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Allows EV Drivers the Ability to Reserve a Specific Port/Station for Future Use

Integrates with ANL's OCPP CSMS Platform to Enable Future Smart Charging
Algorithm Development and EV Charging Behavior Research
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Background

> 10-09-23>> 10-13-23>> 11-22-23>> 11-29-23>

30of4 DC

Registration

Opened
live

161

Registered Users

81

iOS Devices

76

Android Devices

10 of 12 AC Ports 7 of 8 AC Ports
at Bldg. 300 go

Mazda

Mercades-Benz

at Bldg. 242 go

Charger at
Bldg. 300 go

Chevrolet

Ford F-150 Lightning 4WD

Ford F-150 Lightning 4WD Extended Range
Ford F-150 Lightning Platinum 4WD
Ford Mustang Mach-E AWD Extended
ord Mustang Mach-E RWD
Honda EV Plus

Hyundai lonig 5 AWD (Long Range)
Hyundai loniq 5 Long range AWD

Hyundai loniq 5 Long range RWD
Hyundai lonig 6 Long range AWD (20 inch Wheels)
Hyundai Kona Elec
Hyundai Sonata Plug-in Hybrid
Hyundai Tueson Plug-in Hybrid

Jeep Wrangler 4dr 4xe

Kia EV6 Long Range AWD (19 inch Wheels)
Kia EV6 Long Range AWD (19 inch tires)
Kia EV6 Long Range AWD (20 inch tires)
Kia EV6 Long Range RWD

Kia Niro Electric
Kia Niro Plug-in Hybrid
Kia Optima Plug-in Hybrid
Lincoln Aviator PHEV AWD

Lucid Air G Touring XR AWD with 21 inch wheels
Mazda CX-90 PHEV
Mercedes-Benz EQS 450 4Mati
Mercedes-Benz EQS 580 4Matic (SUV)
Nissan Leaf

Nissan Leaf (62 kW-hr battery pack)
Nissan Leaf SV/SL (62 kW-hr battery pack)
Polestar 2
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LhewOIeér\\@\.l"rolel $10 Electric
Chevrolet Bolt EV
Chevrolet Bolt EUV

BYD e6
BMW iX xDrive50 (20 inch wheels)

BMW i4 M50 Gran Coupe (19
BMW i3 with Range Extender

nch wheels)

BMW i3 REX
BMW X5 xDrived5e

Audi e-tron quattro
Audi e-tron

Audi RS e-tron GT
Audi Q8 e-tron quattro
Audi Q5
smart fortwo electric drive coupe
Volvo XC6B0 T8 AWD Recharge
Volvo XC60 AWD PHEV
Volkswagen ID.4 Pro S

Volkswagen 1D.4 Pro

Toyota Prius Prime
Tesla Model Y Performance AWD

Tesla Model Y Long Range AWD

Tesla Model Y AWD
Tesla Model 3 Standard Range Plus RWD
Tesla Model 3 Standard Range Plus

Tesla Model 3 RWD

Tesla SR MOGR %gﬁgglmance AWD
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Session Data U.S. Department of Energy

10/10/23 - 4/2/24

2799 58 MWh 127

_ Registered Users who have
AC and DC Charge Total Energy Dispensed
Sessions completed at least one

reservation

Total Energy vs Day of Week

mmm Total Energy (kWh) _ 15000
Sessions

Total Energy (kWh)

Charge Duration (m)
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What is the Distribution of Energy per Reservation (AC vs DC)? 5‘;3%2;\ .

U.S. Department of Energy

Total Energy per AC Session Total Energy per DC Session
I
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10 15 20 : 40 60 80
Energy (kWh) Energy (kwh)

Mean: 16.88 kWh per session Mean: 40.31 kWh per session



What is the Distribution of Charge Duration per Reservation (AC vs DC)? E\é?u%??:. .\

U.S. Department of Energy

AC Charge Duration DC Charge Duration
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100 150 50 75 100 125 150 175 200
Duration (Minutes) Duration (Minutes)

Mean: 175.51 minutes (~3 hours) Mean: 46.07 minutes

Note: Employees can reserve up to 4 hours, but we allow up to 4 hours 15 min of charging because we allow
charging to begin in the 15 minute window before their actual reservation if the port is available.
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Distribution Plots U.S. Department of Energy

Distribution of Number of Total Sessions by EV User

Distribution of Total Reservation Time (across all charging sessions) per EV User
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0.0000
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115
Number of Total Sessions by EV User

0 40 80 120 160 200 240 280 320 360 400 440
Total Reservation Time (Hours) across all Charging sessions by an EV User

» 3 distinct peaks corresponding to groups of users

* Possible explanations:
* Different launch dates at different locations around ANL
e User Behavior



EVrest Reservation Usage
Distribution Plots

October 2023

» 3 distinct peaks corresponding to groups of users

* Possible explanations:
* Different launch dates at different locations around ANL
e User Behavior
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U.S. Department of Energy

Pre-Flexibility = 1 — (l‘cqtlc?;jt:.cd_f}mrgy__(k“"h.}_ RN )
uration (h) EVmaxPower (kW) o9l .
e Flexibility > 0: SCM could be applied
Post-Flexibility — 1 — ( Dispensed Energy (kWh) , T— RiexiRiling=S0-SCiMican notibe applied
< Reserve Time & L= Duration (h) EVmaxPower (kW)

B362-02B

o A700 South Cass Avenue, Lement, IL, USA

Pre-Flexibility: Calculated based on driver
inputs and used in SCM algorithms

Q: How can someone charge less than
Post-Flexibility: Actual flexibility calculated requested (green) but still have flexibility?
after charge session has occurred,
dispensed energy is minimum of actual

energy dispensed or requested energy. Q: How can someone charge more than
requested (red) but still have flexibility?

This requested miles is limited based on
* Max Power available to the EVSE (new)
* Max Power drawn by the vehicle (new)

* Range Of the Vehicle Q: How do we combat inaccurate requests
and physically impossible mileage requests?
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i S. f
Compar|son U.S. Department of Energy

Comparison of Pre-Flexibility and Post-Flexibility

=71 Sessions with lower Pre-Flexibility = 2472 / 2799 P, e Points on the green line indicate that these
i sessions have accurate information.
& * Points below this line, indicates that the request

) d /3 . A .
C A :;agrf-:a-,‘:;!;;i_ R T is larger than what was required, not allowing

- Wk A, T 1 c

T R L algorithms to take advantage of their actual

flexibility
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e R ON e Sy Ry estimation of the max power the vehicle can
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Correlation of EV Driver’s Charging Attributes

Some interesting correlations:

Number of Sessions

Average Requested Miles

Average Requested Miles

Average Accuracy for Requested Miles
& Average Actual Miles Charged

Average Actual Miles Charged

Average Reservation / Session Duration Fre ey

& Pre / Post-Flexibility

Post-Flexibility
Total Energy Across Sessions

Average Power Draw

Average Accuracy

Peak Power Draw &

& Average Actual Miles Charged per

Average Reservation Duration

Session

Average of Session Duration
Total Number of Sessions by EV Driver
& Post-Flexibility

Number of Sessions

Average Requested Miles

Average Accuracy for Requested Miles

Average Actual Miles Charged

Pre-Flexibility

Post-Flexibility

Total Energy Across Sessions

EVs@®
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U.S. Department of Energy

Average Power Draw

Peak Power Draw

Average Reservation Duration

Average of Session Duration

-1.0
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How Accurate are Driver Mileage Requests? Scales~—'e

AC & DC sessions combined U.S. Department of Energy

Reguested Miles vs Actual Charging Miles (per Charging Session) * Varlatlon In accuracy Of
Perfect Accuracy requested miles across

Actual Data

Polynomial Regression (Degree 2) Cha rging SeSSionS

* Polynomial regression explains
the varying trend:

* Lower values of
requested miles (< 100
miles) shows greater
accuracy

* Higher miles (> 150)
shows significantly lower
accuracy, possibly due to
EV users choosing
arbitrarily large mileage
values during reservation
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How Accurate are EV Mileage Requests for AC Charging?

3
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100
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Actual Mileage—Requested Mileage
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x 100

Mileage Request Accuracy = 100 —

Accuracy of Requested Mileage vs. Actual Mileage (AC Charging)
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Overall Avg: 65.45
N: 2335
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Requested Mileage

Actual Charged Miles for Charging Session

AC Charging - Requested Miles vs Actual Charging Miles (per Charging Session)

Perfect Accuracy
e Actual Data
Polynomial Regression (Degree 3)
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Accuracy diverges above 100 miles due to power rating of EVSE and ~4 hour time limit



How Accurate are EV Mileage Requests for DC Charging? 5\53%2\ .

U.S. Department of Energy

Accuracy of Requested Mileage vs. Actual Mileage (DC Charging) DC Charging - Requested Miles vs Actual Charging Miles (per Charging Session)

Perfect Accuracy
e Actual Data
Polynomial Regression (Degree 2)
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How accurate are the requested miles as drivers use EVrest more? Scalez—< e

U.S. Department of Energy

Accuracy for Requested Miles by Successive Charging Sessions

* Anincreasing trend in
accuracy of requested
miles (vs. actual miles
charged during charging
sessions) is visible with
increasing usage of EVrest
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=== Polynomial Regression Trend (Degree 3)
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How accurate are the requested miles as drivers use EVrest more? Scalez—< e

Accuracy (Requested vs. Actual Miles)

Accuracy for Requested Miles by Successive Charging Sessions

o®
@ Mileage Accuracy for Charge Session by EV User
a=== Polynomial Regression Trend (Degree 3)

30 40 50
Session Number

U.S. Department of Energy

January 2024

A decreasing trend in
accuracy of requested
miles (vs. actual miles
charged during charging
sessions) is visible with
increasing usage of EVrest
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U.S. Department of Energy

* Anincreasing trend in
accuracy of requested
miles (vs. actual miles
charged during charging
sessions) is visible with
increasing usage of Evrest

Accuracy for Requested Miles by Successive Charging Sessions

@ Mileage Accuracy for Charge Session by EV User
s Polynomial Regression Trend (Degres 3)

October 2023
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Next Steps U.S. Department of Energy

* Continue operating EVrest at Argonne

* Look to harden platform, fix bugs, & add new features

* Implement Charge Scheduling on EVrest Platform (FY24 Q4 Deliverable)
 Explore ML predictive Analytics opportunities

* Explore other potential deployments outside the lab (Workplace or MUD)

20



EVrest Employee Survey

Feedback

30 Employees participated in Survey

On a scale of 1 to 5, how would you rate the overall user-friendliness of the EVrest app?
30 responses

10.0
10 (33.3%)

9 (30%)
8 (26.7%)

3 (10%)

How satisfied are you with the overall ease of making a reservation using the EVrest app?
30 responses

11 (36.7%)

8 (26.7%) 8 (26.7%)

3 (10%)

EVs@
Scaleg—

e

U.S. Department of Energy

Do you make reservations in advance of pulling up to the station (i.e. hours, days, weeks in advance)
or do you make a reservation once you arrive?

