We want to model when, where and why drivers charge their vehicles, via a Markov Chain-based ABM
- We need to generate large numbers of synthetic trip sequences that match the statistics
- From traffic "big data", we can extract origin-destination pair distributions
- Problem how to reconstruct trips in a realistic way, that reflect commuting behavior and daily / weekly schedules?



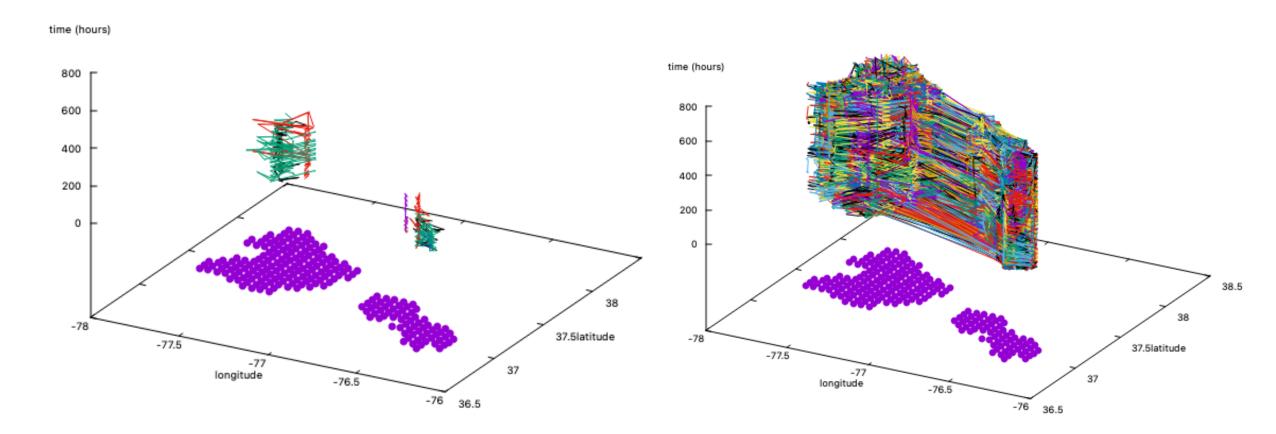
Required characteristics for synthetic trips

- Collectively, synthetic trips should reflect the OD pair statistics, that can be extracted from datasets such as Wejo, Geotab or cell phone data
- Synthetic trips should reflect real driving spatial patterns: repeated trips between home and work (anchor points) and occasional trips to other destinations
- Synthetic trips should reflect temporal characteristics of real trips – work schedules, average speed due to congestion



U.S. Departmen[.]

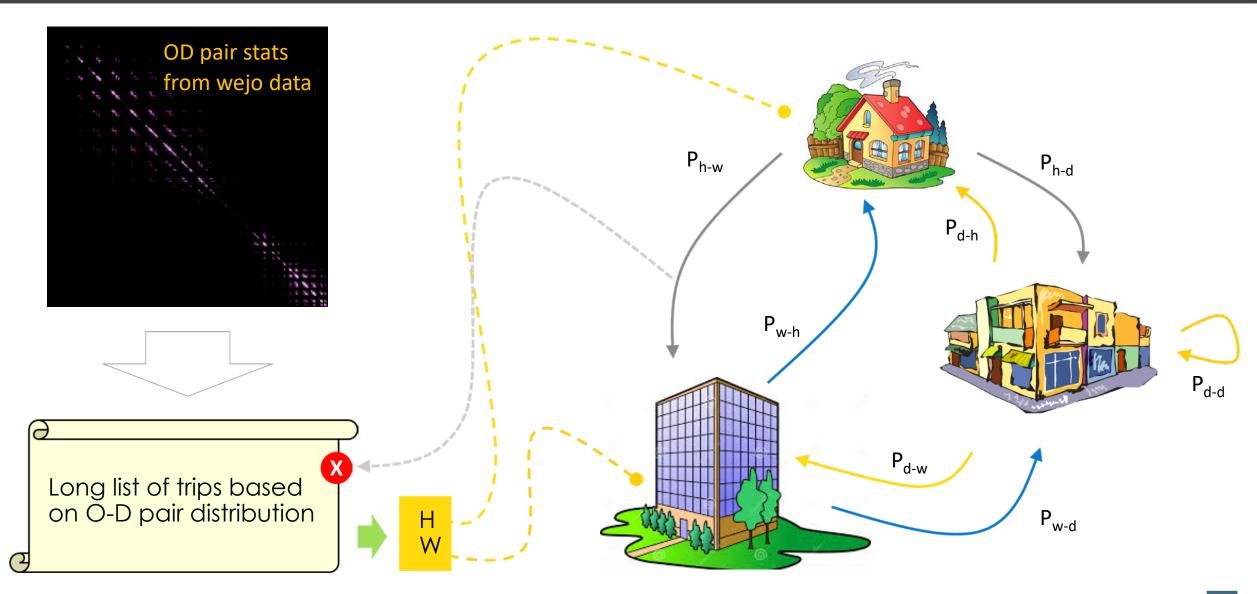
What the trip sequences look like – wejo data



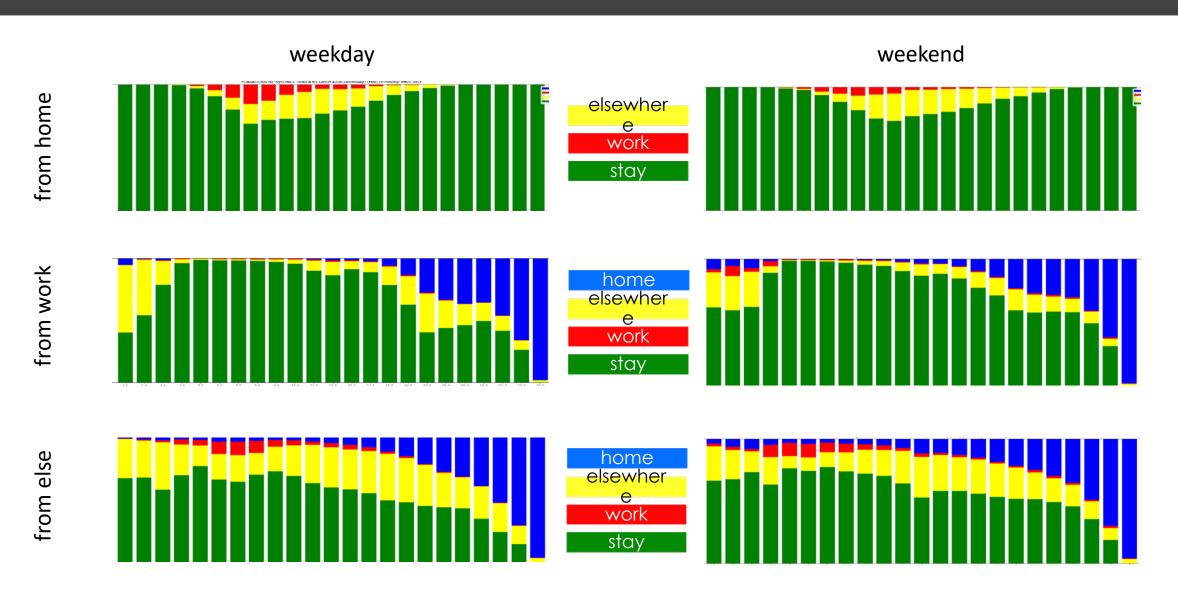
A few trips in 8 counties

All trips in 8 counties

List-constrained Markov chain trip sequence generation

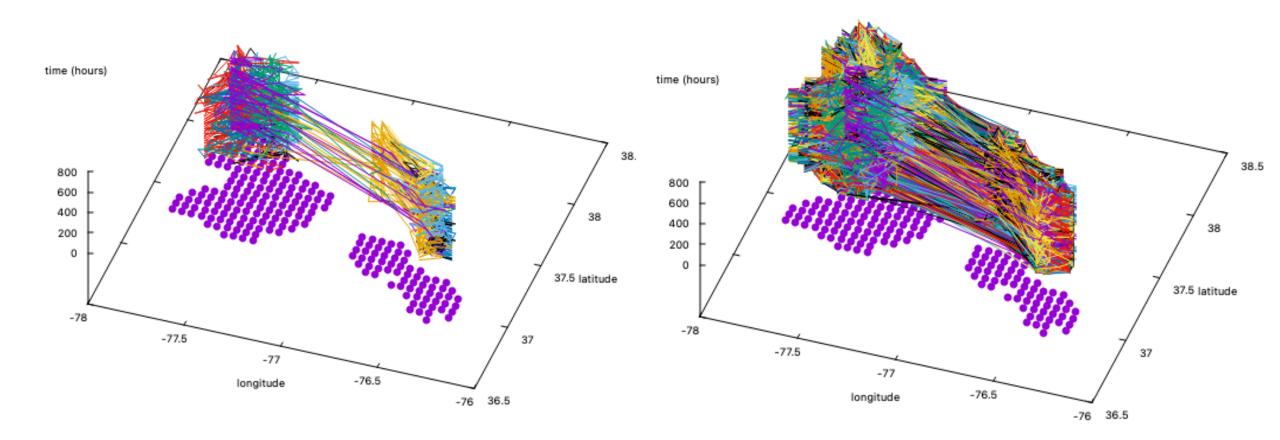


Trip probabilities are also derived from real data



UNCLASSIFIED UNLIMITED RELEASE

What the synthetic trip sequences look like

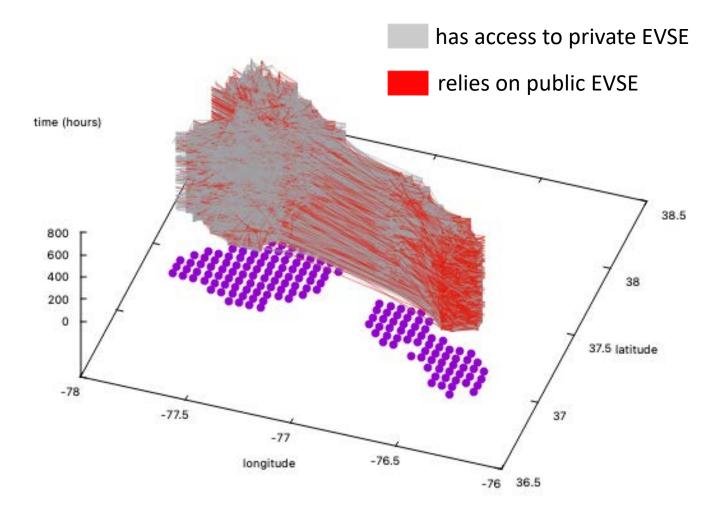


16 trips

10000 trips

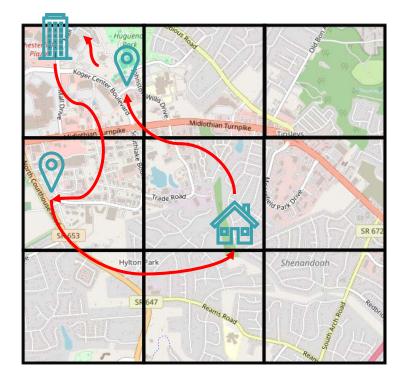
Differentiating between EV users by access to private charging

- Use census block data to assign probability of driver either renting or living in MUD
- Information provided in "No Place Like Home" report links likelihood of private EVSE to rental vs. owned
- Use this information to determine whether driver has access to private EVSE



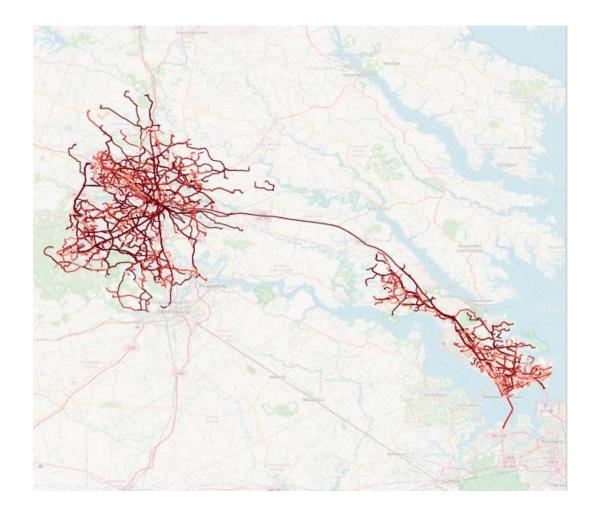
Turning coarse trips in a sequence into specific trips

- Trip chains are based on a square grid
- Each agent has a home and work grid square that are fixed. A random address, chosen from a list of all addresses in the box, is chosen within the grid to be the specific home/work location
- The home and work addresses remain fixed for the entire trip chain
- For all trips ending somewhere else (not at home or work) a random address is chosen within the grid square where the trip ends



Differentiating between EV users by access to private charging

- Once the trip endpoints are transformed from grid squares into addresses we can find the route, travel time, and energy required for each trip.
- Using the Open Street Map road network and speed limit data we use the A* algorithm to find the route with the shortest travel time.
- For each route we calculate the energy required to drive that route.



What about trips that cross boundaries?