30 responses

@ Reserve in Advance
@ Reserve Upon Arrival

Are you satisfied with the conduct score system as a means to encourage adherence to reservation

rules?
30 responses
46.7%
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Feedback U.S. Department of Energy

How satisfied are you with the real-time charging status updates provided by the EVrest app?
30 responses

@ Very satisfied
@ Satisfied
Neutral
@ Dissatisfied
@ Very dissatisfied Overall how satisfied are you with the EVrest app?

30 responses

@ Very satisfied
@ Satisfied
Neutral

@ Dissatisfied
@ Very dissatisfied

How satisfied are you with the push notifications provided by the EVrest app?
30 responses

@ Very satisfied

@ Satisfied
Neutral

@ Dissatisfied

@ Very dissatisfied

22
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Great work! thank you for developing the app and it makes charging much more convenient!

The app has been great | think in cutting down a lot of frustrations that users have had(people parking in your
spot randomly even though you booked in advance is a big one).

| like that it will cancel a reservation if not activated within 15 minutes of start time. This allows for others to take
a spot if someone reserved it but didn't show up for the appointment time.

Map is easy to deal with, good feedback from User interface

| like that | know the charging station will be free if I've reserved it, and | like that the app lets me know when my
car is finished charging.

It's a great system (so much better than Vector)

23
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U.S. Department of Energy

Are there any specific improvements you would suggest for the user interface?

Can you add a payment feature to only charge for the kW used? | have a hybrid and typically only
charge 2.5 hrs at 3x/week.

Allow user to start the session, say, up to 15 mins before the reservation starting time without the need
to delete the session then rebook the reservation if the user arrives slightly early. The 4 hour window
can be kept the same.

A copy and paste option. Or something similar. | have a set schedule at work so | charge at the same
time everyday. | counted 15 taps just to make a single reservation. Also entering in the miles seems
useless.

Not much value in the “miles you plan to charge” from a user perspective.

It always asks what mileage | want to charge for a session. | don’t know the exact number, but | just
want to charge it using the maximum power.

24



Thank You

Nithin Manne
nmanne@anl.gov

Salman Yousaf

yousaf@anl.gov
Jason D. Harper

jharper@anl.gov
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Can Actual Energy for Charging Sessions be Explained and Predicted? 5‘;3%2—;\.

U.S. Department of Energy

Stacked Ensemble ML Model for Predicting Miles Charged by EV User for Charging Sessions
Stacked-ensemble Machine Learning 50 ® Requested Miles by EV User

model trained on EV User’s historical e
attributes, such as:
* total number of sessions,
» historical accuracy of requested
miles
used to predict energy requirements (in : ) om cooem ooee
miles) for charging sessions LR SRS

L

Results show ML can predict actual
energy requirements significantly better
than EV User’s own expectations

Mean Absolute Error (MAE) improved by
47.3% with ML-based predictions:
* MAE for User Expectation: 34.8%
 MAE for ML Predictions: 18.3%

Actual Miles Charged

26



Can Actual Energy for Charging Sessions be Explained and Predicted? 5‘;3%2—;\.

U.S. Department of Energy

Stacked Ensemble ML Model for Predicting Miles Charged by EV User for Charging Sessions

5 .« e ® Requested Miles by EV User
e Shows the potential for predictive 20 e Predicted Hiles by ML Modl

3 c g ——= Actual Miles Charged during Session
power in historical EV user
behaviour

L

* Larger dataset of Evrest user history

with fine-tuned modelling could | ) om cooem  ©oe
. o o i L] [ ] a0 a @

provide even more interesting

results

e ®

] ]
¢ e o owe o © @0 M}$

oy @emm o
i Sogeper

-l

* Predictions for energy required and
user flexibility for charging sessions
could become inputs for charge
scheduling models and greatly
improve impact

Actual Miles Charged

27
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning g\c’:?u%?::‘:

U.S. Department of Energy

* EVrest user's own estimations for energy for charging reservations are inaccurate:
— Root Mean Squared Error for AC Charging: 51.23

AC Charging - Requested vs. Actual Mileage per Session e Users Of'ten

e« Data Points

~—- perfect Accuracy overestimate their
energy
requirements.

Ty

o Actual energy
received during
charging sessions
is often lower than
requested energy.

e

Actual Miles
t-g e @ MW
Y
.
&0 0N) [0/0) B8
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L ] a8 & @B eI & 88 SERE

Requested Miles




Predicting Requested Energy (Mileage) for Reservations using Machine Learning 5‘52%:;\\,

U.S. Department of Energy

« Using historical reservation and charging sessions data, we developed a Deep Neural Network
that predicts requested energy (mileage) for an EV reservation

* Deep Neural Network Architecture

kernel (304x256) kernel {(256x256) kernel {256x1)
bias (256 d ¢ bias {256 bias (1)
activation = relu efpeld activation = relu activation = softplus

dense input » bias_constraint = »| noise_shape = bias_constraint = bias_constraint = dense 2

kernel_constraint = rate = 0.1
units = 256 seed =

kernel_constraint = kernel_constraint =

dense_input units = 256 units = 1

dropout

Activation Activation Activation

activation = relu activation = relu activation = softplus

30



Predicting Requested Energy (Mileage) for Reservations using Machine Learning E‘éz%:s

U.S. Department of Energy

Training Data Overview

Source: Real Time Data from EVrest reservations and charging session records

Data Features:

User Information

- EV User ID: Unique identifier for each user.

- Historical User Characteristics:
« Historical Average Energy Request Accuracy: Assessment of user's past request accuracy, measured by comparing requested to actual energy needs.

» Total Number of Sessions: Cumulative count of user's charging sessions, reflecting user experience and frequency

Vehicle Details

- Vehicle ID: Unique identifier for each vehicle.

- Make & Model: Vehicle's brand and model name, providing insights into vehicle type and potential charging needs.

Reservation Metrics

- Start Time: Hour and day of the week when the charging session is reserved, highlighting peak usage times and patterns.

- Duration: Length of reservation, offering insights into charging behaviour and station occupancy.

Reservation Type (AC / DC Charging)

Prediction Target

- Actual Miles Charged: The actual mileage charged during the session, serving as the label for predicting user behavior and charging needs 31



Predicting Requested Energy (Mileage) for Reservations using Machine Learning 5‘;3%?@

U.S. Department of Energy

« AC Charging: Improved RMSE (Root Mean Squared Error) by ~68%

EV User’s Estimations Model Predictions

AC Charging - Requested vs. Actual Mileage per Session AC Charging - Predicted vs. Actual Mileage per Session

o Data Points
——- Perfect Accuracy
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning 5‘;3%?@

U.S. Department of Energy

« DC Charging: Improved RMSE (Root Mean Squared Error) by ~30%

EV User’s Estimations Model Predictions

DC Charging - Requested vs. Actual Mileage per Session DC Charging - Predicted vs. Actual Mileage per Session

» Data Points
—=- Perfect Accuracy

]
[]
]
O

Actual Miles
Actual Miles

L W I

150

Requested Miles Predicted Miles
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning 5‘;3%;;\\,

U.S. Department of Energy

AC - Comparison of Root Mean Squared Error

e Model’s predictions reduced RMSE
(Root Mean Squared Error) when
compared with user’s own predictions

a7
— 68% for AC Charging

— 29% for DC Charging

User Requested Error Predicted Values Error

DC - Comparison of Root Mean Squared Error

Reduction: 29.24%

User Requested Error Predicted Values Error
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e Prepopulate predicted ‘miles planned to charge’to assist
users while creating a reservation

» Users can choose to change the prepopulated value
based on their needs

 ML-based prepopulated predictions take into account
historical trends and attributes, such as:
— User’s historical reservations
— User vehicle’s historical characteristics Predlctlo

— Reservation timing and duration > I

e Deep Learning Model is trained with new data and new
predictions are generated with a daily frequency

U.S. Department of Energy

< Reserve Time

Bldg. 300 XFC East
Q P268+2C Darien, IL, USA

April 3rd, 2024
Port 1

Start Time

02:00 PM

Duration

3 Hours 30 Minutes

How many miles do you plan to charge?

86

Select Vehicle

Reserve

35



Predicting Requested Energy (Mileage) for Reservations using Machine Learning E‘é?]%:ﬁ

U.S. Department of Energy

EVrest uses
prediction fo
prepopulate

requested energy
for User

User Enters
Reservation Details
on EVrest

Input Data Features \
1. Driver's Attributes / \

- ID

« Historical Average Accuracy ( A
«  Number of Completed Sessions :

2. Vehicle's Attributes Deep Nevural : z’e’gslc;:,erd
e ID :
- Make, Model Nelwork Reservation

3. Reservation Start Time ( Y
« Day of Week

« Hour of Day \ /—
4. Reservation Duration
\ * 15-minute increments

36



Deployment Insights: 5‘;39“:;\
Predicting Requested Energy (Mileage) for Reservations using Machine Learning s e o cnee

From March 27 — April 3, 2024

Total of 158 Sessions

56.4% of users chose to proceed with ML-prepopulated requested energy mileage while creating EVrest reservations

Accuracy comparison:

Sessions with ML-Prepopulated Values Sessions with Users’ Manually Entered Values

ML Predicted Miles to Charge vs Actual Miles Charged during Session

® ML Predictions
== Ideal

® User Miles
== Ideal
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RMSE: 25.9 RMSE: 29.4

« Reservations that used ML-Prepopulated Requested Energy reduced (RMSE) error by ~30% 37
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Initial Deployment Insights:
— The platform was launched 8 days ago, offering early but valuable insights.

— Continuous accumulation of usage data will enrich our understanding and drive deeper analysis

Al Model Evolution:
— Our Machine Learning (ML) model is in ongoing training with live data from EVrest reservations and charging sessions.

— This dynamic training approach ensures constant improvement and optimization of our Deep Neural Network, adapting to
evolving user needs and behaviors.

— Continouous training of ML Model allows us to monitor and analyze the training and further optimization of our Deep Neural
Network

User Experience and Al Integration:
— User’s confidence with ML-prepopulated energy requirements provides insightful ideas on behaviour

— Exploring the potential of making ML-prepopulated energy suggestions the default, encouraged by their accuracy and user
reception.

Future Considerations:
— Assess the long-term impact of Al-prepopulated options on user behavior and platform efficiency.

— Continuously evaluate user feedback to refine and enhance the Al's accuracy and usefulness.
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Smart Charge Management

* Argonne’s Building 300 -
Peak charging loads are
becoming unsustainable, and
can potentially lead to
hardware failures

« Simulations on historical
charging data using a Linear
Programming scheduling
algorithm shows:

— smart charge management
can successfully reduce
peak demand to stay within
constraints

EVs@ -
Scales——N e

U.S. Department of Energy

Peak Power Draw per Day across Total Charging Profiles - Unmanaged Charging vs. Scheduled Charging (Oct. 10, 2023 to Jan 18, 2024)
70

A peak Power for Unmanaged Charging
B Peak Power for Linear Programming Model
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Percentage Reduction of Peak Power Over Each Day

—-—- Average Reduction

* Simulations using #m percentage Reduction
smart charge
scheduling show
average peak power
reduction of ~22%

across days where
charging is above
20kW

Percentage Reduction

Simulated Day




ML-based Requested Energy (Mileage) Predictions to drive Smart Charge EVs @
Scales——N e
Management U.S. Department of Energy

* ML-based requeSted energy predictions for Simulated vs. Historical Charging Session Flexibility Distribution
reservations can be used to drive Smart Charge ML Prepopuicted Requesied Enargy Fiexblly
Man ageme nt Actual Historical Flexibility

* Analysis on historical data shows ML-based
requested energy predictions for reservations
improve flexibility:

o Average Original Flexibility: 0.127
o Average ML Predictions Flexibility: 0.206
o Average Flexibility Change: +61.6%

=
u
=
v
=
g
i

« Flexibility offered through ML-based requested
energy predictions is sufficient for managing
peak demand for ANL Building 300 _ _ _ 03 0.4 05

Flexibility Values

* Next steps include deploying a Smart Charge
Management platform integrated with ML-based

requested energy predictions
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Thank You

Salman Yousaf
yousaf@anl.gov

Nithin Manne
nmanne@anl.gov

Jason D. Harper
jharper@anl.gov
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Open for Questions!
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Bryan Nystrom
ANL EV-Smart Grid Interoperability Center

Jvanced Mobility and Grid Integration Technology
. s April 4th, 2024
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Smart Charge Management and Vehicle
Grid Integration: FUSE

OCPP 2.0.1 development work
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OCPP “101”

What is OCPP?

« Open Charge Point Protocol (OCPP) is a communication standard for electric vehicle (EV) charging
stations.

» Think of it as a common language for chargers and charging network software to talk to each other.

Problem OCPP Solves:

* Promotes interoperability: Any OCPP-compliant charger can work with any OCPP-compliant network
software, regardless of manufacturer.

« Avoids vendor lock-in: Businesses are not limited to using a single provider for chargers and software.

« Simplifies network management: OCPP allows for centralized control and monitoring of charging
stations from different vendors.
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OCPP 2.0.1: Node-Red Nodes

OCPP Message Types
Message Request (CALL)

Msg Type (2) Unique ID  Json Payload

Message Response (CALLRESULT)

Msg Type (3) Unique ID I —

Error Message (CALLERROR)

Msg Type (4) | UniqueID | Code | Description [ Details,

EVs@
Scales—N ¢

U.S. Department of Energy

Message examples

[2, "19223201",
"BootNotification”, {
"reason": "PowerUp",
"chargingStation": {

"model":
"SingleSocketCharger"
, "vendorName":
"VendorX" } } ]

[3, "19223201", {
"currentTime": "2013-
02-01T20:53:32.486Z",
"interval": 300,
"status": "Accepted" } |

[4,"162376037",
"NotSupported",
"SetDisplayMessageRe
quest not
implemented", {} ]
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U.S. Department of Energy

< Node-Red “101”

What is Node-RED?

e Avisual programming tool for wiring together hardware,
APls, and online services.

e Uses a web browser interface - no complex coding required!

* Great for building event-driven applications.

Why Node-RED? Perfect for Prototyping and Production

* Rapid Prototyping: Quickly test your ideas by dragging and dropping nodes to create workflows.
* Easy to Learn: Intuitive interface lowers the barrier to entry for non-programmers.

* Wide Range of Nodes: Pre-built functionality for common tasks saves development time.

* Scalable: Start small and scale your applications to production use.

* Deployment Ready: Flows can be deployed with a single click.

* Customizable: Create your own nodes to extend functionality for your specific needs.
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Node-Red OCPP2 Nodes “101”

What it is:

* Node-Red “nodes” that support the sending and receiving of OCPP messages, including the
connection and authentication of the underlying WebSocket layer.

* Separate “nodes” for implementation by either a charge station (CS) or a charge station
management system (CSMS).

e Support for OCPP 2.0.1.

* Packages OCPP message arrays based on a defined Json structure

* Handles tasks like creation of unique message Ids and can direct OCPP responses based on those
Ids to the appropriate functions/nodes.

* Can be used in addition to the existing Node-Red OCPP 1.6 nodes previously available.

What it isn’t:
* They do not implement a fully functional CS or CSMS.
* |tis not a full software stack like the Linux Foundation EVerest project.
* |tis up to the user/developer to implement the full business logic based on the OCPP
message being passed and the available hardware and data storage.
* Usage requires the user/developer to have an understanding of the OCPP protocol.

* Nodes do not interpret or act upon OCPP messages themselves. P



OCPP 2.0.1: Node-Red Nodes

OCPP 1.6

Security not required but supported

(see OCA OCPP Security White Paper)

SOAP </> & JSON [{}]
Multiple OCPP nodes for message handling

OCPP SOAP schema validation only

Custom dynamic commands (hon-ocpp
commands like connect, disconnect, etc.)

Open Source for 6 years used by other labs, open-
source projects, and 39 parties
CS server (CSMS)

Used for ANL Smart Energy Plaza CSMS prior to
EVrest rollout

CP client (CS)
Used in ANL OptiQ EVSE project.

OCPP 2.0.1

Security Profiles
* #1 Basic (user/password)
+ #2Basic + TLS CSMS
e #3Basic + TLS CSMS + TLS CS

JSON [{}] only

Single node for message handling
OCPP JSON schema validation
OCPPCommCtrlr and SecurityCtrlr dynamic

variable settings for WebSocket and security
functionality

EVs @ __
Scales——N e

U.S. Department of Energy

49



OCPP 2.0.1: Node-Red Nodes

CSMS Node Config

Edit C5SMS node
Delete
i Properties
E= Name

# Port

@ Path focpp2

OCPP Logging

Authentication List

& CS Auth {} {"Cs1""est1”, test2”,"BadTaco™: "badt ==

Node Setup

Edit CS node

£+ Properties

B2 Name

& chid

OCPF Logging
Target CSMS
@ Url

Auto Connect
Basic Auth

& Pa rd

Retry Backoff

Min (sec)

C Times to inc

20 Max

Random Range | 0

CS Node Config

EVs@ -
Scales——N e

U.S. Department of Energy
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OCPP 2.0.1: Node-Red Nodes

Output ports:

1.  Standard non-directed
2.  Dynamically linked

3. Optional OCPP logging

Connections

Get Heartbeat Int

Connect
Close

BootNotification

write file

MessageType

EVs @ __
Scales——N e

U.S. Department of Energy
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OCTT tested

i debug

CSMSReg
CoMSRes —

CSMSET

Booihiolfieaton Response

Heatbeat Response

OCTT test tool Node-Red CSMS proto
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Installation in Node-Red:
= * Use the “Manage Palette” menu
e Search and Install

* node-red-contrib-ocpp2
_or_
I.I p I." * cd ~/.node-red installation folder

* npm install @anl-ioc/node-red-contrib-ocpp?2

Git Repository:

Bryan Nystrom
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Concentrated charging |
infrastructure: reconstructing tr|p
sequences from traffic data that

reflect use patterns

Jeewon Choi, Thad Haines, Matt Lave, Andrea
Mammoli, Emily Moog, Will Vining

EV@Scale Deep Dive Meeting, April 4, 2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525
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* Why we need synthetic trip generation « What changes for MHDV - schedules
e Required characteristics of a synthetic trip  Reconsiructed MHDYV trips
* What the trip sequences look like in reality e Hesitant EV driver workshop — what we

expect to get out of it
 Methodology to reconstruct trips that respect P 9

statistics and also look like typical routes « How we plan to use this in our simulations

 What synthetic trip sequences look like

e Distinguishing between EV users with different
charging access

* Do the synthetic trip sequences look like the real
ones?

* Dealing with trips that cross boundaries

* Trip endpoints to actual routes, including real

addresses and speed
UNCLASSIFIED UNLIMITED RELEASE E
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Why we need synthetic trip generation @ Nl Scalee T

Laburatunes U.S. Department of Energy

 We are interested in the interplay of
charging opportunities at home, at work
and en-route

e We want to model when, where and why
drivers charge their vehicles, via a
Markov Chain-based ABM

 We need to generate large numbers of
synthetic trip sequences that match the
statistics

* From traffic “big data”, we can extract
origin-destination pair distributions

* Problem - how to reconstruct trips in a
realistic way, that reflect commuting
behavior and daily / weekly schedules?

UNCLASSIFIED UNLIMITED RELEASE E


https://unsplash.com/@sebenrique12?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
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Required characteristics for synthetic trips @ Notonal  Scaler

Lahuratunes U.S. Department of Energy

e Collectively, synthetic trips should reflect

. o Richmond, VA
the OD pair statistics, that can be

19|30 |45
extracted from datasets such as Wejo, -
104 J| 47617589
Geotab or cell phone data T Teaa [62] 7 o0
/4 121/23 49 |1 6 Q 91 |103
» Synthetic trips should reflect real driving AP EIE \ TIEER IR
3 105
spatial patterns: repeated trips between 37 106
. 38 07
home and work (anchor points) and RS v e £ Newport News, VA
occasional trips to other destinations N; N |26 [0} 55 |G9ING (o4 02
1 3\("‘ 27 | a1 | 56 | 70 | 84N\ 110/122{131[140]147 151|155| (89166172
. . 2| B |17(|28|42|57|71|85(99 1:&123132 141 152|TP|161|167(173[177
e Synthetic trips should reflect temporal 3| 5 | 18] 2943 58 |72 86 |10\ |\ e 153 '57[162{168[174]178
h i i f I 1 k 44|59 |73 | 87 ‘IO‘] _’ 154|158|163|169|175(179(182|186
c araCterIStlcs o rea trlps - wor 74 | 88 102|114 159|164(170|176(180({183|187|191|197|203
schedules, average speed due to tesjirr]  _J1e4tesiiozosi204210
181|185/189(193|199(205(211|214
Congestion 190|194|200|206|212|215
195(201|207|213(216
196|202|208 ﬂ

209
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time (hours)

time (hours)

800

600 - a00

G000
400

400
200

200

38.5

-78

37 Slatitude 78

-F1h 37.5latitude
=715
Iun!;itt;:l;n:a? 37 tongit 1;11?
-76 36.5 -76  ap g
A few trips in 8 counties All trips in 8 counties
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List-constrained Markov chain trip sequence generation @ Nationa 3co|e;--:w‘

I_aburaturles U.S. Department of Energy

OD pair stats
from wejo data

L
T T -
! T - J

@ )

| T, o
1

T

Long list of trips based ﬁ LT "
on O-D pair distribution H “Ue P
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Trip probabilities are also derived from real data (Ah) o Scile’~

Lahuratunes U.S. Department of Energy

weekday weekend

- -& .- I = T Bl 11 Sk =
. 3 elsewher 3
e
stay
- IIIIIIIII

elsewher
Rt 1 I||II ] "“III“III

from home

from work

e

from else

e
I II I elsewher I IIII
IIII II IIIIIIIIIIII- II I IIIIIIIIIIIIII

Probabilities courtesy of Steven Schmidt INL m
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What the synthetic trip sequences look like @ Vool Scale i