-76 36.5

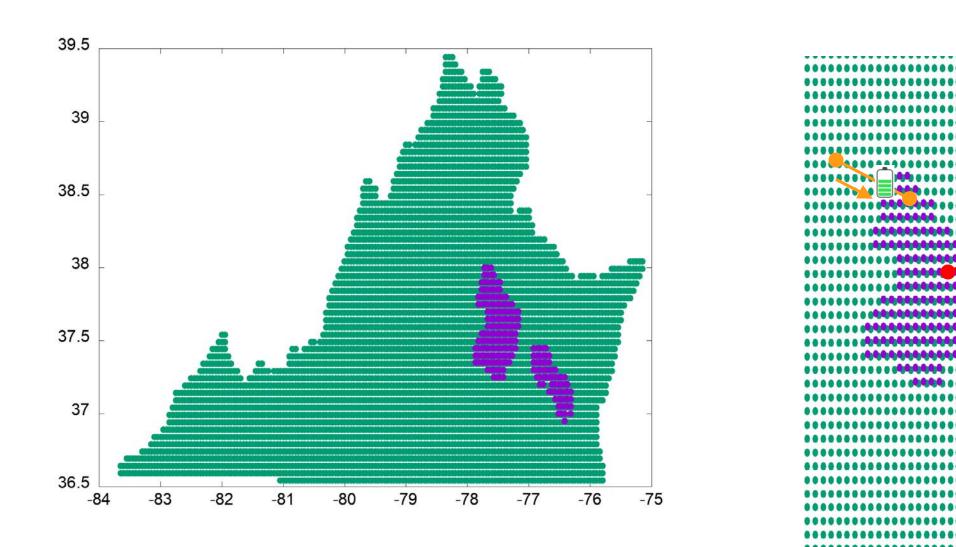


Dealing with trips that cross boundaries

4

entry point

exit point



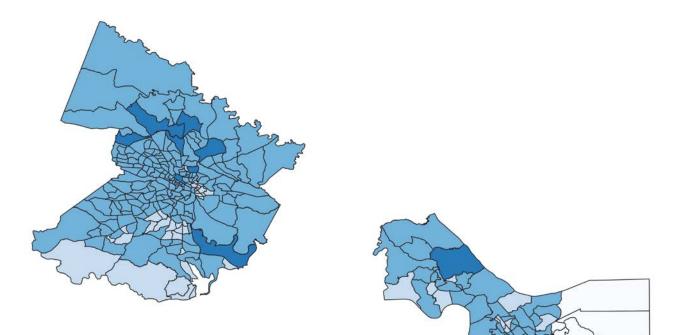
UNCLASSIFIED UNLIMITED RELEASE

Small business traffic simulation

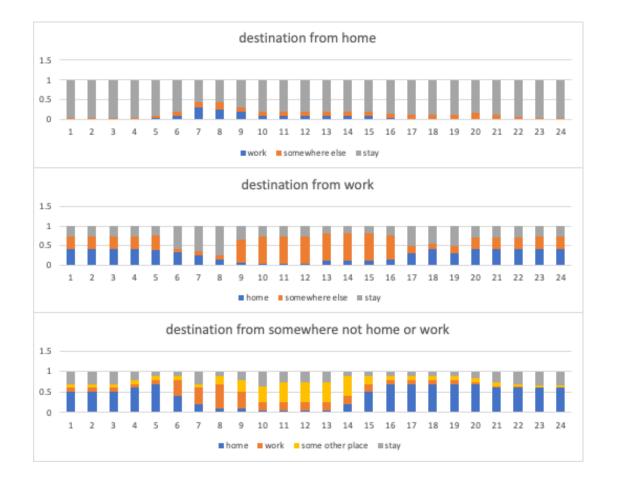
- Typical annual miles driven range from ~ 15K miles to ~ 90K miles per year for service trucks / vans
- At least 500,000 establishments with 1-5 vehicles in their fleet
- Most small business employees take their trucks home after work
- Using an EV could improve profits for a small business by better tracking, lower fuel cost and lower downtime
- Charging may be an issue for trucks that cover many miles

Geotab data

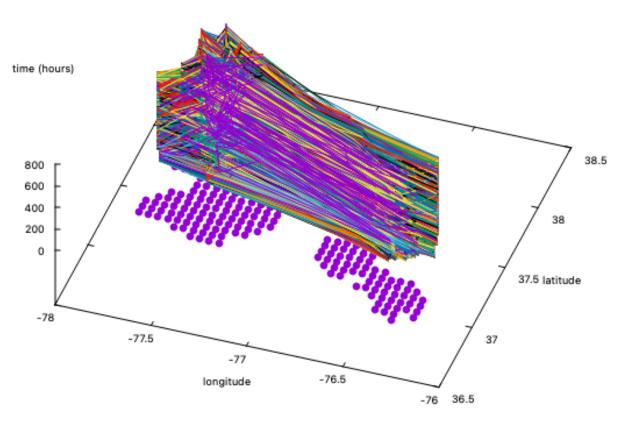
- Geotab data used for MHDV trip analysis
- Geotab provides OD pairs directly
- Process to build synthetic trips similar to the one used for wejo data, with similar issues



Small fleet synthetic trip sequences



hourly trip probabilities adapted for service vehicles



UNCLASSIFIED UNLIMITED RELEASE

Planned workshop at UTK and national survey – what we hope to learn

• From the workshop

- What are good questions to ask in a survey?
- Are small businesses interested in operating EVs?
- Is our research useful to city planners, community organizations and other stakeholders?
- Unknown unknowns

• From the national survey

- How do potential EV users with limited access to charging with acquiring and owning an EV?
- What is the expected charging behavior for these potential new users, in personal transportation?
- What is the expected charging behavior for these potential new users, in business use?

Where we go from here and thank you!

- Trip sequences that cross boundaries gracefully
- Hourly probabilities obtained from survey results and / or data
- Integrate data with EVIPro and Caldera
- Implement ABM to model charging response to external pressures

Smart Charge Management (SCM) and mid-route charging

Manoj Sundarrajan Steven Schmidt

April 4, 2024 / / /

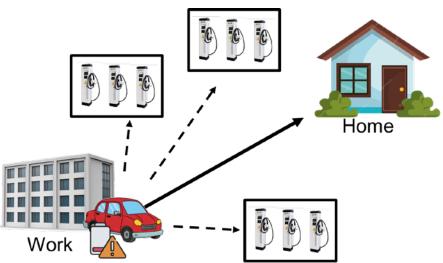
U.S. DEPARTMENT OF Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

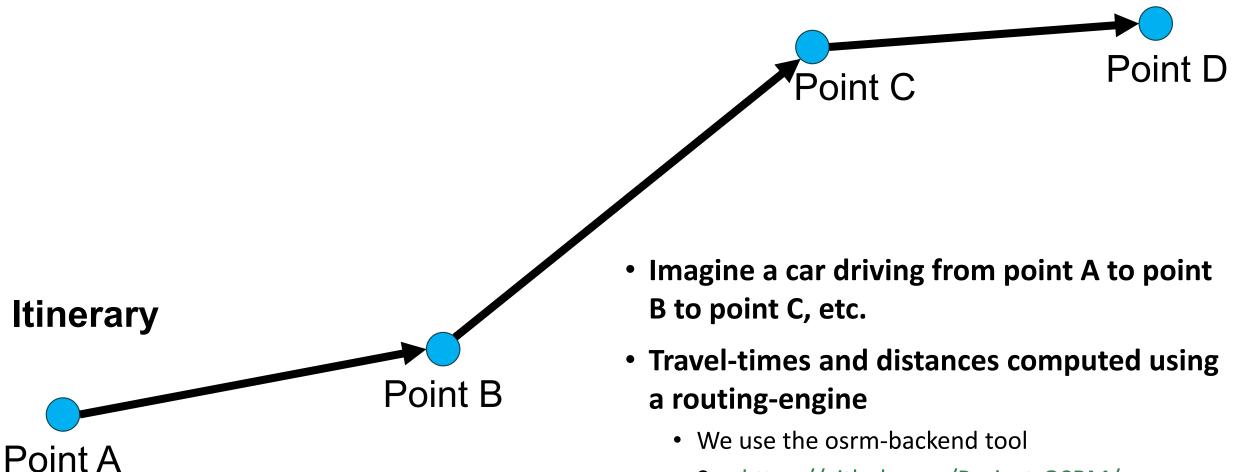
Caldera Charging Decision Module (CDM) - Agent-based Modeling

Each EV is modeled as its own agent driving and charging as needed within Caldera. ٠

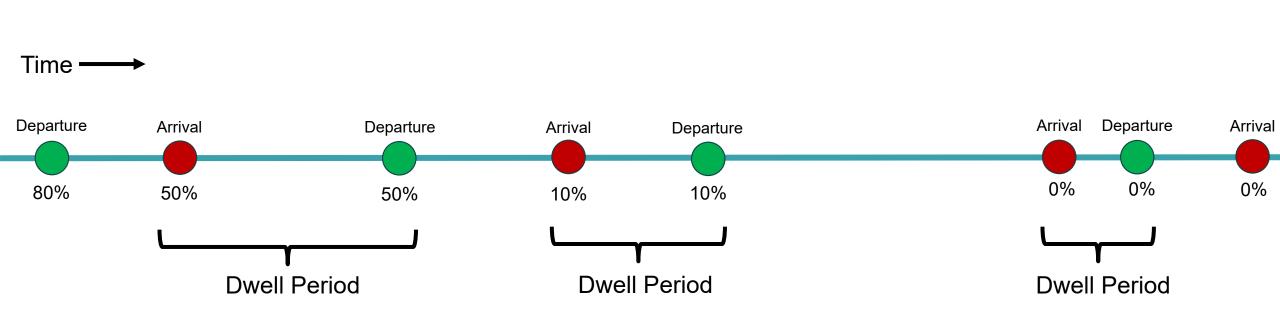
Process ٠

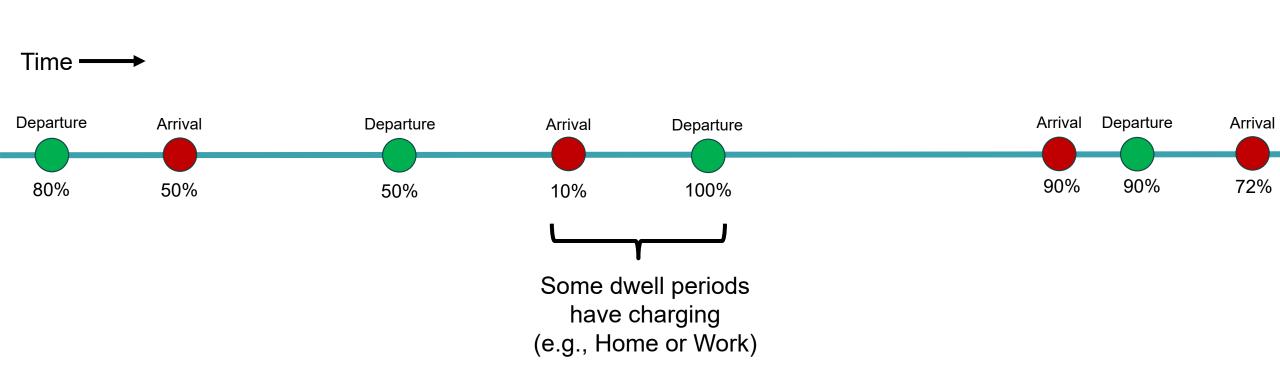
- Input a large number of vehicle itineraries
 - Point A to Point B to Point C, etc. Several days or even several weeks of data.
- Track SOC of each vehicle each leg of itinerary —
- When needed, deviate from itinerary to charge at public high-powered station —
- Utilize routing-engine tool osrm-backend (akin to Google Maps)
 - See https://github.com/Project-OSRM/osrm-backend
- Collect charge events and model using Caldera Grid or Caldera ICM
- Modes •
 - **Unscheduled** charging mode (Base-case)
 - Go directly to station without checking availability, first-come-first-serve
 - *Scheduled* charging mode _
 - Remote communication with multiple stations to determine best choice
 - Lowest opportunity-cost

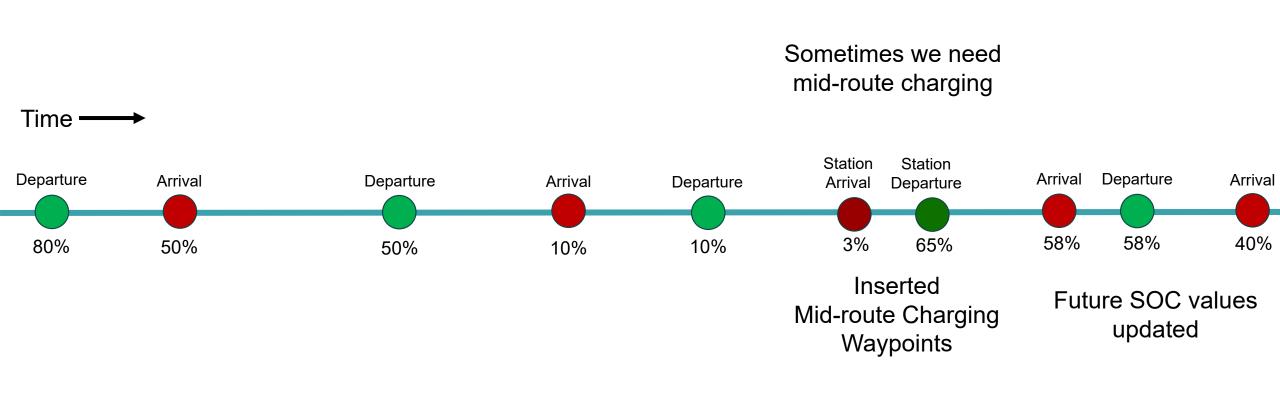




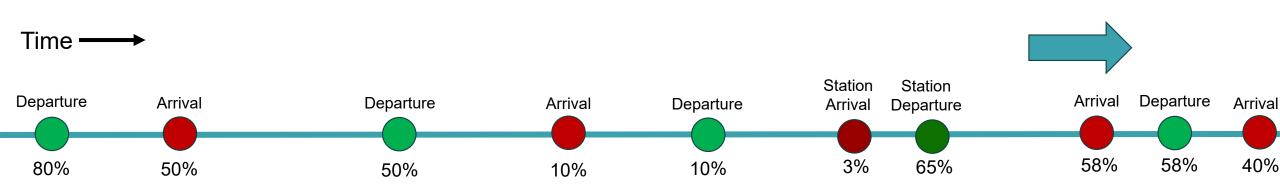
See <u>https://github.com/Project-OSRM/osrm-backend</u>