Laboratories U.S. Department of Energy

time {hours) time [hours)

38.

a00 38.5
00
gl
400 800
[ 38
400
200 | 38
200 F
a
Q
32.5 latitude
3.5 latitude
-78
7715 a7 -78
77 -5 37
-37
longitude -78.5
-7E 385 longitude -78.5
-76 365
16 trips 10000 trips
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Differentiating between EV users by access to private charging @ Nl Scale

Use census block data to
assign probability of driver
either renting or living in
MUD

Information provided in “No
Place Like Home” report links
likelihood of private EVSE to
rental vs. owned

Use this information to
determine whether driver has
access to private EVSE

time (hours)

800
800 -
400
200 |

-78
-5
-7

longitude

UNCLASSIFIED UNLIMITED RELEASE
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Laburatunes U.S. Department of Energy

has access to private EVSE

B relies on public EVSE

385

38

315 |atitude

-76 365
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Turning coarse trips in a sequence into specific trips @ Nl Scalee T

Laboratories

U.S. Department of Energy

* Trip chains are based on a square grid

o
&
4

e Each agent has a home and work grid square
that are fixed. A random address, chosen
from a list of all addresses in the box, is
chosen within the grid to be the specific
home/work location

SR &7

* The home and work addresses remain fixed
for the entire trip chain

Shenandoah

e For all trips ending somewhere else (not at
home or work) a random address is chosen
within the grid square where the trip ends

UNCLASSIFIED UNLIMITED RELEASE w
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Laboratories
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e Once the trip endpoints are transformed
from grid squares into addresses we can
find the route, travel time, and energy
required for each trip. m?m

it

e Using the Open Street Map road @?J%:ﬁ_ %
network and speed limit data we use |
the A* algorithm to find the route with *5'
the shortest travel time.

e For each route we calculate the energy
required to drive that route.

UNCLASSIFIED UNLIMITED RELEASE w
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What about trips that cross boundaries? @ Nl Scales e

Laburaturles U.S. Department of Energy

time (hours)
All wejo trip sequences that enter area o | 7_
of interest at least once — 166825 °f
seguences

All wejo trip sequences with at
100% of trips in area of interest —
90083 sequences

385

-78
37 &latitude

time (hours) 37

77
longitude .
time (hours)

76 385

00

g 200
600 - . . .
: All wejo trip sequences with at "
4m B . . .
3 least 50% of trips in area of interest
200 400
. — 128586 sequences
i 200
385 o
e 37.5latitude .
Iungilu;:lye?
76 e -78

37.slatitude

- -IF
longitude

7B 365
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Dealing with trips that cross boundaries @ Noonal  Scales e

Laboratorles U.S. Department of Energy
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00000000000000000000 0000 . .
000000000000 00000000000000 exit pomt
000000000000000000000000000
000000000000000000000000000

[ I R R R R R IR NI RRINERRIRININIL]
0000000000000000000000000000000000

G000 8000000000000000000000000000000
oo080{:--ecnuuuuuuunuuu
se00a00 M oo0000000000000000000000
uoummunouuuunnuuu 1Y
000000000 000000000000000000000000000!
secenocos oL 000000000000000 s0000000!
0000000 0000RGLLLEN 00000000 0000000000000
uuuumm cosvocORROORRORRI
0000000000000NNAMGNN 7 Bee 000000000000000!
llllllllllerrdl sosNeORORRORRRROR Y
00000000000 00MRABARMANG 0000000000000000000001
000000000 RRRLLBLLARLLE 0000000000000 000000001
000000000MRMNMALRLANNG0000000000000000000001
s05050 0 HARBLERREAEEN s o AR sousovo BB B
a0 00000 cALLLALLLAG s 000 a0 0000000
0000000 VMLLLALLLL 000000 OB 000000000001
ssocsecovo ool oo oo o oo ol 00000000
0000000000000 RN 0000000000000
00000000000000000000000 00000 0L RANBRD GO
000000000000000000000000000000000RMRMMAN000!
00000000000000000000000000000000000RLLLG00!
080000000000 000000000000000000000000NR000I
C000000000000000000000000000000000BWMOsNNI
sccccccecacocceRecsanooRennnRoeseechaceRe N
00000000000000000000000000000000000000000000!
(2 R R R R AR Z IR RN RRRNRNRNNRNRRNNNNRNYZNRZZIZINZ]
000000000000000000000000000000000000000000001
000000000000000000000000000000000000000000001
0000000000000000000000000000000000000000800001
00000000000000000000000000000000000000000000!1
S8c00000000000000000000000000000000000000000

39 |

38.5

38 |

375 |

37

UNCLASSIFIED UNLIMITED RELEASE m



. . . . Sandi EVs@ —
Small business traffic simulation @ Naodl  Scale i

I.aburatunes U.S. Department of Energy

e Typical annual miles driven range from ~ 15K miles to
~ 90K miles per year for service trucks / vans

e At least 500,000 establishments with 1-5 vehicles in
their fleet

 Most small business employees take their trucks
home after work

e Using an EV could improve profits for a small
business by better tracking, lower fuel cost and lower
downtime

e Charging may be an issue for trucks that cover many
miles

Photo by Brian on Unsplash

UNCLASSIFIED UNLIMITED RELEASE u
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Geotab data @ s, SE—

Laburaturles U.S. Department of Energy

e Geotab data used for MHDV trip analysis
e Geotab provides OD pairs directly

e Process to build synthetic trips similar to
the one used for wejo data, with similar
issues

UNCLASSIFIED UNLIMITED RELEASE m
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Small fleet synthetic trip sequences @ Nl Scales e

Laboraturles U.S. Department of Energy
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Planned workshop at UTK and national survey — what we hope to EVs@—=

—
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* From the workshop

* From the national survey

1 Photo by Jason Goodman on Unsplash

What are good questions to ask in a survey?
Are small businesses interested in operating EVs?

Is our research useful to city planners, community organizations
and other stakeholders?

Unknown unknowns

How do potential EV users with limited access to charging with
acquiring and owning an EV?

What is the expected charging behavior for these potential new
users, in personal transportation?

What is the expected charging behavior for these potential new
users, in business use?

UNCLASSIFIED UNLIMITED RELEASE m
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Where we go from here and thank you!

U.S. Department of Energy

e Trip sequences that cross boundaries
gracefully

 Hourly probabilities obtained from
survey results and / or data

Sandia
National
Laboratories

 Integrate data with EVIPro and
Caldera

* Implement ABM to model charging
response to external pressures

UNCLASSIFIED UNLIMITED RELEASE u



EVs@

SCOI&(\\

Smart Charge Management. e
(SCM) and mid-route

Charglng ,,;*' 1=
/ 7 _;_.fj' :
Manoj Sundarrajan’// | | -
Steven S hmlc}t a .-“ Iy \
' | \ I\

Apr|I4 ;)24_; | VAR
i | ,- ,I' ) |l By

/

B LI Office of ENERGY EFFICIENCY
ENERGY & I{'\‘EI\?EWABLE ENERGY



EVsO —
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U.S. Department of Energy

 Each EV is modeled as its own agent driving and charging as needed within Caldera.

* Process
— Input a large number of vehicle itineraries
e Point A to Point B to Point C, etc. Several days or even several weeks of data.
— Track SOC of each vehicle each leg of itinerary

— When needed, deviate from itinerary to charge at public high-powered station

— Utilize routing-engine tool osrm-backend (akin to Google Maps)
* See https://github.com/Project-OSRM/osrm-backend

=
2 ._:’
=)

— Collect charge events and model using Caldera Grid or Caldera ICM

e Modes

— Unscheduled charging mode (Base-case)

e Go directly to station without checking availability, first-come-first-serve

s I.lI

— Scheduled charging mode

 Remote communication with multiple stations to determine best choice

* Lowest opportunity-cost


https://github.com/Project-OSRM/osrm-backend

EVsO —

Agent-based modeling Scalez—"e

U.S. Department of Energy

Point D

* Imagine a car driving from point A to point

Itinerary B to point C, etc.

* Travel-times and distances computed using
Point B a routing-engine
* We use the osrm-backend tool

e See https://github.com/Project-OSRM/osrm-
backend

Point A



https://github.com/Project-OSRM/osrm-backend
https://github.com/Project-OSRM/osrm-backend
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U.S. Department of Energy

Time =——>

Departure Arrival Departure Avrrival Departure Arrival  Departure Arrival
80% 50% 50% 10% 10% 0% 0% 0%
\ J \ J \_'_’
| |
Dwell Period Dwell Period Dwell Period
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Agent-based modeling, Short-dwell/Mid-Route Scalea~— e

U.S. Department of Energy

Time =——>

Departure Arrival Departure Arrival Departure Arrival  Departure Arrival
80% 950% 50% 10% 100% 90% 90% 72%
\ J
l

Some dwell periods
have charging
(e.g., Home or Work)
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Agent-based modeling, Short-dwell/Mid-Route Scalea~— e

U.S. Department of Energy

Sometimes we need
mid-route charging

Station Station

Departure Arrival Departure Arrival Departure Arrival  Departure Arrival  Departure Arrival
80% 50% 50% 10% 10% 3% 65% 58% 58% 40%
Inserted
. . Future SOC values
Mid-route Charging
: updated
Waypoints
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Agent-based modeling, Short-dwell/Mid-Route Scalea~— e

U.S. Department of Energy

Time —— E—

Station Station

Departure Arrival Departure Arrival Departure Arrival  Departure Arrival - Departure  Arrival
80% 50% 50% 10% 10% 3% 65% 58% 58% 40%

Future waypoints shifted
into the future if needed

(Travel times and

distances computed using
a routing engine)



Unscheduled Charging

U.S. Department of Energy

0%

2%
Fast | Public
‘ .+ Public

Charging . o Destination
Station .+°  Destination

_ * Car picks a station without knowing
Work  *° Ll
Itinerary O et availability beforehand
Home 30% . . o
* First-come-first-serve plug-in to
80% charge
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Unscheduled Charging Scaler

U.S. Department of Energy

50%

0% _ Public
Fast o Public Destination
Charging “,o Destination
Station R
* Car picks a station without knowing

Itinerary availability beforehand

Home . . .
* First-come-first-serve plug-ln to

80% charge
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Scheduled Charging Scalex—< e

U.S. Department of Energy

Fast
Charging 0%

S;.n 2%
/0

Public

Public Destination

Fast ’ Iplic
Charging ‘ Destination
Station

Fast
_ Charging
Lo Station

Itinerary * Communicates with multiple
Fast stations along route
Home Charging . . . .
Station Stations reply with a bid
80%  Station prices, out-of-way

distance, etc., affects choice.