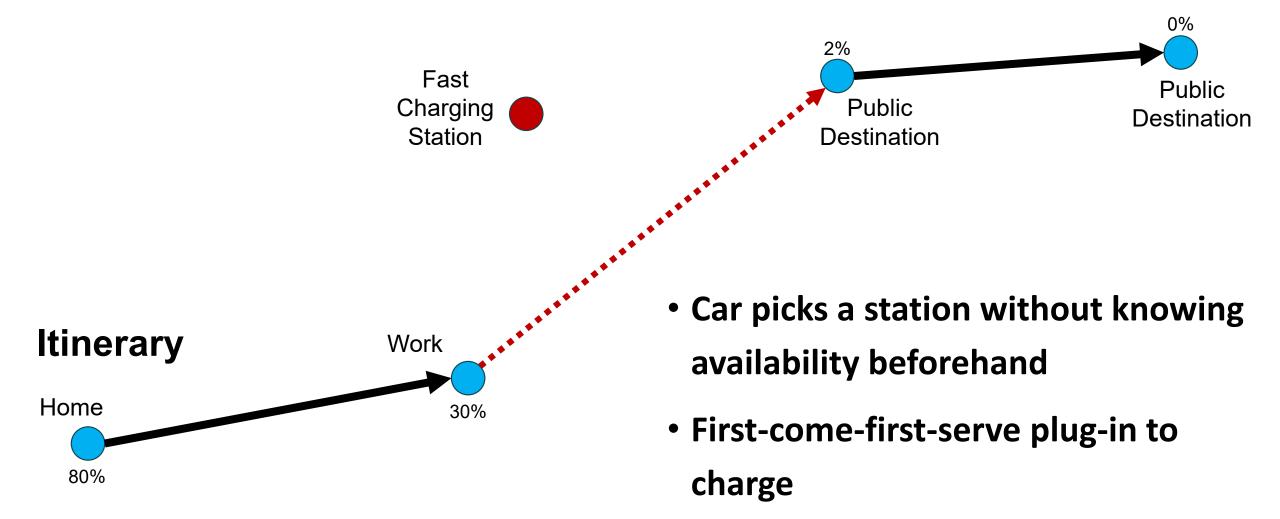
Agent-based modeling, Short-dwell/Mid-Route



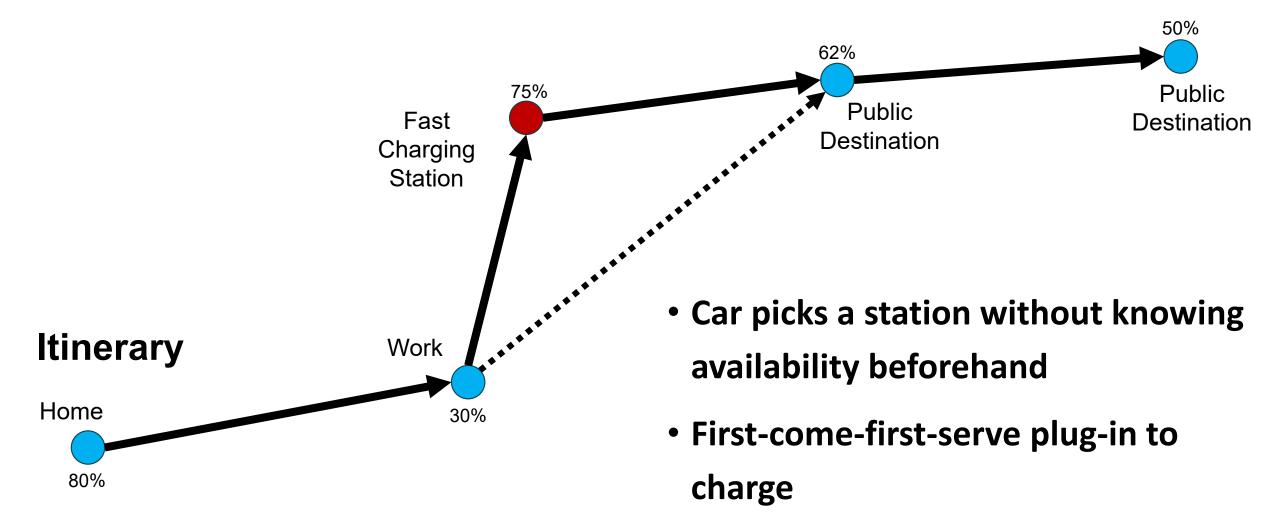
Future waypoints shifted into the future if needed

(Travel times and distances computed using a routing engine)

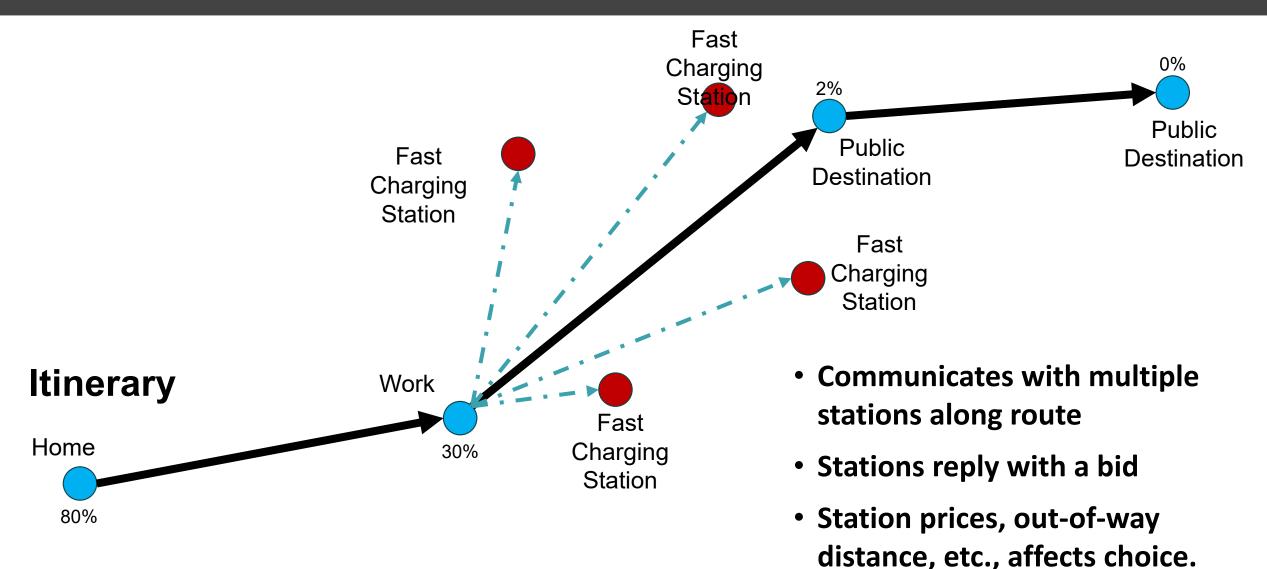
Unscheduled Charging



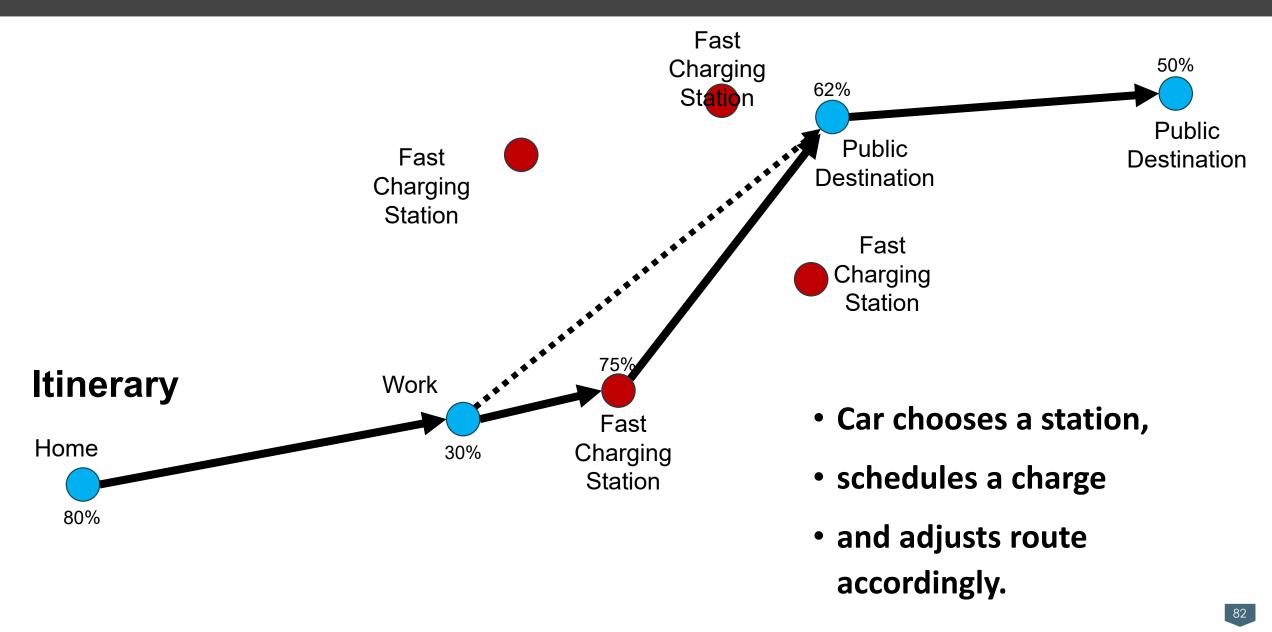
Unscheduled Charging



Scheduled Charging



Scheduled Charging



Itinerary Data

• Characteristics of Itinerary Data

- Input: Collection of move-events:
 - Itinerary unique-id and vehicle type
 - Start and end time, start and end location (lat, lon)
 - Destination type (Home, Work, Public, etc)
 - EVSE available at destination
- **Input**: Initial SOC for each itinerary
- Additional requirements:
 - Arrival and departure location must match (no teleportation)
 - Each itinerary must have exactly one home and one work location
 - Itineraries always depart from home in the morning and return to the same home at the end of the day
- At run-time:
 - Travel times computed using osrm-backend routing engine
 - SOC at each waypoint computed based on travel distances and vehicle efficiency (wh-per-mile)

Itinerary Data

• Itineraries from NREL

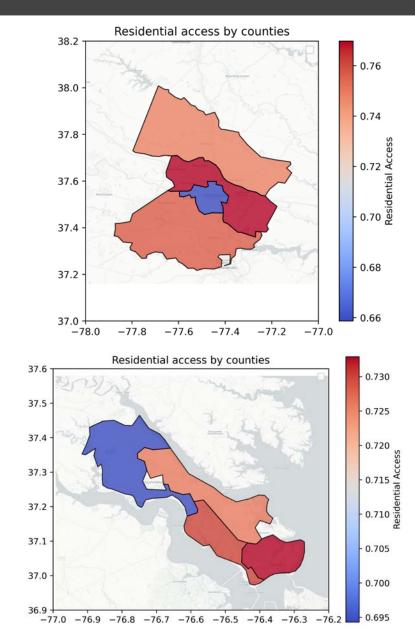
- Real world trips in Virginia purchased from WEJO, trip chained to form individual vehicle itineraries.

• Itineraries from Sandia

- Plan:
 - Sandia team will stochastically-generate itinerary data
 - INL team will run simulations with Sandia's itineraries to compare with Sandia's analysis.

Home Charging Levels

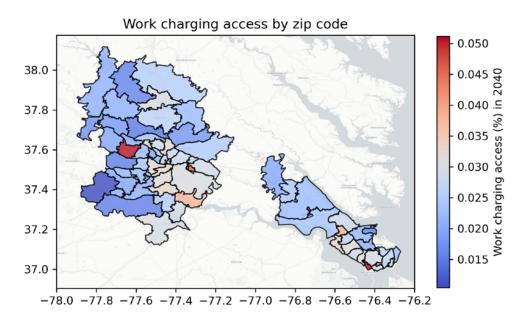
- A probability of home charging availability is computed for each county.
 - Based on the NREL study:
 - "There's No Place Like Home: Residential Parking, Electrical Access, and Implications for the Future of Electric Vehicle Charging Infrastructure".
 - Estimates levels of home charging access based on housing attributes
 - National data on vehicle ownership
 - Residence type
 - Housing density
 - Housing rent or own
 - Data supported with survey of 3772 U.S. individuals
 - County-level data
- If an itinerary's home has L2 charging:
 - Upon arrival at home, a L2 charge event occurs if:
 - SOC < 80%
 - The driver remembers to plug-in (95% chance)



Work Charging Levels

• A probability of work charging availability is computed for each zip code.

- A generalized linear model is used to estimate the probability that a business establishment has workplace charging available
 - Based on:
 - Population density,
 - Establishment density,
 - Company size distribution,
 - Median income,
 - Average Annual payroll,
 - Average company size.
 - Zip-code level
- Zip-codes with sufficient data are used to fit the model (Alternate Fuel Data Center AFDC data)
- The fitted model is used to estimate all zip codes in the country.
- Availability is scaled up for 2040 scenario with 1.03% annual establishment growth and 485k workplace chargers based on NREL's 2030 charging needs assessment.
- If an itinerary's work has L2 charging:
 - Upon arrival at work, a L2 charge event occurs if:
 - SOC < 65%
 - The port is available (66% chance)
 - The driver remembers to plug-in (95% chance)



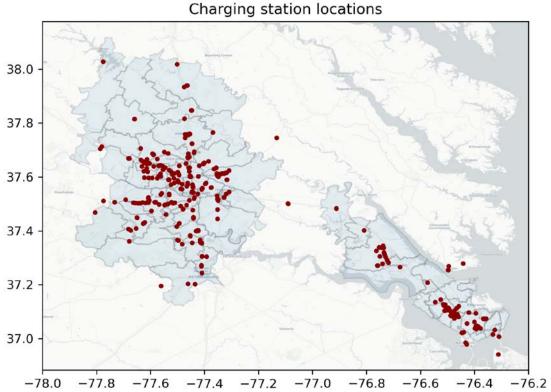
Public (Destination) Charging Levels

- 6.7% of public destination locations have L2 charging available
 - From EVI-Pro lite online tool.
- If a public destination has L2 charging:
 - Upon arrival, a L2 charge event occurs if:
 - SOC < 50%
 - Driver remembers to plug-in (95% chance)

XFC Charging Stations

• 318 number of public charging stations.

- Charging station locations based on current charging stations and gas station locations.
- 1500 total plugs based on EVI-pro lite tool.
- Plugs distributed to stations based on how busy a station is.
- Currently, all plugs support up to 350kW.
- Public charging stations are used by a vehicle when certain conditions are met
 - Itinerary is adjusted to allow vehicle to go to public charger before continuing on its way
 - Range anxiety metrics



Range Anxiety Metrics

- When to divert to a public charging station?
 - Depends on if an upcoming waypoint has destination-charging available
 - Depends on if we're going to work, home, or a public destination
- If an upcoming waypoint has destination charging (home,work,public):
 - Allow lower SOC before public charging is desired
- If SOC will fall below the threshold:
 - Divert to a public station to charge.