* Lowest opportunity-cost 61 |
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Scheduled Charging Scalez~—" e

U.S. Department of Energy

Fast
Charging 50%

St@n o2

Public

Fast ‘ quhc. Destination
Charging Destination
Station o
Fast
Charging
Station

Itinerary
Fast e Car chooses a station,
Home Charging
Station * schedules a charge

80%
e and adjusts route

accordingly.
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Itinerary Data Scalegs— e

U.S. Department of Energy

e Characteristics of Itinerary Data
— Input: Collection of move-events:
 |tinerary unique-id and vehicle type
e Start and end time, start and end location (lat, lon)
e Destination type (Home, Work, Public, etc)

e EVSE available at destination

— Input: Initial SOC for each itinerary

— Additional requirements:
e Arrival and departure location must match (no teleportation)
e Each itinerary must have exactly one home and one work location

 |tineraries always depart from home in the morning and return to the same home at the end of the day

— At run-time:
e Travel times computed using osrm-backend routing engine

e SOC at each waypoint computed based on travel distances and vehicle efficiency (wh-per-mile) @



EVs@® 3

Itinerary Data Scalegs— e

U.S. Department of Energy

e |tineraries from NREL

— Real world trips in Virginia purchased from WEJO, trip chained to form individual vehicle itineraries.

 ltineraries from Sandia
— Plan:
e Sandia team will stochastically-generate itinerary data

e [INL team will run simulations with Sandia’s itineraries to compare with Sandia’s analysis.



Home Charging Levels

e A probability of home charging availability is computed for each
county.
— Based on the NREL study:

e “There's No Place Like Home: Residential Parking, Electrical Access, and
Implications for the Future of Electric Vehicle Charging Infrastructure”.

— Estimates levels of home charging access based on housing attributes

* National data on vehicle ownership
* Residence type

* Housing density

* Housing rent or own

* Data supported with survey of 3772 U.S. individuals

— County-level data

e If anitinerary’s home has L2 charging:
— Upon arrival at home, a L2 charge event occurs if:
e SOC< 80%

e The driver remembers to plug-in (95% chance)

EVs@® 3

Scaleg——" e

U.S. Department of Energy

Residential access by counties

38.2
0.76
38.0 |
- 0.74
37.8 4 "
2]
@
g
0.72 <
37.6 2
c
1]
=}
L 0.70 &
37.4 «
3721 I%S
37.0 . . . ’ 0.66
-780 -77.8 =776 -77.4 =772 =77.0
_ Residential access by counties
' 0.730
37.5 1
+0.725
37.4 -
L 0.720
37.3 1
L 0.715
37.2
0.710
37.1 1
- 0.705
37.0 -
0.700
36.9 - - : : . : : I
-77.0 -76.9 -76.8 -76.7 -76.6 —76.5 —76.4 -76.3 -76.2 0.695

dential Access

Res



Work Charging Levels

* A probability of work charging availability is computed for each zip code.

— A generalized linear model is used to estimate the probability that a business
establishment has workplace charging available

e Based on:
— Population density,
— Establishment density,
— Company size distribution,
— Median income,
— Average Annual payroll,

— Average company size.
e Zip-code level

— Zip-codes with sufficient data are used to fit the model (Alternate Fuel Data Center
AFDC data)

— The fitted model is used to estimate all zip codes in the country.
— Availability is scaled up for 2040 scenario with 1.03% annual establishment growth
and 485k workplace chargers based on NREL's 2030 charging needs assessment.
e If anitinerary’s work has L2 charging:
— Upon arrival at work, a L2 charge event occurs if:
e SOC<65%
e The port is available (66% chance)

e The driver remembers to plug-in (95% chance)

EVs@® 3

Scaleg——" e

U.S. Department of Energy

Work charging access by zip code

38.0 A

37.8 A

37.6

37.4

37.2 A

37.0 1

-78.0 -77.8 -77.6 -77.4 =77.2 -77.0 -76.8 -76.6 -76.4 —76.2

- 0.040 .

- 0.035

- 0.030

- 0.025

- 0.020

0.050

o
o
S
w
2040

n

Work charging access (%)

0.015
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Public (Destination) Charging Levels Scaler——

U.S. Department of Energy

e 6.7% of public destination locations have L2 charging available

— From EVI-Pro lite online tool.

e If a public destination has L2 charging:
— Upon arrival, a L2 charge event occurs if:
e SOC<50%

* Driver remembers to plug-in (95% chance)



GG ——

XFC Charging Stations NN

Scaleg—"

U.S. Department of Energy

e 318 number of public charging stations.

— Charging station locations based on current charging stations and gas Charging station locations

station locations.

— 1500 total plugs based on EVI-pro lite tool. 38.0 - ¢ :

— Plugs distributed to stations based on how busy a station is. .

— Currently, all plugs support up to 350kW. e .

 Public charging stations are used by a vehicle when 3767
certain conditions are met - S -

— Itinerary is adjusted to allow vehicle to go to public charger before f.\ : Vs
continuing on its way 37.2 4 23

— Range anxiety metrics '.'.".':;;r' ‘

37.0 penl
—-78.0 —?IY.B —7I7.6 —7'7.4 —717.2 —717.0 —?'6.8 —716.6 —716.4 ~76.2
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Range Anxiety Metrics Scalez—" o

U.S. Department of Energy

When to divert to a public charging station?
— Depends on if an upcoming waypoint has destination-charging available
— Depends on if we’re going to work, home, or a public destination

If an upcoming waypoint has destination charging (home,work,public):

— Allow lower SOC before public charging is desired

If SOC will fall below the threshold:

— Divert to a public station to charge.

Threshold values (specific values are still debatable):

Upcoming destination No upcoming
has L2 charging destination charging

Arriving at home 7% SOC or 15 miles range 14% SOC or 40 miles range
Arriving at public 7% SOC or 15 miles range 12% SOC or 35 miles range
destination

Arriving at work 7% SOC or 15 miles range 10% SOC or 30 miles range
NOTE: When going to work, the driver is more anxious to make it on time, so threshold allows a lower SOC when going to
work.

Whereas, when going Home or to a Public Destination location, the driver is assumed to have more flexibility. w
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Smart Charge Management Scales—~ e

U.S. Department of Energy

e Scheduling Mode:
— Unscheduled Charging:

\
e Looks into the future only one leg at a time 1 —
— Scheduled Charging: Cost
e Looks multiple travel-legs into the future
e Station Pricing Mechanisms: B
— Constant pricing | 2 3 4 5 G

— Station-busyness based pricing Ports used

— Station peak-power-usage based pricing
4\ /\A [ Threshold

power / \/ o

N
—

Time
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Cost metrics Scales—~—N e

U.S. Department of Energy

e Costs can be used to influence

vehicle behavior , ,
: . Possible Values (not set in stone):
— Spatial and Temporal Shifts

— Shift from busy station to less-busy EVSE Type Cost While Charging

— Help alleviate station overage-charges Time ($/min) Energy ($/kWh) Connection Cost ($)
* Prevent slow-charging vehicles from Low High Low High Low High
clogging up fast-chargers L2 1440 0.02 0.52 0.10 1.50 0.00 1.00
— If time and energy costs are set L2 17280 0.07 0.57 0.10 1.50 0.00 1.00
appropriately
DCFC 50 0.10 0.60 0.10 1.50 0.00 1.00
* Additional fixed costs may be XFC 350 0.20 0.70 0.10 1.50 0.00 1.00

different for each station

— Control for unique scenarios

— Make sure the station near Mr. Trump’s Vehicle Class Cost While Driving

resort is never full so he never gets mad. T Ty — -

e Varying station cost based on station Default 1.00 0.05
demand (busyness)
— Lower-bound vs upper-bound cost
— Linear interpolation based on station-usage
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Extreme Cases ScalegN e

U.S. Department of Energy

e What do cars do when all stations are busy?

— Unscheduled:

e Cars go from station to station looking for a place to charge until they are stranded.

— Scheduled:

e Cars wait and wait, trying to schedule again and again every few minutes, until they can’t wait any
longer and are declared stranded.
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Simulations Scales——> e

U.S. Department of Energy

* Questions we want to answer:

— How effectively can we influence cars to shift XFC charging?
e Spatially: Influence cars to charge at a different public charging station

* Temporally: Influence cars to charge earlier or later

— What specific cost controls are most effective at influencing charging behavior?
e Peak-power vs. station-busyness controls

e Different controls have different benefits

— Benefits to:
e Electrical grid — avoid charging during peak power usage
e Station operators — avoid demand charges

e EV drivers — avoid full/busy stations, and minimize cost, time charging



EVs@ 3

Initial Results Scales—~—N e

U.S. Department of Energy

* Pending a currently-running simulation
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FUSE EV charge load modeling update:
“Short-dwell” vehicle
travel itinerary development

Matthew Bruchon, Yi He, Zhaocai Liu,
Jesse Bennett

March 2024




FUSE EV charge load modeling overview
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U.S. Department of Energy
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FUSE EV charge load modeling to date Scalez——Ne

U.S. Department of Energy

e Analysis began with light-duty passenger vehicles

 We then considered medium- and heavy-duty vehicles (MHDV) with charging needs fully met by
long-dwell depot charging

Summary statistics for Richmond and Newport News, VA (2040 estimates)

Projected Regional Peak power Peak load

EV count daily energy per h9 hex cell* time of day
700,000 1.50 GWh 600 kW 5-10 PM
Local freight 17,000 410 MWh 1.4 MW 5-9PM

School buses 3,000 670 MWh 900 kW 5-11PM
Transit buses 500 250 MWh 9.0 MW 3PM -2 AM

*h9 hex cells are approx. 0.04 mi? (0.1 km?)
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Short-dwell charging needs vary by vocation Scalez—"e

U.S. Department of Energy

Typical nationwide vocational travel patterns

Vehicle-Distance Traveled
(mi/operational day/vehicle)
0 200 400 600

Hub and Spoke MHDV

. Door to Door MHDV /T\—‘\
Modeled in
earlier stages of FUSE - Local MHDV
(not pictured: light-duty vehicles)
Transit Bus

— School Bus

Bruchon, Matthew, Brennan Borlaug, Bo Liu, Tim Jonas, Jiayun Sun, Nhat Le, Eric Wood. “Depot-Based Vehicle Data for
National Analysis of Medium- and Heavy-Duty Electric Vehicle Charging”. National Renewable Energy Laboratory.
NREL/TP-5400-88241. February 2024.
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Short-dwell charging needs vary by vocation Scalez—"e

U.S. Department of Energy

Typical nationwide vocational travel patterns

Vehicle—-Distance Traveled
(mi/operational day/vehicle)

0 200 400 600
Modeled in " Long Distance MHDV <« | ~_
short-dwell analysis -
(not pictured: drayage) Regional MHDV

Hub and Spoke MHDV

. Door to Door MHDV /T\—v\
Modeled in
earlier stages of FUSE — Local MHDV
(not pictured: light-duty vehicles)
Transit Bus

— School Bus

Bruchon, Matthew, Brennan Borlaug, Bo Liu, Tim Jonas, Jiayun Sun, Nhat Le, Eric Wood. “Depot-Based Vehicle Data for
National Analysis of Medium- and Heavy-Duty Electric Vehicle Charging”. National Renewable Energy Laboratory.
NREL/TP-5400-88241. February 2024.