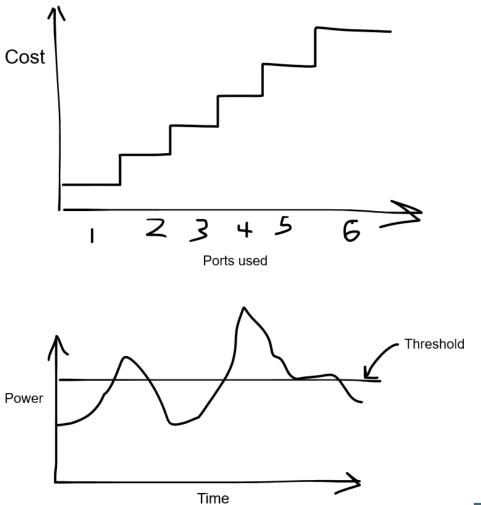
• Threshold values (specific values are still debatable):

	Upcoming destination has L2 charging	No upcoming destination charging	
Arriving at home	7% SOC or 15 miles range	14% SOC or 40 miles range	
Arriving at public destination	7% SOC or 15 miles range	12% SOC or 35 miles range	
Arriving at work	7% SOC or 15 miles range	10% SOC or 30 miles range	
NOTE: When going to work, the driver is more anxious to make it on time, so threshold allows a lower SOC when going to work.			

Whereas, when going Home or to a Public Destination location, the driver is assumed to have more flexibility.

Smart Charge Management

- Scheduling Mode:
 - Unscheduled Charging:
 - Looks into the future only one leg at a time
 - Scheduled Charging:
 - Looks multiple travel-legs into the future
- Station Pricing Mechanisms:
 - Constant pricing
 - Station-busyness based pricing
 - Station peak-power-usage based pricing



Cost metrics

- Costs can be used to influence vehicle behavior
 - Spatial and Temporal Shifts
 - Shift from busy station to less-busy
 - Help alleviate station overage-charges
- Prevent slow-charging vehicles from clogging up fast-chargers
 - If time and energy costs are set appropriately
- Additional fixed costs may be different for each station
 - Control for unique scenarios
 - Make sure the station near Mr. Trump's resort is never full so he never gets mad.
- Varying station cost based on station demand (busyness)
 - Lower-bound vs upper-bound cost
 - Linear interpolation based on station-usage

Possible Values (not set in stone):

EVSE Type	Cost While Charging					
	Time (\$/min)	Energy	(\$/kWh)	Connectio	on Cost (\$)
	Low	High	Low	High	Low	High
L2 1440	0.02	0.52	0.10	1.50	0.00	1.00
L2 17280	0.07	0.57	0.10	1.50	0.00	1.00
DCFC 50	0.10	0.60	0.10	1.50	0.00	1.00
XFC 350	0.20	0.70	0.10	1.50	0.00	1.00

Vehicle Class	Cost While Driving		
	Time (\$/min)	Distance (Wear and Tear) (\$/mile)	
Default	1.00	0.05	

Extreme Cases

- What do cars do when all stations are busy?
 - Unscheduled:
 - Cars go from station to station looking for a place to charge until they are stranded.
 - Scheduled:
 - Cars wait and wait, trying to schedule again and again every few minutes, until they can't wait any longer and are declared stranded.

Simulations

- Questions we want to answer:
 - How effectively can we influence cars to shift XFC charging?
 - Spatially: Influence cars to charge at a different public charging station
 - **Temporally**: Influence cars to charge earlier or later
 - What specific cost controls are most effective at influencing charging behavior?
 - Peak-power vs. station-busyness controls
 - Different controls have different benefits
 - Benefits to:
 - Electrical grid avoid charging during peak power usage
 - Station operators avoid demand charges
 - EV drivers avoid full/busy stations, and minimize cost, time charging

Initial Results

• Pending a currently-running simulation

FUSE EV charge load modeling update: "Short-dwell" vehicle travel itinerary development

Matthew Bruchon, Yi He, Zhaocai Liu, Jesse Bennett

March 2024

ERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

FUSE EV charge load modeling overview

Richmond, VA

redericksburg

Goal: characterize potential 2040 plug-in EV charging loads to enable analysis and demonstration of smart charge management and vehicle-grid integration strategies

Newport News, VA

FUSE EV charge load modeling to date

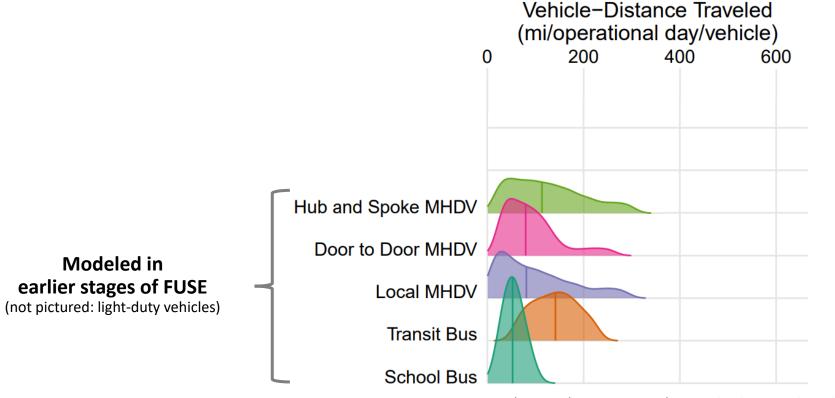
- Analysis began with **light-duty passenger vehicles**
- We then considered medium- and heavy-duty vehicles (MHDV) with charging needs fully met by **long-dwell depot charging**

	Projected EV count	Regional daily energy	Peak power per h9 hex cell*	Peak load time of day
Passenger cars	700,000	1.50 GWh	600 kW	5 – 10 PM
Local freight	17,000	410 MWh	1.4 MW	5 – 9 PM
School buses	3,000	670 MWh	900 kW	5 – 11 PM
Transit buses	500	250 MWh	9.0 MW	3 PM – 2 AM

Summary statistics for Richmond and Newport News, VA (2040 estimates)

*h9 hex cells are approx. 0.04 mi² (0.1 km²)

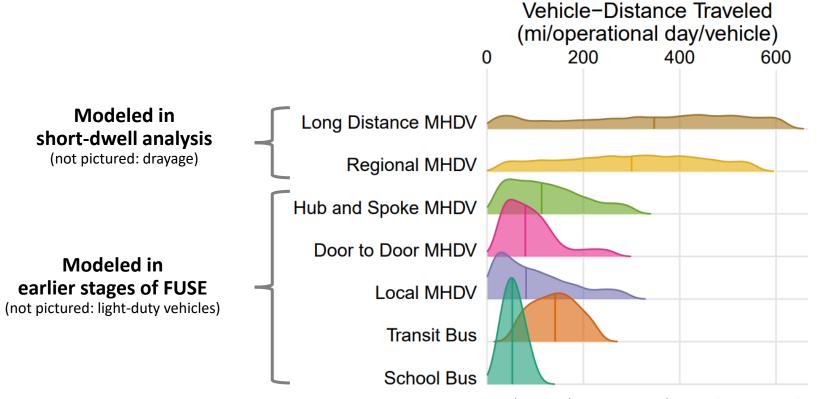
Typical nationwide vocational travel patterns



Bruchon, Matthew, Brennan Borlaug, Bo Liu, Tim Jonas, Jiayun Sun, Nhat Le, Eric Wood. "Depot-Based Vehicle Data for National Analysis of Medium- and Heavy-Duty Electric Vehicle Charging". National Renewable Energy Laboratory. NREL/TP-5400-88241. February 2024.

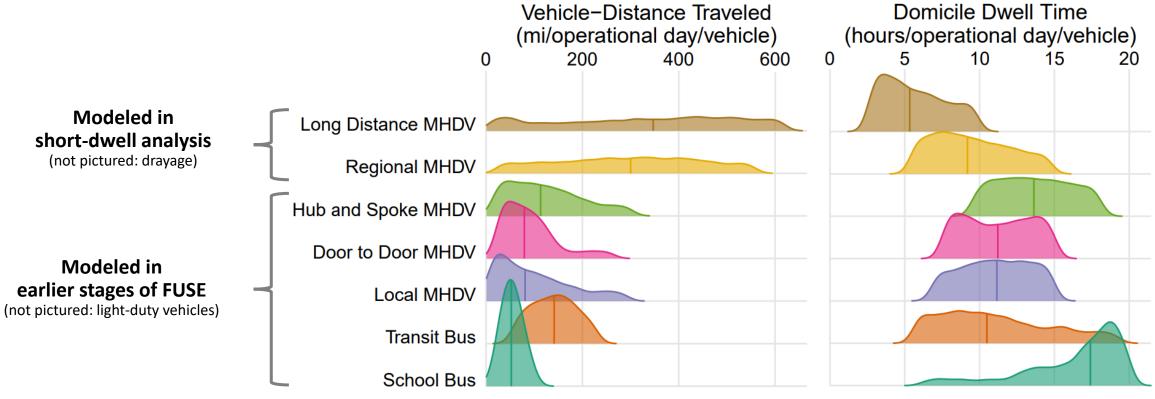
Short-dwell charging needs vary by vocation

Typical nationwide vocational travel patterns



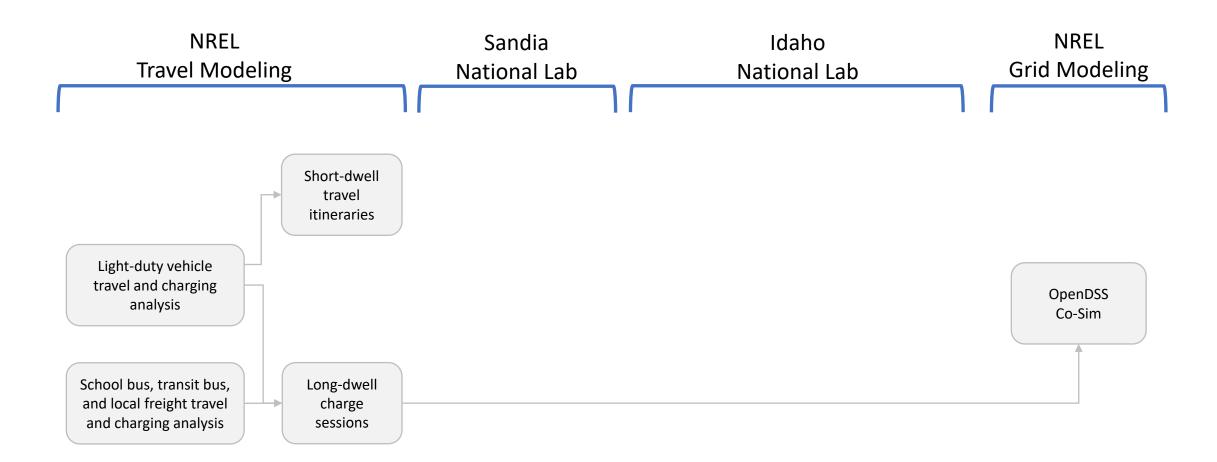
Bruchon, Matthew, Brennan Borlaug, Bo Liu, Tim Jonas, Jiayun Sun, Nhat Le, Eric Wood. "Depot-Based Vehicle Data for National Analysis of Medium- and Heavy-Duty Electric Vehicle Charging". National Renewable Energy Laboratory. NREL/TP-5400-88241. February 2024.

Short-dwell charging needs vary by vocation

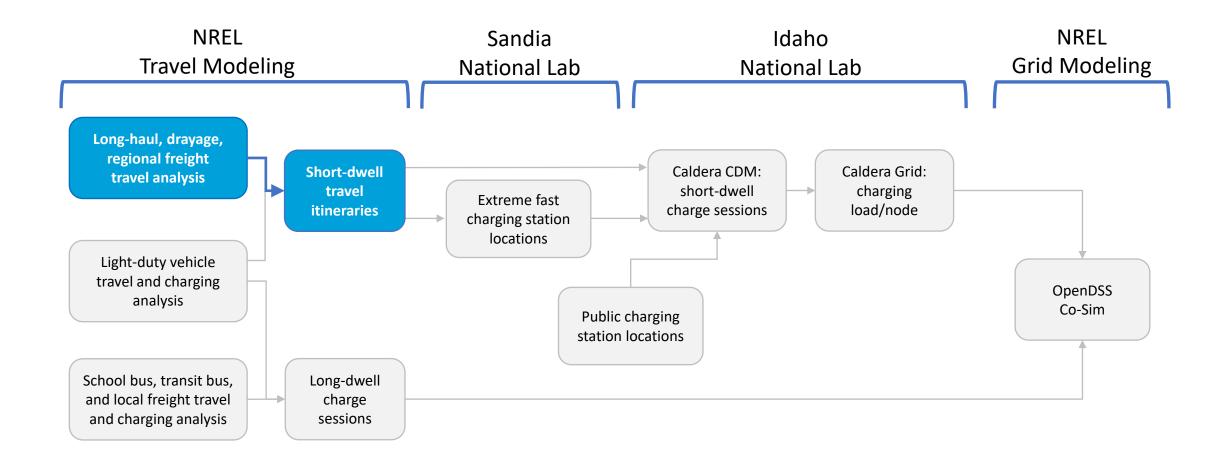


Bruchon, Matthew, Brennan Borlaug, Bo Liu, Tim Jonas, Jiayun Sun, Nhat Le, Eric Wood. "Depot-Based Vehicle Data for National Analysis of Medium- and Heavy-Duty Electric Vehicle Charging". National Renewable Energy Laboratory. NREL/TP-5400-88241. February 2024.