Short-dwell charging needs vary by vocation

EVs@® 3
Scaleg M e

U.S. Department of Energy

Modeled in

short-dwell analysis
(not pictured: drayage)

Modeled in

earlier stages of FUSE
(not pictured: light-duty vehicles)

=

B Long Distance MHDV
Regional MHDV

B Hub and Spoke MHDV
Door to Door MHDV
Local MHDV

Transit Bus

— School Bus

Typical nationwide vocational travel patterns

Vehicle-Distance Traveled Domicile Dwell Time
(mi/operational day/vehicle) (hours/operational day/vehicle)
0 200 400 600 0 5 10 15 20

—e.

R
o y—
-

__\

Bruchon, Matthew, Brennan Borlaug, Bo Liu, Tim Jonas, Jiayun Sun, Nhat Le, Eric Wood. “Depot-Based Vehicle Data for
National Analysis of Medium- and Heavy-Duty Electric Vehicle Charging”. National Renewable Energy Laboratory.

NREL/TP-5400-88241. February 2024.
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Multiple labs are coordinating to model short-dwell charging demands Scales—— e

U.S. Department of Energy

NREL Sandia ldaho NREL
Travel Modeling National Lab National Lab Grid Modeling

l | | || I

Short-dwell
travel
itineraries
Light-duty vehicle
travel andI charglng OpenDSS
analysis Co-Sim
School bus, transit bus, Long-dwell
and local freight travel charge
and charging analysis sessions
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Multiple labs are coordinating to model short-dwell charging demands Scalez——> e

U.S. Department of Energy

NREL Sandia Idaho NREL
Travel Modeling National Lab National Lab Grid Modeling

l | | || I

Long-haul, drayage,
regional freight

travel analysis Short-dwell Caldera CDM: Caldera Grid:
travel short-dwell charging
.. . Extreme fast ;
itineraries . . charge sessions load/node
charging station
locations

Light-duty vehicle
travel and charging

. OpenDSS
analysis .
Public charging Co-Sim
station locations
School bus, transit bus, Long-dwell
and local freight travel charge
and charging analysis sessions
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We model three short-dwell medium- and heavy-duty vocations Scales—— e

U.S. Department of Energy

Class 7-8 tractors Class 7-8 tractors e Class 3-6 cargo vans, step vans,
straight trucks
e Class 7-8 tractors

Largely interstate freight Freight delivered to/from ports Operating radius over 150 miles
Less consistent domicile location More consistent domicile location More consistent domicile location
Modeled using FAF and Geotab Modeled using Port of Virginia data  Modeled using Geotab

and Geotab
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U.S. Department of Energy

Freight Analysis Framework (FAF) and Geotab based approach

Obtain entry and exit road links from FAF network

Obtain entry and exit volume (2040 long-haul) from FAF truck volume
data

Obtain stop location and time information from Geotab

Generate synthetic travel itineraries within the study region by
matching entry points, exit points, and stops

Assign vehicle characteristics to travel itineraries




Long-haul modeling step 1: EVs@®

. . . Scaleg N e
Obtain entry and exit road links from FAF network U.S. Department of Energy

 FAF database has estimates of US freight flows for states and metropolitan areas
* Flows include all modes of transportation and 42 commodity types

e The Bureau of Transportation Statistics (BTS) produces the FAF with support from the Federal Highway
Administration (FHWA). The main FAF5 input is the 2017 CFS.

FAF Network FAF Network within VA

704

60 1

50 A

40

30 4

201 N

T T T T T
-160 -140 =120 =100 -B80




Long-haul modeling step 1: EVs@® 3

. . . Scaleg M e
Obtain entry and exit road links from FAF network

FAF Network within Study Region FAF Network Links Crossing the Boundary of the Study Region
38.0 - 38.0 -
37.8 4 37.8 -
37.6 - 37.6 1
37.4 - 37.4 -
37.2 37.2 4
37.0 + 37.0 4
~77.75 ~77.50 -77.25 ~77.00 ~76.75 ~76.50 -76.25 ~77.75 ~77.50 -77.25 ~77.00 ~76.75 ~76.50 ~76.25



Long-haul modeling step 2: EVs@® 3

Scaleg™—M e
Obtain 2040 entry and exit volumes from FAF truck volume data

FAF long-distance truck volume for each link with direction for year 2040

2040 Long-Distance (250 mi +) FAF Truck Volume Entering Study Region 2040 Long-Distance (250 mi +) FAF Truck Volume Leaving Study Region
800
38.0 38.0 1
800
700
37.8 1 37.8 1
600
37.6 - 37.6 600
500
i 37.4
37.4 400
400
37.2 300 37.2 1
200 4
37.0 4 37.0 200
100

7775  -7750 7725 -77.00 -76.75 ~-76.50 —76.25 =771 -17.50 -77.25 -77.00 -76.75 -76.50 -76.25



Long-haul modeling step 3: EVs®
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Obtain stop location and time information from Geotab 0.5 Department of Enerey

Number of Stops for Each Hour for Richmond

Stop analysis from Geotab can provide 250 -

stop location and time information 300 4
250 A
200
150 A

Number of Stops

38.0 100 A

50 A

37.8
0 5 10 15 20

Hour

707 Number of Stops for Each Hour for Newport News

70 1
37.4 1

37.2 4

37.0 1

Number of Stops

=77.75 -77.50 -77.25 -77.00 -76.75 -76.50 -76.25

= N w 9 )
o o o o o o o
1 1 1 1 1 1 1

Hour @



Long-haul modeling step 4:
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U.S. Department of Energy

Generate itineraries by matching entry points, exit points, and stops

Annual average volumes are scaled using
monthly and weekly scaling factors

Region Dailv Trips Mean Travel | Mean Dwell

& yirp Distance Time
Richmond 3187 55 miles 6.2 hours
MG las 1208 59 miles 2.6 hours
News

Monthly Activity Scalers

Monthly Activity Scalers

(1.0 = average)

1.40

1.20
1.00 vﬁﬁf—‘ﬁam-
0.80
0.60

Personal LDVs

0.40

Transit Bus & Vocational
0.20 Freight Trucks

0.00
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Chart: NREL; Data sources: NHTS17 (personal LDVs, school bus), Cass Info. Systems (freight trucks)

Weekly Activity Scalers (1.0=average day)

Day Type Truck_Local
Weekday 1.22
Weekend ; .4 0.52

Source: HD telematics HD telematics HD telematics  Fleet DNA NTD

Truck_Regional Truck_LongHaul Bus_School Bus_Transit Vocational Personal_LDV
N . 113

: 0.68
Truck_Light 2017 NHTS

Source: NREL DECARB analysis (Brennan Borlaug et al.)
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Assign vehicle characteristics to travel itineraries

* From TEMPO: 0% EV-150, 2.6% EV-300, 5.8% EV-500, 91.6% non-EVs!

Battery Range Battery Size Fuel Economy
Vehicle Class (mi) (kWh)2 (kWh / Mile)2 Depot kW Opportunity kW  En-Route kW
Heavy (Classes 7-8) 150 289 kWh 1.804 30 110 500
Heavy (Classes 7-8) 300 578 kWh 1.804 60 220 1000
Heavy (Classes 7-8) 500 963 kWh 1.804 100 360 1500

1. Catherine Ledna, Matteo Muratori, Arthur Yip, Paige Jadun, Christopher Hoehne, Kara Podkaminer. Assessing total cost of driving competitiveness of zero-emission trucks.
iScience 27 (4), 2024.

2. Ehsan SabriIslam, Daniela Nieto Prada, Ram Vijayagopal, Charbel Mansour, Paul Phillips, Namdoo Kim, Michel Alhajjar, and Aymeric Rousseau. Detailed Simulation Study
to Evaluate Future Transportation Decarbonization Potential, 2024.
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Drayage modeling approach Scalez— e

U.S. Department of Energy

Geotab OD Geotab stop
S i Freight Analysis analysis analysis
transactions Framework (FAF) /_L\ v
data
¥/
Journey duration Stop location,
l distribution and stop duration
: distance distribution
FUSE counties distribution ¢ ‘
# of truck journeys
| #oftruck [ e - o1,
POV Chesterfield oo tuc l journey duration,
i journeys ! : :
terminals Hanover - journey distance
NIT Hanri ’Icoermpinal per domicile
enrico location
— warehouse
NNMT James City locations :L
PPCY m '
Williamsburg Add
RMT York POV intermediate
warehouse stops
VIP Newport News locations
Hampton "
Drayage truck itinerary
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Drayage modeling step 1: Soale &

Determine daily drayage truck visits U.S. Department of Energy

e Average daily truck transactions for NIT, VIG, RMT, PPCY are obtained from Port of
Virginia (POV) website statistics.

e Port features obtained from POV and online sources.

e Estimate daily truck transactions for NNMT and VIP based on port features.

Current On-dock rail track Average daily
POV terminal throughput TEU Operating acres Forklift capacity I truck Truck data source

capacity transactions
Norfolk International o
Terminal (NIT) 2.2M 378 / 27,416 2307 Port of Virginia
Virginia International 2.2M .
Gateway (VIG) 291 / 19,644 3088 Port of Virginia
Newport News Marine . .
Terminal (NNMT) / 165 65K 18,990 221 Estimation
Richmond Marine o
Terminal (RMT) 86,000 121 52K 19,640 170 Port of Virginia
Virginia Inland Port (VIP) 78,000 161 13K 17,820 154 Estimation
PPCY / / / / 2333 Port of Virginia



Drayage modeling steps 2-3:

Geotab Origin-Destination (O-D) and Stop Analysis

EVs@® 3
Scaleg—M e

U.S. Department of Energy

Geotab analysis parameters

O-D Analysis parameter Stop Analysis parameter

Vehicle class Class 7-8 trucks

Retail trade, transportation and warehousing, and

Industr
Y wholesale trade

Zones (of stops or origin-

.. . Richmond & Newport News counties
destination pairs)

Domicile locations

38.0 ~

37.8 +

37.6 ~

37.4 4

sopaurion st [ o
Connector Port of Virginia ports N/A 37.0 A
Vocation - HUb and SpOke —T.’I.75 —??:.50 —??:.25 —??‘I.DO —?é.}'S —7EI-.50 —]'Elr.25

O-D Analysis outputs: Stop Analysis outputs: Modeling steps:

e Journey counts per * Vehicles per stop location 1. Assign journeys to each domicile location
combination of O-D pairand ¢ Stop duration distribution 2. Get dwell time of each vehicle at the domicile
connector zone e Arrival time at the stop location

e Journey distance distribution location 3. Calculate journey start time based on arrival time

e Journey duration distribution

* Running speed 4.

and dwell time at the domicile location
Get intermediate stop duration distributions



Drayage modeling step 4: EVs@®,__

c 5 o 5 5 om0 . I e
Determine intermediate stop locations and build itineraries eese o)

[ Sample journey distance from Geotab }

y

Yes (Journey distance — No No Yes

2*domicile to port

distance) < 20 mi?
\ 4 A 4

(Remaining distance —
domicile to port distance)
<20 mi?