Multiple labs are coordinating to model short-dwell charging demands

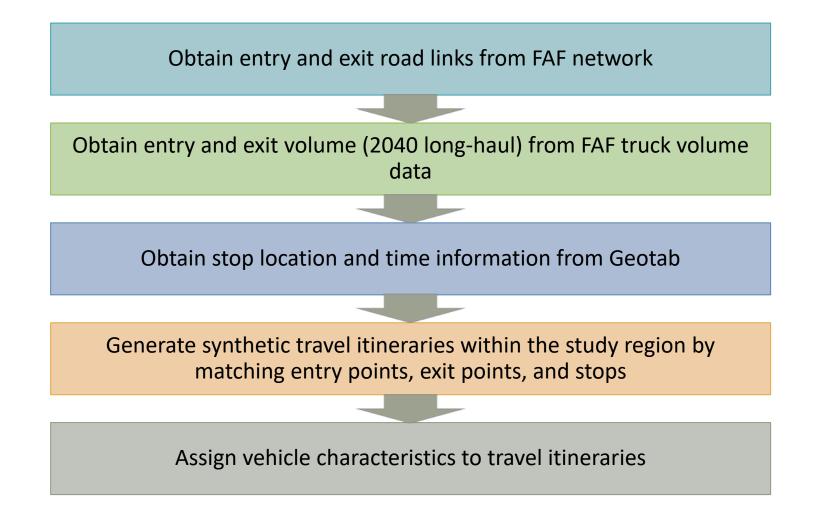


Multiple labs are coordinating to model short-dwell charging demands

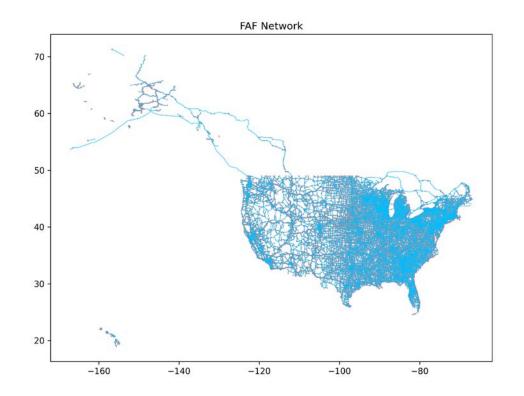


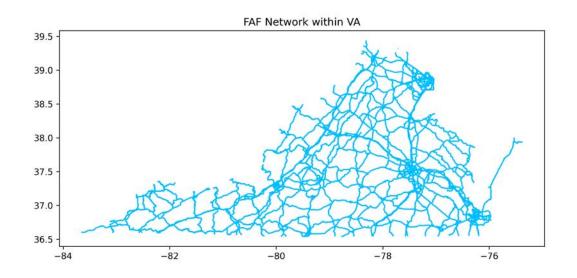
Long-haul	Drayage	Regional freight
Class 7-8 tractors	Class 7-8 tractors	 Class 3-6 cargo vans, step vans, straight trucks Class 7-8 tractors
Largely interstate freight	Freight delivered to/from ports	Operating radius over 150 miles
Less consistent domicile location	More consistent domicile location	More consistent domicile location
Modeled using FAF and Geotab	Modeled using Port of Virginia data and Geotab	Modeled using Geotab

Freight Analysis Framework (FAF) and Geotab based approach

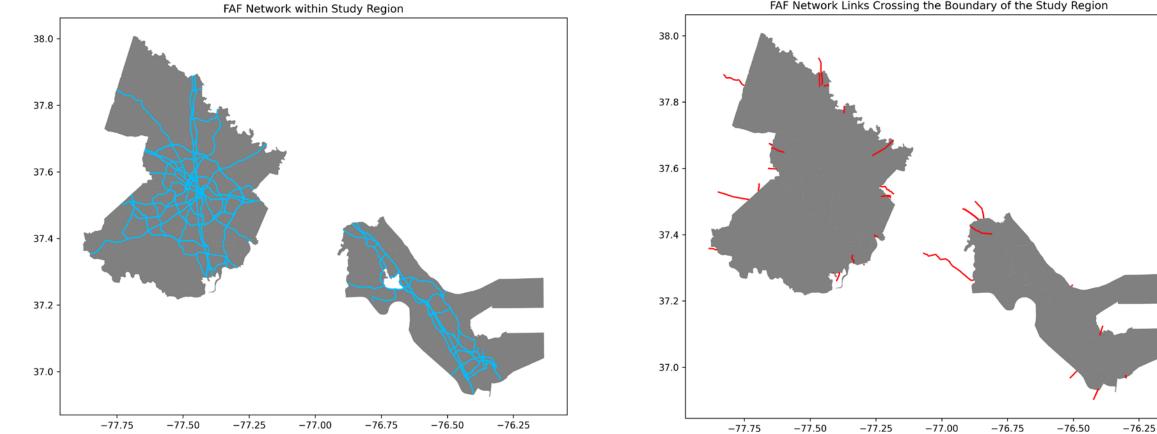


- FAF database has estimates of US freight flows for states and metropolitan areas
- Flows include all modes of transportation and 42 commodity types
- The Bureau of Transportation Statistics (BTS) produces the FAF with support from the Federal Highway Administration (FHWA). The main FAF5 input is the 2017 CFS.



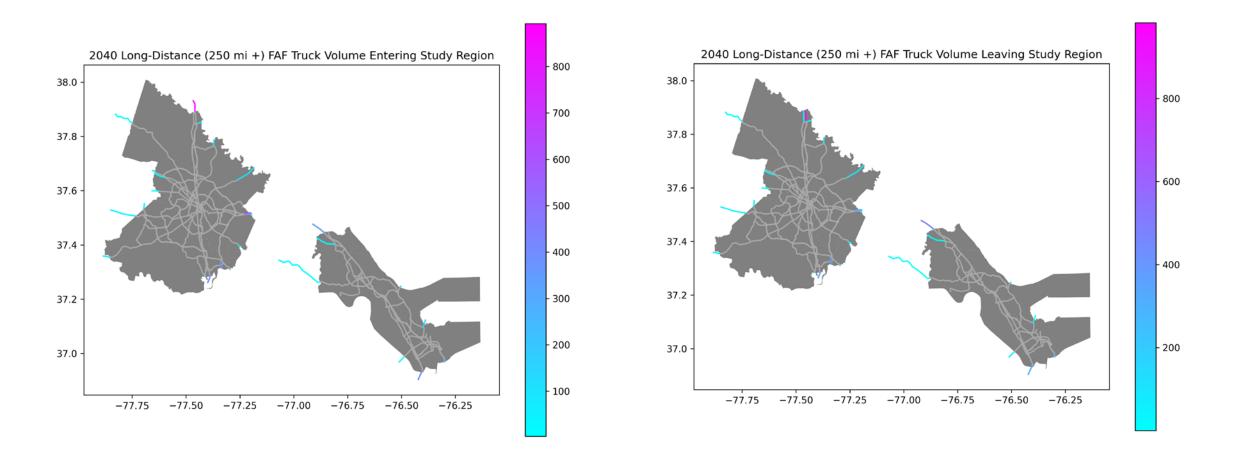


Long-haul modeling step 1: **Obtain entry and exit road links from FAF network**



FAF Network Links Crossing the Boundary of the Study Region

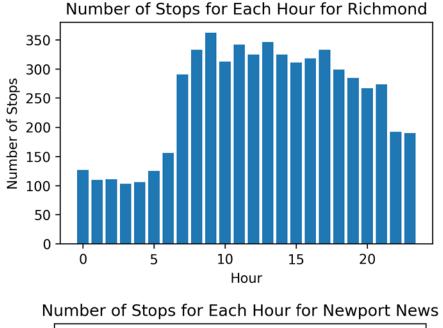
FAF long-distance truck volume for each link with direction for year 2040

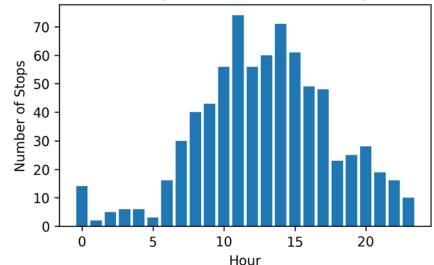


Long-haul modeling step 3: Obtain stop location and time information from Geotab

Stop analysis from Geotab can provide stop location and time information







Annual average volumes are scaled using monthly and weekly scaling factors

Region	Daily Trips	Mean Travel Distance	Mean Dwell Time
Richmond	3187	55 miles	6.2 hours
Newport News	1208	59 miles	2.6 hours

Monthly Activity Scalers

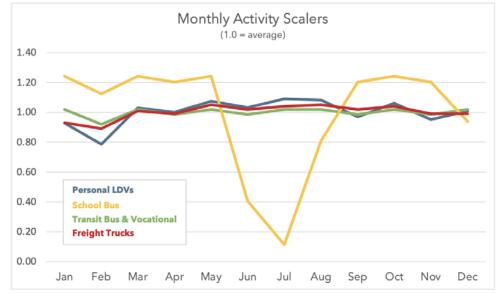


Chart: NREL; Data sources: NHTS17 (personal LDVs, school bus), Cass Info. Systems (freight trucks)

Weekly Activity Scalers (1.0=average day)

Day Type	Truck_Local	Truck_Regional	Truck_LongHaul	Bus_School	Bus_Transit	Vocational	Personal_LDV
Weekday	1.22	1.21	1.10	1.25	1.18	1.22	1.13
Weekend	0.44	0.47	0.75	0.36	0.52	0.44	0.68
Source:	HD telematics	HD telematics	HD telematics	Fleet DNA	NTD	Truck_Light	2017 NHTS

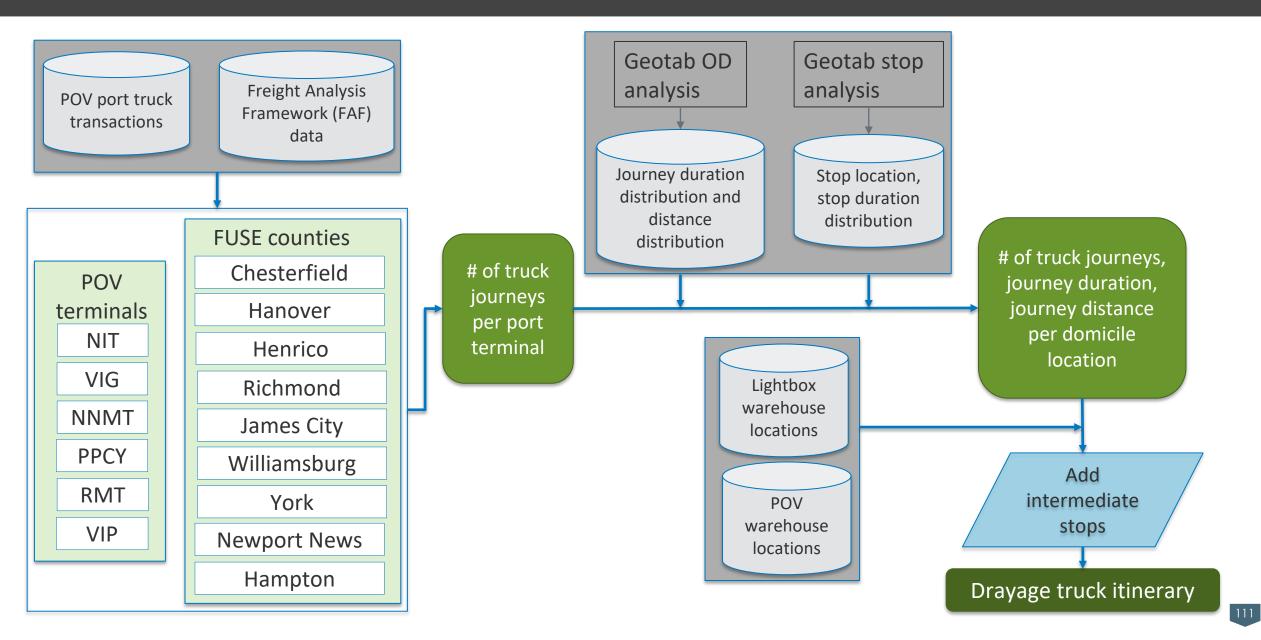
Source: NREL DECARB analysis (Brennan Borlaug et al.)

• From TEMPO: 0% EV-150, 2.6% EV-300, 5.8% EV-500, 91.6% non-EVs¹

Vehicle Class	Battery Range (mi)	Battery Size (kWh) ²	Fuel Economy (kWh / Mile)²	Depot kW	Opportunity kW	En-Route kW
Heavy (Classes 7-8)	150	289 kWh	1.804	30	110	500
Heavy (Classes 7-8)	300	578 kWh	1.804	60	220	1000
Heavy (Classes 7-8)	500	963 kWh	1.804	100	360	1500

- 1. Catherine Ledna, Matteo Muratori, Arthur Yip, Paige Jadun, Christopher Hoehne, Kara Podkaminer. Assessing total cost of driving competitiveness of zero-emission trucks. *iScience* 27 (4), 2024.
- 2. Ehsan Sabri Islam, Daniela Nieto Prada, Ram Vijayagopal, Charbel Mansour, Paul Phillips, Namdoo Kim, Michel Alhajjar, and Aymeric Rousseau. Detailed Simulation Study to Evaluate Future Transportation Decarbonization Potential, 2024.

Drayage modeling approach



- Average daily truck transactions for NIT, VIG, RMT, PPCY are obtained from Port of Virginia (POV) website statistics.
- Port features obtained from POV and online sources.
- Estimate daily truck transactions for NNMT and VIP based on port features.

POV terminal	Current throughput TEU capacity	Operating acres	Forklift capacity	On-dock rail track (linear feet)	Average daily truck transactions	Truck data source
Norfolk International Terminal (NIT)	2.2M	378	/	27,416	2307	Port of Virginia
Virginia International Gateway (VIG)	2.2M	291	/	19,644	3088	Port of Virginia
Newport News Marine Terminal (NNMT)	/	165	65K	18,990	221	Estimation
Richmond Marine Terminal (RMT)	86,000	121	52K	19,640	170	Port of Virginia
Virginia Inland Port (VIP)	78,000	161	13K	17,820	154	Estimation
РРСҮ	/	/	/	/	2333	Port of Virginia

Drayage modeling steps 2-3: Geotab Origin-Destination (O-D) and Stop Analysis

	O-D Analysis parameter	Stop Analysis parameter		
Vehicle class	Class 7-8 trucks			
Industry	Retail trade, transportation and warehousing, and wholesale trade			
Zones (of stops or origin- destination pairs)	Richmond & Newport News counties			
Stop duration threshold	< 360 minute stops chained into journeys	360 min (domiciles), 120 min (other stops)		
Connector	Port of Virginia ports N/A			
Vocation	All Hub and Spoke			

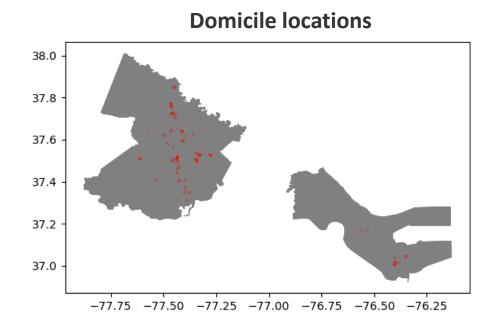
Geotab analysis parameters

O-D Analysis outputs:

- Journey counts per combination of O-D pair and connector zone
- Journey distance distribution
- Journey duration distribution
- Running speed

Stop Analysis outputs:

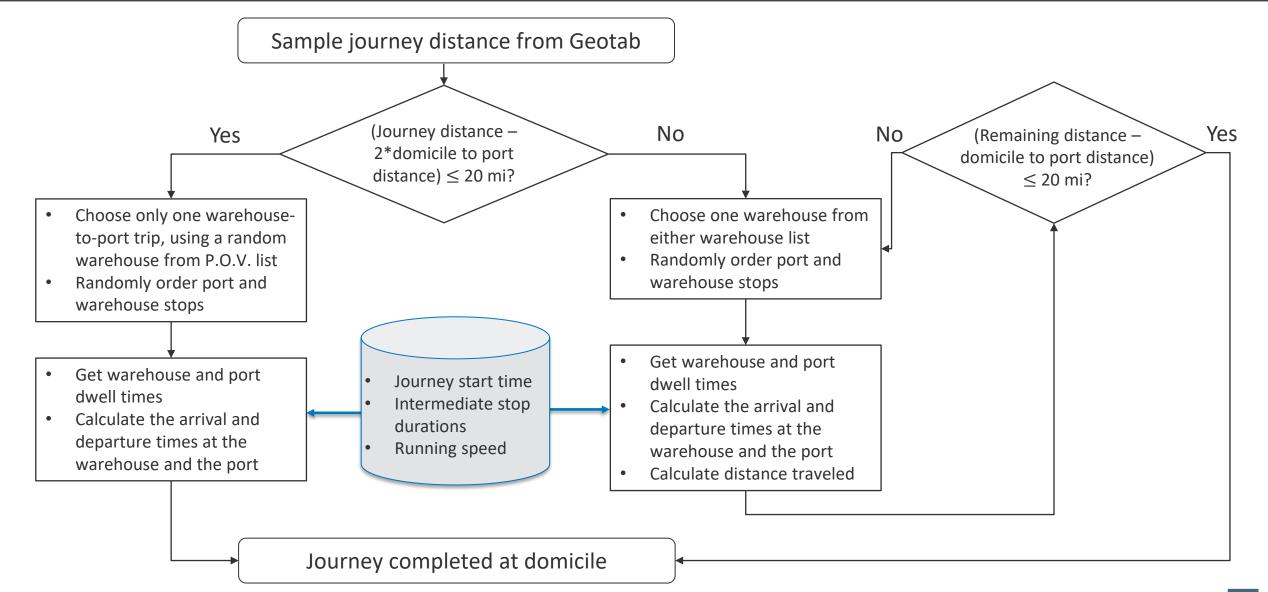
- Vehicles per stop location
- Stop duration distribution
- Arrival time at the stop location



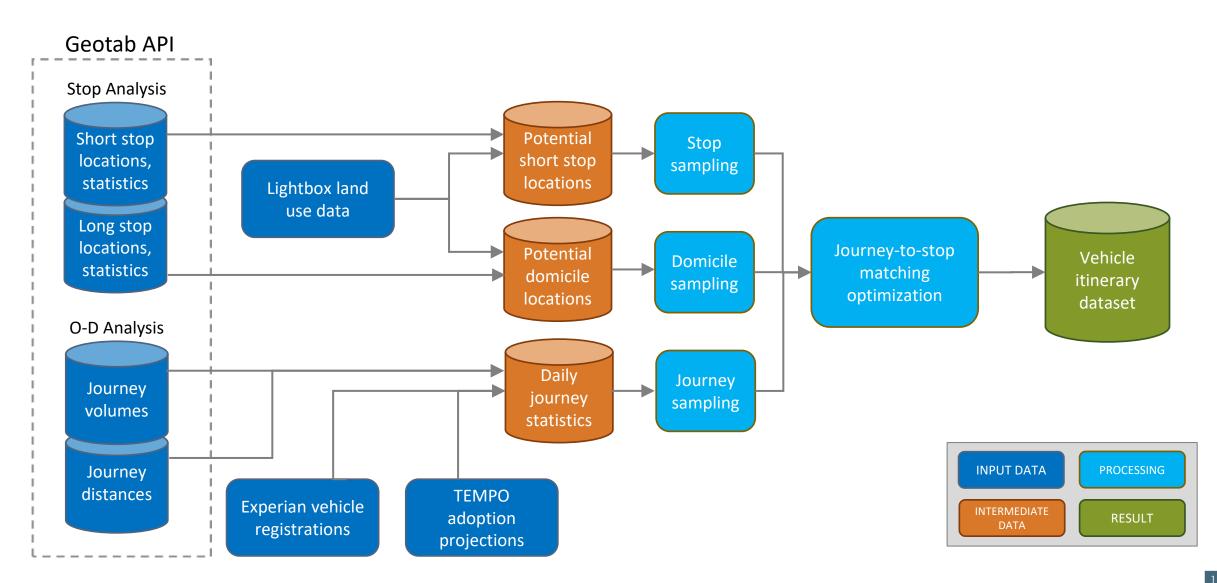
Modeling steps:

- 1. Assign journeys to each domicile location
- 2. Get dwell time of each vehicle at the domicile location
- 3. Calculate journey start time based on arrival time and dwell time at the domicile location
- 4. Get intermediate stop duration distributions

Drayage modeling step 4: Determine intermediate stop locations and build itineraries



Regional freight modeling approach



Regional freight modeling: Geotab Origin-Destination (O-D) and Stop Analysis

Geotab analysis parameters

	O-D Analysis parameter Stop Analysis parameter			
Vehicle class	Class 3-8 trucks			
Vocation	Regional			
Zones (of stops or O-D pairs)	Counties in VA, states in 250-mile radius	Richmond & Newport News counties		
Connector	Richmond & Newport News counties	N/A		
Excluded connector	Port of Virginia ports	N/A		
Stop duration threshold	< 360 minute stops chained into journeys	360 min (domiciles), 15-360 minutes (other stops)		

O-D Analysis outputs:

- Journey counts per combination of O-D pair and class
- Journey distance distribution per O-D pair and class
- Journey duration distribution per O-D pair and class

Stop Analysis outputs:

- Long stop cluster locations and durations for each class
- Short stop cluster locations and durations for each class

Regional freight modeling: stop location characterization

- We query stop locations from Geotab. However:
 - For regional freight, some mid-route stops may happen outside of the nine-county region
 - Geotab data does not cover the full population of fleets or potential stops
- To add synthetic stop locations, we use third-party land use data (Lightbox):
 - 1. Pull shapefiles of stop clusters from Geotab
 - 2. For each type of vehicle, build a frequency table of land uses within stop clusters
 - Randomly sample additional parcels matching the observed distribution of land uses

Stop location types per weight class

	Weight Class				
Land Use Category	3	4 & 5	6&7	8	Total
Commercial Retail	54%	35%	51%	40%	46%
Commercial/Industrial and Offices	8%	22%	16%	17%	15%
Heavy Industry and Transportation	9%	5%	4%	21%	12%
Industrial/Manufacturing/Warehouses	5%	9%	8%	15%	11%
Government and Related	7%	15%	8%	2%	6%
Residential	8%	9%	6%	2%	4%
Vacant Land	5%	3%	5%	3%	4%
Miscellaneous	2%	1%	1%	1%	1%
Recreational	2%	1%	1%	0%	1%
Agricultural	0%	0%	0%	0%	0%
	100%	100%	100%	100%	100%

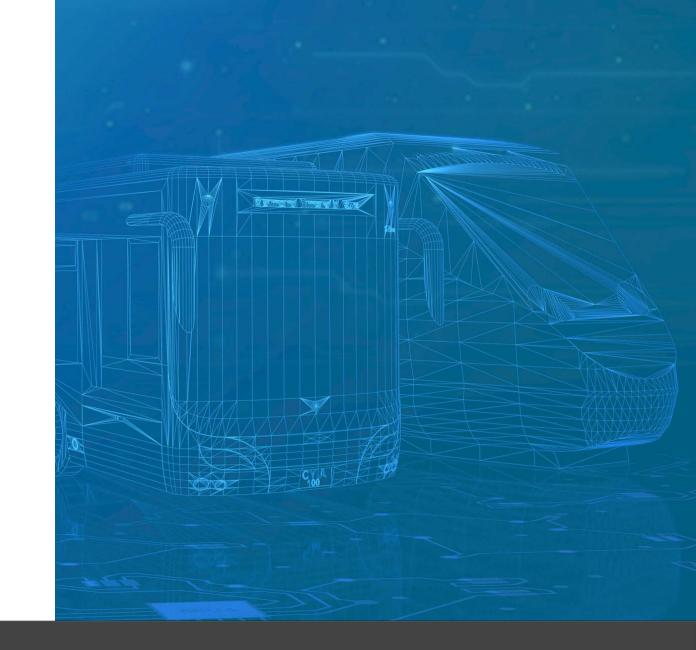
For each combination of weight class and origin-destination pairing, the following steps are run:

- 1. Define journey start and end locations
 - a) Sample journey distances from that O-D and weight class's Geotab distribution
 - b) Sample within the origin and destination counties to determine locations of long stops (≥ 6 hours) from which to begin and end the journey
- 2. Sample short (< 6 hour) stops to serve as candidate mid-route stops
- 3. Conduct a matching optimization
 - Objective: minimize fleetwide travel distance, subject to:
 - Each vehicle's travel distance \geq its defined journey distance
 - Network flow preservation constraints
- 4. Convert matched sets of stops into a dataset of move events

- Support the integration of short-dwell travel itineraries into Caldera agent-based modeling framework
- Development of additional modeling scenarios for long-dwell and short-dwell charge loads
 - Generate week-long light-duty vehicle itineraries with revised charger availability assumptions (e.g., workplace) to investigate additional community charging demand
 - Additional charger configurations
 - Additional EV adoption scenarios to test different levels of grid loading
- Ongoing support for grid impact and smart charge management analysis

Thank you!

Matthew.Bruchon@nrel.gov



U.S. DEPARTMENT OF Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Coincidence Analysis

Polina Alexeenko, Matt Bruchon, Jesse Bennett

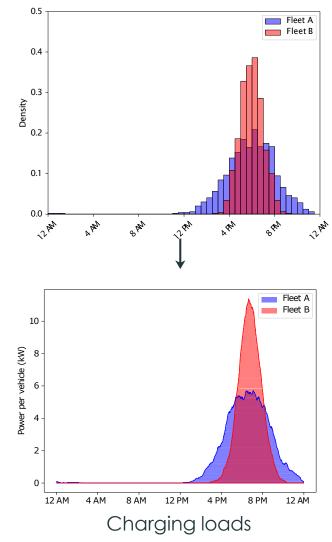
Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

FUSE Project

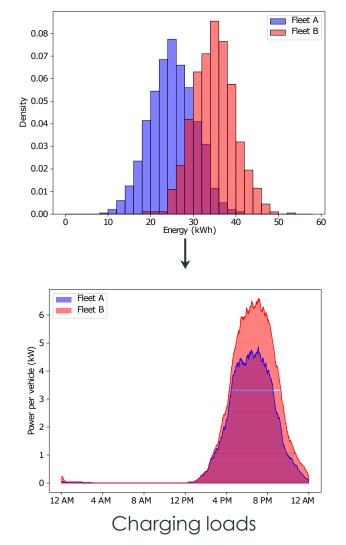
• Goal: develop SCM and VGI approaches for high EV penetration

• Challenges:

- optimal approach depends on multiple factors (e.g., vehicle mobility, vocation)
- detailed SCM/VGI simulation is complex
- This study:
 - "bridge" between direct SCM/VGI analysis and fleet characteristics
 - examines **coincidence**: the extent to which EV loads align
 - uses coincidence to heuristically evaluate SCM/VGI potential



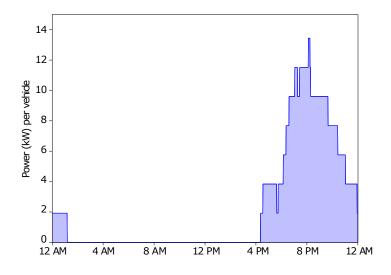
- When vehicles connect
 - Arrival at EVSE
 - Departure from EVSE
 - Lower variance \rightarrow greater coincidence



- When vehicles connect
 - Arrival at EVSE
 - Departure from EVSE
 - Lower variance \rightarrow greater coincidence
- How vehicles charge
 - energy consumption (kWh)
 - charging rate (kW)
 - Greater energy \rightarrow greater coincidence

Types of coincidence

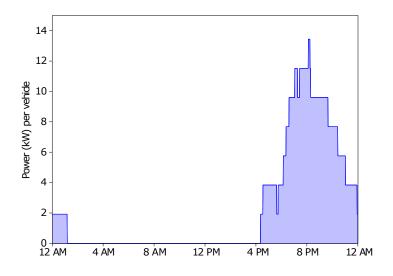
Charging Coincidence



- Depends on arrival, energy, and rate
- Measured in power (kW) per vehicle
- Quantifies timing and magnitude of peaks

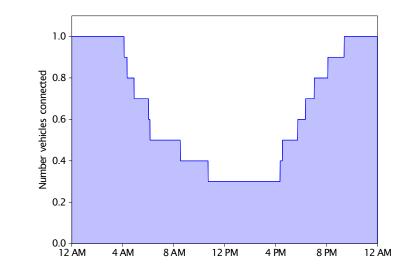
Types of coincidence

Charging Coincidence



- Depends on arrival, energy, and rate
- Measured in power (kW) per vehicle
- Quantifies timing and magnitude of peaks

Dwell Coincidence



- Depends on arrival and departure
- Measured in fraction vehicles (0-1)
- Identifies load shifting opportunities

Vehicle groups studied

Freight

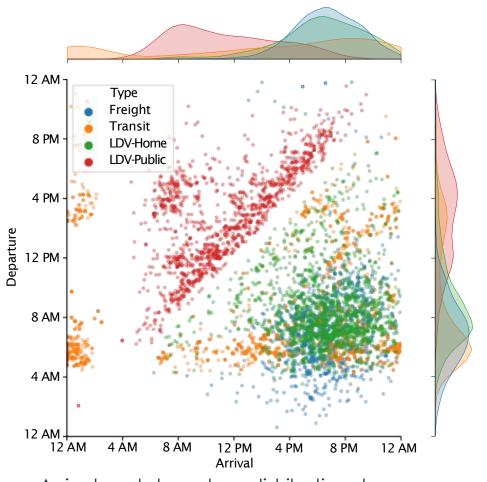
- 16,000 vehicles
- Cargo van, cutaway, straight truck, and step vans
- Average energy 50 kWh