* Choose only one warehouse- * Choose one warehouse from
to-port trip, using a random either warehouse list . 1
warehouse from P.O.V. list * Randomly order port and

* Randomly order port and warehouse stops
warehouse stops

T

* Get warehouse and port

«  Get warehouse and port - Journey start time dwell times
dwell times . * Intermediate stop »| © Calculate the arrival and
* Calculate the arrival and > Al departure times at the
departure times at the * Running speed warehouse and the port

warehouse and the port ~ . - * Calculate distance traveled

—{ Journey completed at domicile

—
A




Regional freight modeling approach Scalez— e\

U.S. Department of Energy

Geotab API

Stop Analysis

Potential Stop

Short StOp Sampling
locations

Potential
domicile
locations

Daily Journey

journey sampling
statistics

Journey INPUT DATA

distances TEMPO

Experian vehicle : INTERMEDIATE
P : : adoption DATA RESULT
reglstratlons

projections

Short stop
locations,
statistics

Lightbox land

use data

Journey-to-stop Vehicle
matching

Long stop
locations,
statistics

Domicile
sampling

itinerary
dataset

optimization

O-D Analysis

Journey
volumes




Regional freight modeling:
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Geotab Origin-Destination (O-D) and Stop Analysis U-5. Department of Enegy

Vehicle class

Vocation

Zones (of stops or O-D pairs)
Connector

Excluded connector

Stop duration threshold

Geotab analysis parameters

O-D Analysis parameter Stop Analysis parameter

Counties in VA, states in 250-mile radius
Richmond & Newport News counties

Port of Virginia ports

< 360 minute stops chained into journeys

0O-D Analysis outputs:

Journey counts per combination
of O-D pair and class

Journey distance distribution per
O-D pair and class

Journey duration distribution per
O-D pair and class

Class 3-8 trucks
Regional
Richmond & Newport News counties
N/A
N/A

360 min (domiciles),
15-360 minutes (other stops)

Stop Analysis outputs:

* Long stop cluster locations and
durations for each class

e Short stop cluster locations and
durations for each class
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Regional freight modeling: stop location characterization Scalez=—= e

U.S. Department of Energy

Stop location types per weight class

 We query stop locations from Geotab.

Weight Class
However:
Land Use Category 3 485 6&7 8 Total

— For regional freight, some mid-route stops Commercial Retail cA% 35% 51%  40%  46%
maY happen outside of the nine-county Commercial/Industrial and Offices 8% 22% 16% 17% 15%

region .
& Heavy Industry and Transportation 9% 5% 4%  21% 12%
— Geotab data does not cover the full Industrial/Manufacturing/Warehouses 5% 9% 8% 15% 11%
population of fleets or potential stops Government and Related 7% 15% 8% 2% 6%
 To add synthetic stop locations, we use Residential SEEMNEEE S os 2%k
. . Vacant Land 5% 3% 5% 3% 4%
third-party land use data (Lightbox): : ’ ’ ’ ’ ’
Miscellaneous 2% 1% 1% 1% 1%
1. Pull shapefiles of stop clusters from Geotab Recreational 29 1% 1% 0% 1%
2. For each type of vehicle, build a frequency Agricultural 0% 0% 0% 0% 0%
table of land uses within stop clusters 100% 100% 100% 100% 100%

3. Randomly sample additional parcels
matching the observed distribution of land
uses



EVsO —

Regional freight modeling: journey-to-stop sampling Scalez— e

U.S. Department of Energy

For each combination of weight class and origin-destination pairing, the following steps are run:

1. Define journey start and end locations
a)  Sample journey distances from that O-D and weight class’s Geotab distribution

b)  Sample within the origin and destination counties to determine locations of long stops (= 6 hours) from which to begin and
end the journey

2.  Sample short (< 6 hour) stops to serve as candidate mid-route stops

3. Conduct a matching optimization
— Objective: minimize fleetwide travel distance, subject to:
. Each vehicle’s travel distance > its defined journey distance

. Network flow preservation constraints

4. Convert matched sets of stops into a dataset of move events
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e Support the integration of short-dwell travel itineraries into Caldera agent-based modeling framework

* Development of additional modeling scenarios for long-dwell and short-dwell charge loads

— Generate week-long light-duty vehicle itineraries with revised charger availability assumptions (e.g., workplace) to investigate
additional community charging demand

— Additional charger configurations

— Additional EV adoption scenarios to test different levels of grid loading

* Ongoing support for grid impact and smart charge management analysis
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FUSE Project

e Goal: develop SCM and VGI approaches for high EV penetration

e Challenges:

— optimal approach depends on multiple factors (e.g., vehicle mobility, vocation)
— detailed SCM/VGI simulation is complex

e This study:
— “bridge” between direct SCM/VGI analysis and fleet characteristics
— examines coincidence: the extent to which EV loads align
— uses coincidence to heuristically evaluate SCM/VGI potential
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Arrival distributions

—J
* When vehicles connect
— Arrival at EVSE o
— Departure from EVSE
— Lower variance - greater coincidence BRI

Power per vehicle (kW)
)

12AM  4AM  8AM  12PM  4PM  8PM  12AM

Charging loads
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Energy distributions

mm Fleet A
0.08 4 = Fleet B

e When vehicles connect

— Arrival at EVSE i

— Departure from EVSE

- Lower variance - greater coincidence

* How vehicles charge

mm Fleet A
Fleet B

o)}
L

— energy consumption (kWh)

(&)
L

IS
1

— charging rate (kW)

Power per vehicle (kW)
w

N
L

— Greater energy - greater coincidence

fury
L

I —

o

12AM  4AM  8AM  12PM  4PM  8PM  12AM

Charging loads
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Charging Coincidence

Power (kW) per vehide

1

12AM  4AM 8 AM 12PM 4 PM 8 PM 12 AM

e Dependson arrival, energy, and rate

e Measured in power (kW) per vehicle

e (Quantifies timing and magnitude of peaks



Types of coincidence
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Charging Coincidence

Power (kW) per vehide

2AM  4AM 8 AM 12PM 4 PM 8 PM 12 AM

e Dependson arrival, energy, and rate
e Measured in power (kW) per vehicle

e (Quantifies timing and magnitude of peaks

Dwell Coincidence

o
IS

Number vehicles connected

I
N

0.0 T T T ; \
12 AM 4 AM 8AM 12PM 4 PM 8 PM 12 AM

e Dependson arrival and departure
e Measured in fraction vehicles (0-1)

e |dentifies load shifting opportunities
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Freight
e 16,000 vehicles
e Cargo van, cutaway, straight truck, and step vans

e Average energy 50 kWh

Transit
e 423 vehicles

e Three transit agencies

e Average energy 367 kWh

Light-duty vehicles (LDV)
e 935,000 vehicles
e Includes public (35%) and home charging (65%)
e Average energy: 26 kWh (home), 11 kWh (public)

Departure

12 AM -
Type
@ Freight L
@ Transit el
8PM{ o LDVHome A .
@ LDV-Public . - .= L o E
e RS -
Jomt L T
4PM 3 ;ﬁ.‘.‘. ";'19?- A ;_S ;
' = .,"5_‘.-'_3".":.*: he -
% o “g - . # "
12 PM | %’ gooo
8AM--=* 1" -I- *.'- ' ; - r. ;.‘;* : : [
My - y b & _. : ‘: 5
pon 5 “:' A .!: - '-‘%J"; o
g;'_ L g | ™ y s "I.'.J
4 AM + )
12 AM . ; . . - ) -
12AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

Arrival

Arrival and departure distributions by group
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—— Average
8 Interdecile range

—— Average
Interdecile range

10

Power per vehicle (kw)
o - N w » 1% (2] ~
. ) | 1 | | )
Power per vehicle (kW)
8 8 5 8
| | . |

T T T T T T T T
12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM 12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

Freight Transit

—— Average —— Average
Interdecile range Interdecile range

Power per vehicle (kW)
- N w B
| ) | |
Power per vehicle (kW)
- N w B
. ) | |

0 T T T 0 T T T T T
12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM 12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

LDV-Home LDV-Public
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Peak timing

e Evening (~8 PM) for freight and LDV-Home T e —
84 Interdecile range Interdecile range
e Early morning for transit bus . a -
2 61 2
e Late morning for LDV-Public g7 :
g 47 g
]
102AM 4)\M Sm 12‘PM 4P‘M BI;M 12 AM BAM 12‘PM 4F"M Sm 12 AM

Freight Transit

5 5
—— Average —— Average
Interdecile range Interdecile range
44 4+
g g
@ 34 o 349
o o
= =
[ [
> >
o o
g & !
< 2] o 27 I
Q Q |
2 2
& & I
|
|
1 1 !
|
|
|
0 T T T T T 0 T T L T T
12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM 12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

LDV-Home LDV-Public
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Peak timing
e Evening (~8 PM) for freight and LDV-Home ’ -] — -
84 Interdecile range
e Early morning for transit bus . -
2 67 =
e Late morning for LDV-Public § ;3"
Peak magnitude and duration 21 o]
i HigheSt magnitUde: tranSit (~4O kW) 102AM 4 AM SAM 12‘PM 4P‘M 8I"M 12 AM 102AM 4AM SAM 12‘PM 4I'i‘M BF"M 12 AM
: Freight Transit
e Lowest magnitude: LDV (<4 kW) 9 ans
e Peak duration (time within 90% of peak) similar o et range N
across LDV, freight * *
g B
. . 13/3* :3/37
e Duration shortest for transit buses §
: - : : : 0 . /\\
12 AM 4 AM 8 AM 12 PM 4 PM 8PM 12 AM 12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM
LDV-Home LDV-Public
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Peak timing
e Evening (~8 PM) for freight and LDV-Home Z e e = Itedocie range
e Early morning for transit bus 56
e Late morning for LDV-Public i
Peak magnitude and duration & 3\&
e Highest magnitude: transit (~40 kW) °AM === 1
e Lowest magnitude: LDV (<4 kW) Freight fransit

e Peak duration (time within 90% of peak) similar o et range N
across LDV, freight |

e Duration shortest for transit buses

Peak variability
e Highest (~60%) for LDV-Public

0 T T T T T 0 T T T T T
12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM 12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

e Lowest (~33%) for freight LDV-Home LDV-Public
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Fraction vehicles

Fraction vehicles

0.8 -

0.2 -

0.0

—— Average
Interdecile range

12 AM 4 AM 8 AM 12 PM 4 M

Freight

0.8 -

06 -

0.0

—— Average
Interdecile range

. T T T
12 AM 4 AM 8 AM 12 PM 4 PM

LDV-Home

Fraction vehicles

Fraction vehicles

0.2

0.0

—— Average
Interdecile range

12 AM

4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

Transit

0.8 -

06 -

—— Average
Interdecile range

0.0
12 AM

T T T
4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

LDV-Public



EVs@ 3

Results: dwell coincidence Scales—> e

U.S. Department of Energy

Maximum dwell coincidence
038 08
* 40% for LDV-Public : 2
% 0.6 g 06 -
e 100% (full coincidence) for all others 2
g 041 £ 04 A
0.2 0.2
—— Average —— Average
Interdecile range Interdecile range
0.0 T T T T T 0.0 T r r r r
12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM 12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