Transit

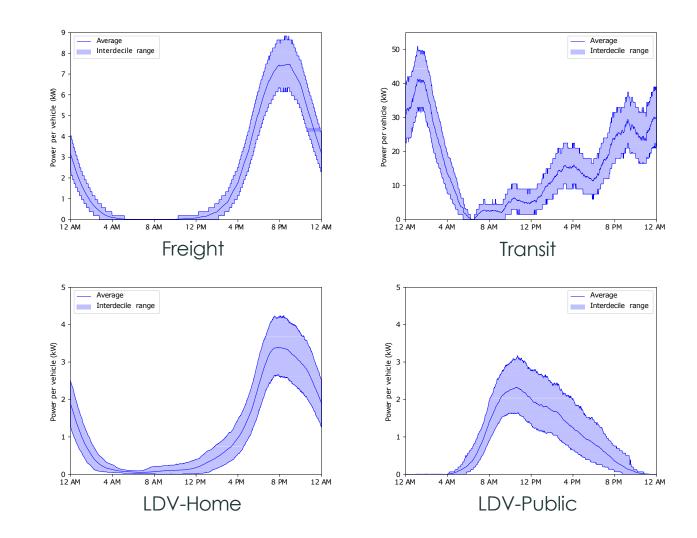
- 423 vehicles
- Three transit agencies
- Average energy 367 kWh

Light-duty vehicles (LDV)

- 935,000 vehicles
- Includes public (35%) and home charging (65%)
- Average energy: 26 kWh (home), 11 kWh (public)

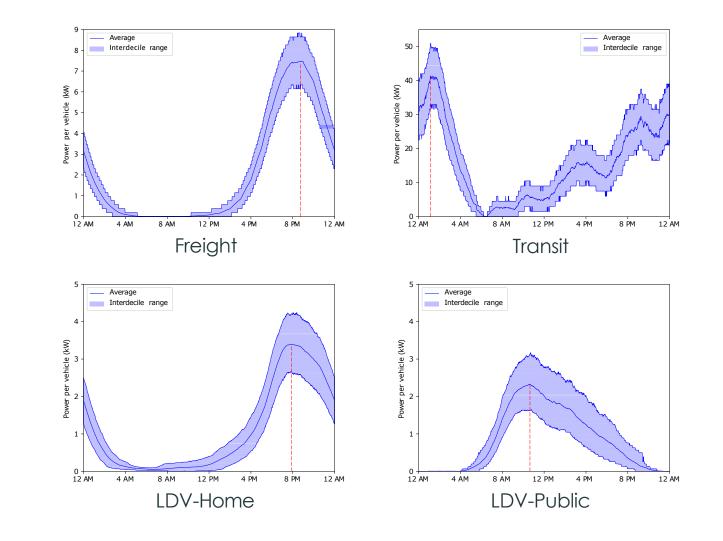


Arrival and departure distributions by group



Peak timing

- Evening (~8 PM) for freight and LDV-Home
- Early morning for transit bus
- Late morning for LDV-Public

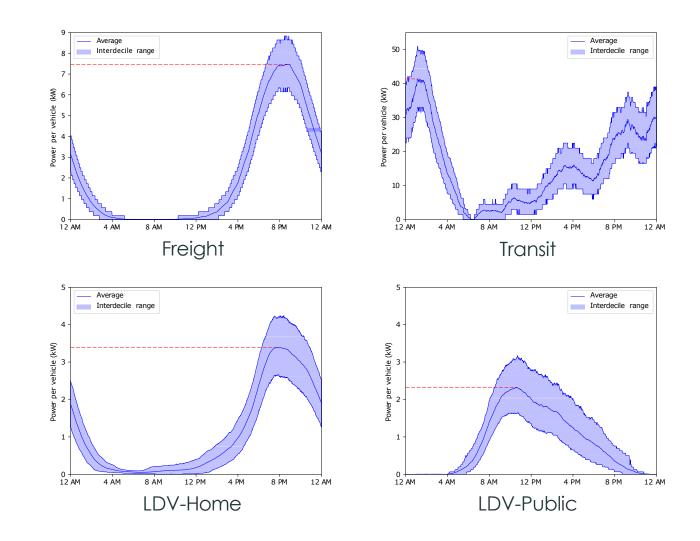


Peak timing

- Evening (~8 PM) for freight and LDV-Home
- Early morning for transit bus
- Late morning for LDV-Public

Peak magnitude and duration

- Highest magnitude: transit (~40 kW)
- Lowest magnitude: LDV (<4 kW)
- Peak duration (time within 90% of peak) similar across LDV, freight
- Duration shortest for transit buses



Peak timing

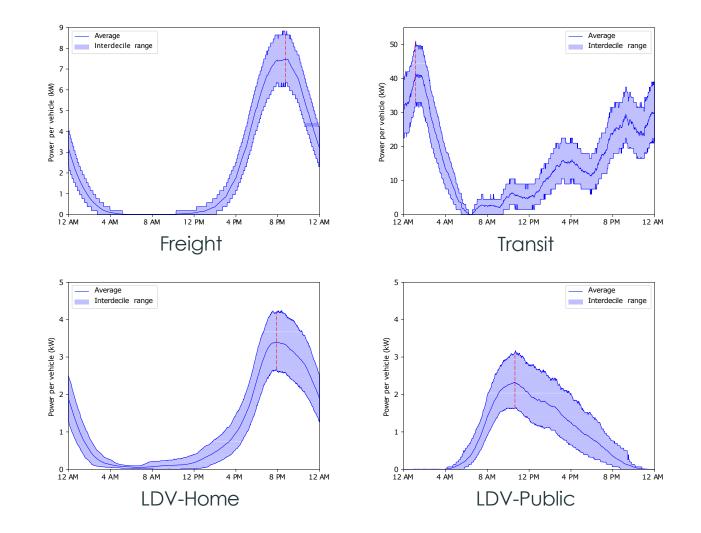
- Evening (~8 PM) for freight and LDV-Home
- Early morning for transit bus
- Late morning for LDV-Public

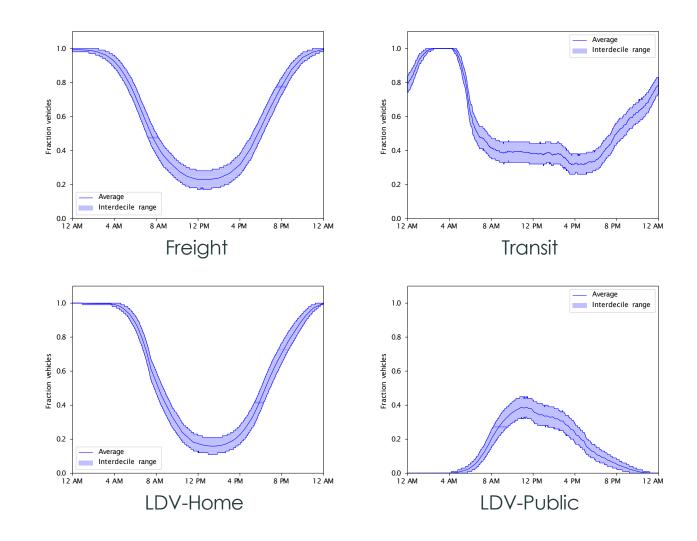
Peak magnitude and duration

- Highest magnitude: transit (~40 kW)
- Lowest magnitude: LDV (<4 kW)
- Peak duration (time within 90% of peak) similar across LDV, freight
- Duration shortest for transit buses

Peak variability

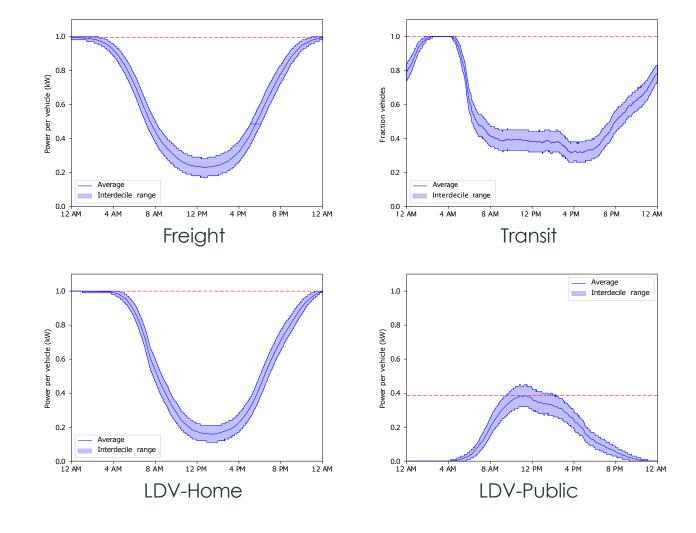
- Highest (~60%) for LDV-Public
- Lowest (~33%) for freight





Maximum dwell coincidence

- 40% for LDV-Public
- 100% (full coincidence) for all others

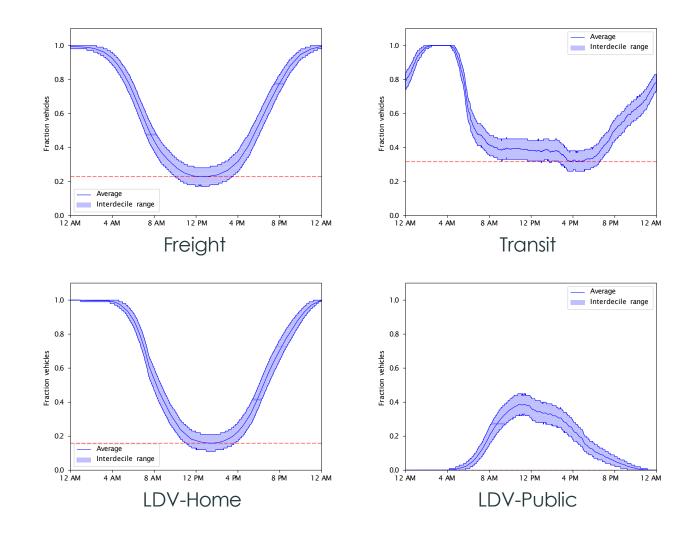


Maximum dwell coincidence

- 40% for LDV-Public
- 100% (full coincidence) for all others

Minimum dwell coincidence

- 0% for LDV-Public
- Highest for transit (30%)



12 AM

Maximum dwell coincidence

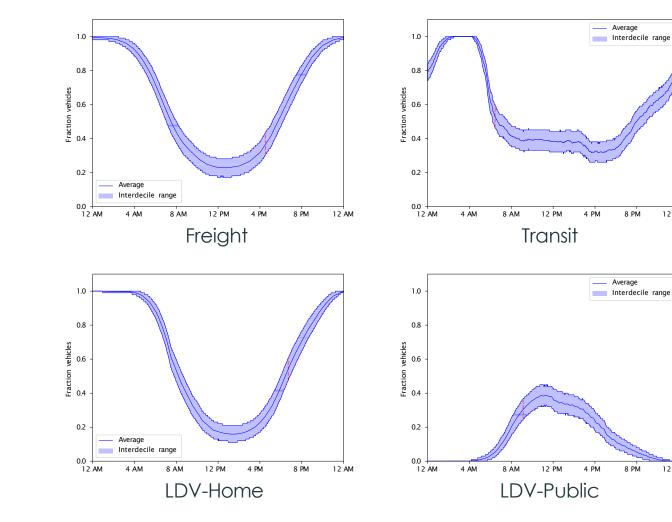
- 40% for LDV-Public
- 100% (full coincidence) for all others

Minimum dwell coincidence

- 0% for LDV-Public
- Highest for transit (30%)

Dwell variability

- Maximum interdecile range (IDR) around 14%
- Similar across vehicle groups
- Max IDRs occur in evening and morning

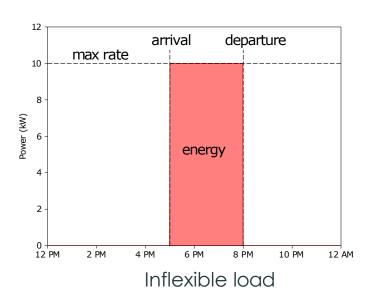


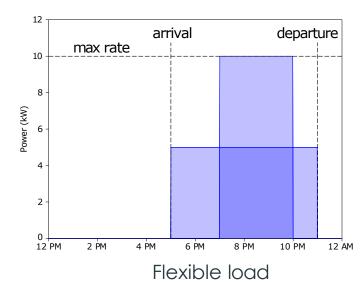
12 AM

- Flexibility: the extent to which loads can be reshaped
 - Depends on when vehicles connect and how they charge
 - Exact characterization of flexibility is complex
 - Goal: develop intuitive measure of flexibility

Value of flexibility depends on

- When loads are flexible
- Magnitude of achievable load reduction
- Duration of load reduction





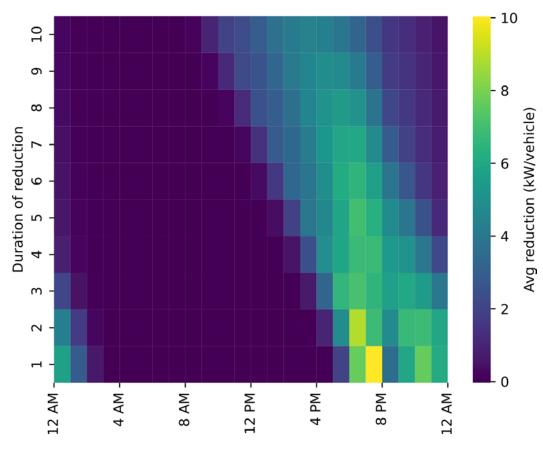
Measuring flexibility

- The flexibility matrix M: a heuristic for flexibility
- Measures load reduction potential at each time interval
- $M \in \mathbf{R}^{T imes D}$ where
 - T number of time periods
 - *D* number duration periods
- M(t, d): maximum possible load reduction between times t and t + d

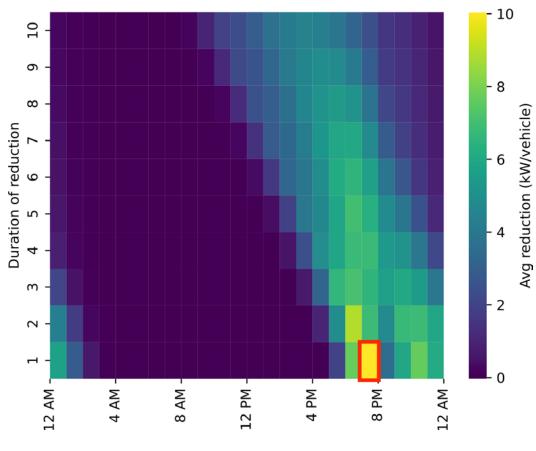
$$M(t, d) = \frac{1}{d} \sum_{i=0}^{d-1} (u_{t+i} - m_{t+i})$$

where

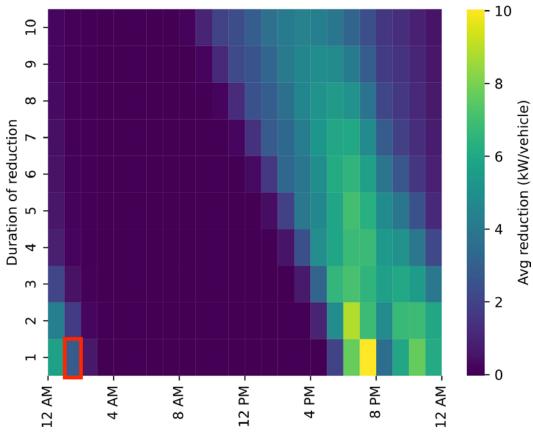
- u_t is uncoordinated load at t
- $-m_t$ minimum possible load at t



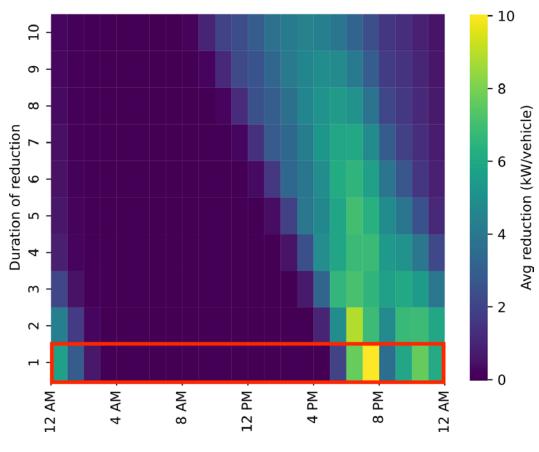
 M (7 PM, 1): 10 kW/vehicle reduction potential between 7 PM - 8 PM



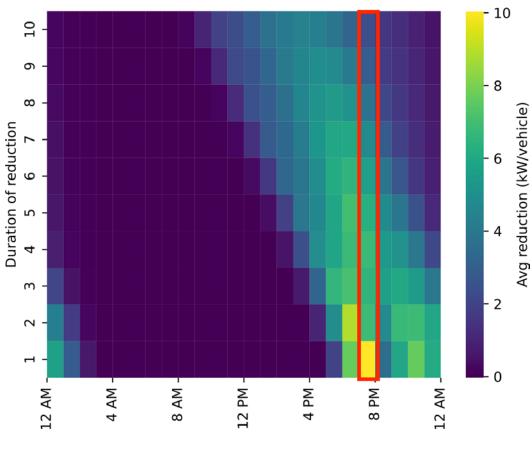
- *M* (7 PM, 1): 10 kW/vehicle reduction potential between 7 PM - 8 PM
- *M* (1 AM, 1) : potential for 3 kW/vehicle reduction between 1AM 2AM
- M (7 PM, 1) > M (1 AM, 1) because few vehicles charge at night (in uncontrolled setting)

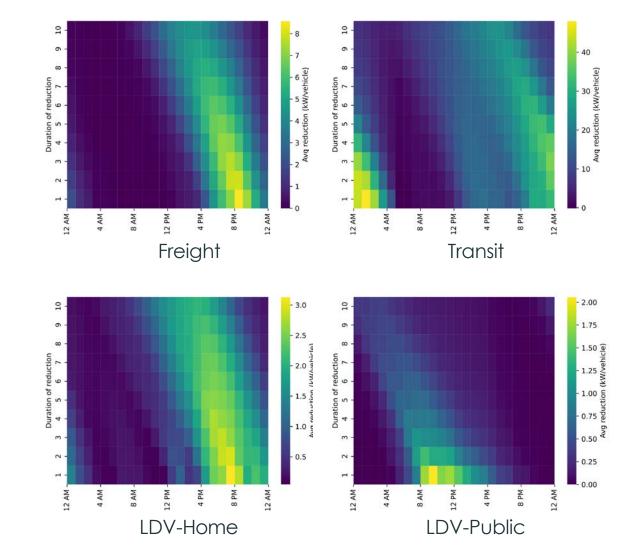


- *M* (7 PM, 1): 10 kW/vehicle reduction potential between 7 PM - 8 PM
- *M* (1 AM, 1) : potential for 3 kW/vehicle reduction between 1AM 2AM
- M (7 PM, 1) > M (1 AM, 1) because few vehicles charge at night (in uncontrolled setting)
- Reading across bottom row reveals (flexible) peak number and duration



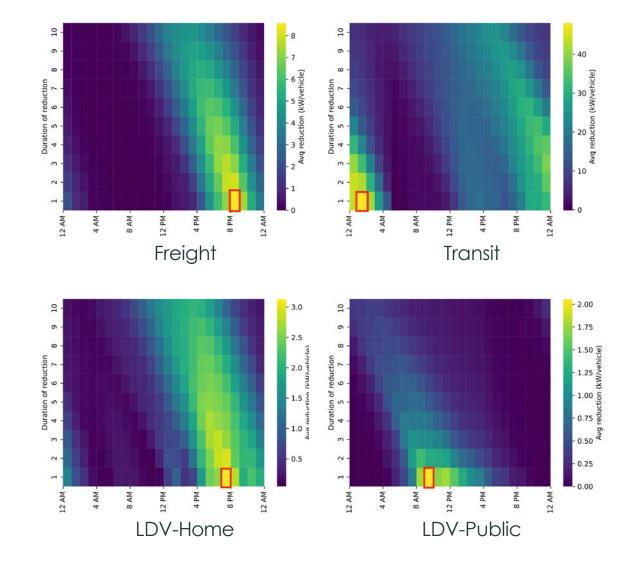
- *M* (7 PM, 1): 10 kW/vehicle reduction potential between 7 PM - 8 PM
- *M* (1 AM, 1) : potential for 3 kW/vehicle reduction between 1AM 2AM
- M (7 PM, 1) > M (1 AM, 1) because few vehicles charge at night (in uncontrolled setting)
- Reading across bottom row reveals (flexible) peak number and duration
- Reading across column reveals flexibility duration





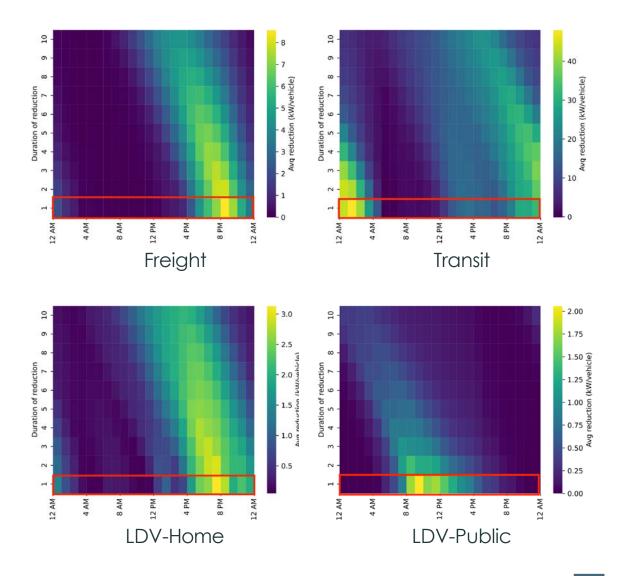
Maximum reduction potential

- Occurs at uncoordinated peak times
- Close in magnitude to uncoordinated peak



Maximum reduction potential

- Occurs at uncoordinated peak times
- Close in magnitude to uncoordinated peak
- Reduction potential timing
 - LDV-Public: reduction potential only in daytime
 - All others have night-time reduction potential



Maximum reduction potential

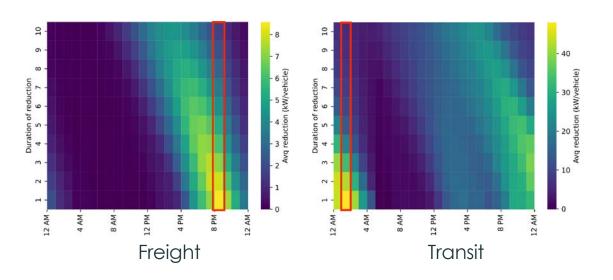
- Occurs at uncoordinated peak times
- Close in magnitude to uncoordinated peak

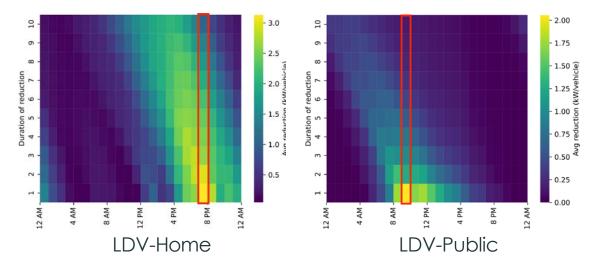
Reduction potential timing

- LDV-Public: reduction potential only in daytime
- All others have night-time reduction potential

Reduction potential duration

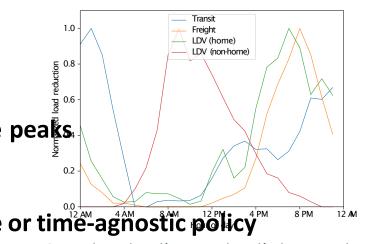
- Potential decays rapidly with duration for LDV-Public, Transit
- LDV-Public, Transit are less flexible
- Potential decays slowly for freight, LDV-Home
- Freight, LDV-Home more flexible





Flexibility: control implications

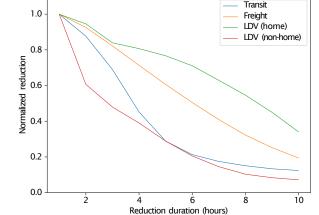
- Freight/LDV Home peaks align with typical high-price periods ullet
- Dynamic pricing (e.g., real-time or TOU) may reduce freight/LDV-Home peaks ۲
- Transit and LDV-Public loads peak during typical low-price periods •
- Transit/LDV-Public load reduction requires alternative pricing schedule or time-agnostic policy 12 AM • Load reduction potential over day (e.g., demand charges)



- Freight/LDV Home peaks align with typical high-price periods •
- Dynamic pricing (e.g., real-time or TOU) may reduce freight/LDV-Home peaks ullet
- Transit and LDV-Public loads peak during typical low-price periods ۲
- Transit/LDV-Public load reduction requires alternative pricing schedule or time-agnostic policy and 12 AM (e.g., demand charges) Load reduction potential over day

Control duration

- Magnitude of reduction potential decays with reduction duration
- Speed of decay captures value of sustained control
- Can inform duration of control signals (e.g., length of DR event)
- Short-duration control may be more effective for LDV-Public/Transit
- Longer-duration control effective for Freight/LDV-Home



Transit

Freight LDV (home) LDV (non-home)

1.0

eduction 8.0

0.2

Load reduction vs reduction duration

Coincidence analysis

- Consider four vehicle groups: transit, freight, light-duty home, and light-duty public
- Examine uncoordinated charging and dwell coincidence
- Quantify cross-temporal load flexibility for each vehicle group

Findings

- Peak times vary: freight, LDV-Home peak in evening while transit, LDV-Public peak in morning
- Dwell coincidence high for freight, LDV-Home, and trasnit; low for LDV-Public
- Effective control strategies different across vehicle groups

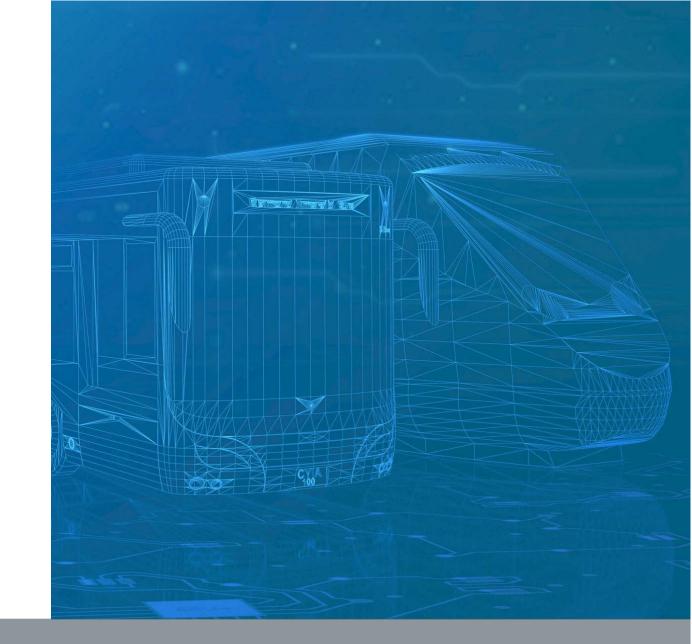
Next steps

- Study mixed composition fleets
- Incorporate models of geographic coincidence
- Study impacts of multi-resolution geographic coincidence on resultant load

Polina Alexeenko (NREL)

polina.alexeenko@nrel.gov

U.S. Department of Energy



U.S. DEPARTMENT OF Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

- Discussions from the Semi-Annual Stakeholder Meeting on Codes and Standards, Use Cases, and Valuation of SCM
- Strong need for end-to-end standards certification, enforcement, and interoperability testing
- Need for SCM use cases with **large fleets**, travel centers, emergency response and resilience, **V2X**, widespread residential applications
- Value of SCM in avoided **service transformer** and distribution feeder upgrades, avoided **long lead-times** for interconnection, need for parallel processing of soft costs

Thank You!

Please mark your calendars for the next Semi-annual Stakeholder Meeting:

September 25-26

Idaho National Laboratory

Office of ENERGY EFFICIENCY

& RENEWABLE ENERGY

Fall Deep Dive Focus Topics:

- SCM/VGI Controls
 - o New SCM/VGI and HELICS Updates
 - Broad Analysis Results
- Grid Impact Assessments

 L/M/HDV Controlled/Uncontrolled
 Highlight Cost Tradeoff Benefits
- Demonstrations
 - Lab Testbed: Multi-EVSE, OCPP 2.0.1
 Field Demo in Utility Environment

This work was authored [in part] by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Vehicle Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.