Freight Transit

—— Average
1.0 4 Interdecile range
= = 08 )
g S
K] °
£ 2 06
[3 [
> >
@ @
o a
. .
ag) 0;> 04+ _ A Tea
& &
0.2 4
—— Average
Interdecile range
0.0 0.0

. T T T T T . T T T T T
12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM 12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

LDV-Home LDV-Public
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Maximum dwell coincidence

e 40% for LDV-Public

e 100% (full coincidence) for all others

Minimum dwell coincidence

e 0% for LDV-Public
e Highest for transit (30%)

Fraction vehicles

Fraction vehicles

0.0

0.0

—— Average
Interdecile range

12 AM 4 AM 8 AM 12 PM 4 M

Freight

—— Average
Interdecile range

. T T T T
12 AM 4 AM 8 AM 12 PM 4 PM

LDV-Home

Fraction vehicles

Fraction vehicles

0.8

06 -

04 -

0.2

0.0

0.8 -

06 -

04 -

0.2

0.0

—— Average
Interdecile range

12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

Transit

—— Average
Interdecile range

. T T T T T
12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

LDV-Public



Results: dwell coincidence

Maximum dwell coincidence

e 40% for LDV-Public

e 100% (full coincidence) for all others

Minimum dwell coincidence

e 0% for LDV-Public
e Highest for transit (30%)

Dwell variability

e Maximum interdecile range (IDR) around 14%
e Similar across vehicle groups

e Max IDRs occur in evening and morning

Fraction vehicles

Fraction vehicles

0.8 -

06 -

04 -

0.2 -

0.0

0.8 -

06 -

04 -

0.2 -

0.0

—— Average
Interdecile range

12 AM 4 AM 8 AM 12 PM 4 M

Freight

8 PM

—— Average
Interdecile range

. T T T T
12 AM 4 AM 8 AM 12 PM 4 PM

LDV-Home

T
8 PM

Fraction vehicles

Fraction vehicles
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—— Average
Interdecile range

0.8

06 -

04 -

0.2

0.0 T T T T T
12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

Transit

—— Average
1.0 + Interdecile range

0.8 -

06 -

04 -

0.2

0.0 T T T T T
12 AM 4 AM 8 AM 12 PM 4 PM 8 PM 12 AM

LDV-Public
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12

arrival departure
ol maxrate | R
o]
* Flexibility: the extent to which loads can be reshaped g
. g ] energy
* Depends on when vehicles connect and how they charge <
e Exact characterization of flexibility is complex 2
e Goal: develop intuitive measure of flexibility D 2m aPw e G d0m  12am
Inflexible load
12
Value of flexibility depends on arrival departure
ol maxrate o
e When loads are flexible N i i
e Magnitude of achievable load reduction 56 | |
e Duration of load reduction *
.
Lo 2 PM 4 PM 6 PM 8 PM 10PM 12 AM

Flexible load 136
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The flexibility matrix M : a heuristic for flexibility

e Measures load reduction potential at each time interval
M €RT*DP where

— T number of time periods

— D number duration periods

M (t, d) : maximum possible load reduction between times tand t+ d

1 I
M(t,d)= 4 (Ugs _mt+i)

O

where

— Uy is uncoordinated load at ¢
— m¢ minimum possible load at ¢
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Duration of reduction
Avg reduction (kW/vehicle)

= = = = = = =
<< < < . o o <<
o~ < © o~ < o o
- i -

Flexibility of 10-vehicle freight fleet
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e M (7 PM, 1): 10 kW/vehicle reduction potential
between 7 PM - 8 PM

Duration of reduction
Avg reduction (kW/vehicle)

= = = = = = =
<< < < . o o <<
o~ < © o~ < o o
- i -

Flexibility of 10-vehicle freight fleet
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e M (7 PM, 1): 10 kW/vehicle reduction potential
between 7 PM - 8 PM ©

e M (1 AM, 1) : potential for 3 kW/vehicle reduction
between 1AM - 2AM

e M(7PM,1) > M (1T AM, 1) because few vehicles
charge at night (in uncontrolled setting)

Duration of reduction
1 2 3 4 5 6 7 9 10
.
I |
o N FeY (#)] (0] =
o
Avg reduction (kW/vehicle)

12 AM
4 AM
8 AM

12 PM
4 PM
8 PM

12 AM

Flexibility of 10-vehicle freight fleet
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-10

e M (7 PM, 1): 10 kW/vehicle reduction potential
between 7 PM - 8 PM

[
o)

e M (1 AM, 1) : potential for 3 kW/vehicle reduction
between 1AM - 2AM

(o))

e M(7PM,1) > M (1 AM, 1) because few vehicles
charge at night (in uncontrolled setting)

FaN

Duration of reduction
Avg reduction (kW/vehicle)

e Reading across bottom row reveals (flexible) peak number
and duration

0

12 AM
4 AM
8 AM

12 PM
4 PM
8 PM

12 AM

Flexibility of 10-vehicle freight fleet
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e M (7 PM, 1): 10 kW/vehicle reduction potential
between 7 PM - 8 PM

e M (1 AM, 1) : potential for 3 kW/vehicle reduction
between 1AM - 2AM

(o))

e M(7PM,1) > M (1 AM, 1) because few vehicles
charge at night (in uncontrolled setting)

FaN

Duration of reduction
Avg reduction (kW/vehicle)

* Reading across bottom row reveals (flexible) peak number
and duration

[\]

e Reading across column reveals flexibility duration

= = = = = = =
<< < < . o o <<
o~ < © o~ < o o
- i -

Flexibility of 10-vehicle freight fleet
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Maximum reduction potential
e QOccurs at uncoordinated peak times ..
e (Close in magnitude to uncoordinated peak

30

20

Duration of reduction
Awvq reduction (kW/vehicle)
Duration of reduction

Avg reduction (kW/vehicle)

10

12 AM
4AM
8 AM
12 PM
4PM
8 PM

12 AM

12 AM -
4AM
8 AM

12 PM
4PM
8 PM

12 AM

Freight Transit

L Ling Lag
n ~ =]
=] n =]

= o
< h
(=] w

Avg reduction (kW/vehicle)

(W e hiclal

=
o
]

Duration of reduction
Duration of reduction

fun raductinn

o
n
=]

o
N
i

o
=1
=]

= =
T o
- @

LDV-Home LDV-Public

= = = = =
< < =< a o
o o ] ~ o«

12 AM
12 AM
4 AM
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2PM
12 AM



EVs@ 3

Results: flexibility & reduction potential Scales—" e

U.S. Department of Energy

Maximum reduction potential

|
@

e QOccurs at uncoordinated peak times

= - 40
. . . . ef . g
e Close in magnitude to uncoordinated peak g 3 08
g R z
Reduction potential timing E s 8 g
e LDV-Public: reduction potential only in !
daytime £ 3 3 : &z & i % 31 3 & £ & 3
e All others have night-time reduction potential Freight Transit
_30 -2.00
- % - 1.50%
g ?:g % 1.25%
‘“o: E ”g 1005
: 5 ° 0.50‘?(‘
= = = = = = = = = = = = = = 000

LDV-Home LDV-Public
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Maximum reduction potential

. . 2 _8 2
e QOccurs at uncoordinated peak times s | .
. . . |:m 5% cm .lg
e Close in magnitude to uncoordinated peak g~ I 0
5 : i :
Reduction potential timing &~ g d” g
e LDV-Public: reduction potential only in ) : )
. ) 0 "] 0
daytime I I
e All others have night-time reduction potential Freight Transit
S -3.0 g - 2.00
Reduction potential duration - -
. . . . ° z @ 1503
e Potential decays rapidly with duration for LDV- 208 En
- % gm 1.25;3:
Public, Transit s 5] B, 100§
e LDV-Public, Transit are less flexible e i T 0s0%
~ 0.5 ~ 0.25
e Potential decays slowly for freight, LDV-Home g . -
* Freight, LDV-Home more flexible i DV-Home i DV-Public
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—— Transit
1.0 —— Freight

e Control timing
* Freight/LDV Home peaks align with typical high-price periods

e Dynamic pricing (e.g., real-time or TOU) may reduce freight/LDV-Home pea%&,

d reduction

0.6

024\

* Transit and LDV-Public loads peak during typical low-price periods

e Transit/LDV-Public load reduction requires alternative pricing schedule or timé-aghostic policy™
Load reduction potential over day

8PM 12M

(e.g., demand charges)
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—— Transit
—— Freight
—— LDV (home)
—— LDV (non-home)

o
!

e Control timing

* Freight/LDV Home peaks align with typical high-price periods £

e Dynamic pricing (e.g., real-time or TOU) may reduce freight/LDV-Home piosa
§0.47

e Transit and LDV-Public loads peak during typical low-price periods )

 Transit/LDV-Public load reduction requires alternative pricing schedule orti \ emagmﬂmpomcysm 2

Hour of day

(e.g., demand charges) Load reduction potential over day

—— Freight
—— LDV (home)
—— LDV (hon-home)

Control duration N -

e Magnitude of reduction potential decays with reduction duration o8]

e Speed of decay captures value of sustained control

Normalized reduction

e Can inform duration of control signals (e.g., length of DR event)

e Short-duration control may be more effective for LDV-Public/Transit

e Longer-duration control effective for Freight/LDV-Home Reducton duration (hours)
Load reduction vs reduction duration
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Coincidence analysis

e Consider four vehicle groups: transit, freight, light-duty home, and light-duty public
e Examine uncoordinated charging and dwell coincidence

e Quantify cross-temporal load flexibility for each vehicle group

Findings

e Peak times vary: freight, LDV-Home peak in evening while transit, LDV-Public peak in morning
e Dwell coincidence high for freight, LDV-Home, and trasnit; low for LDV-Public

e Effective control strategies different across vehicle groups

Next steps

e Study mixed composition fleets
e Incorporate models of geographic coincidence

e Study impacts of multi-resolution geographic coincidence on resultant load
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e Discussions from the Semi-Annual Stakeholder Meeting on Codes and Standards, Use
Cases, and Valuation of SCM

e Strong need for end-to-end standards certification, enforcement, and interoperability
testing

 Need for SCM use cases with large fleets, travel centers, emergency response and
resilience, V2X, widespread residential applications

e Value of SCM in avoided service transformer and distribution feeder upgrades, avoided
long lead-times for interconnection, need for parallel processing of soft costs



Thank You!

Please mark your calendars for the next

Semi-annual Stakeholder Meeting: Fall Déep--Di:ve;;Focufé Topics:
September 25-26 i

* SCM/VGI Controls
Idaho National Laboratory o New SCM/VGI and HELICS Updates
o Broad Analysis Results

* Grid Impact Assessments

| _ o L/M/HDV Controlled/Uncontrolled
E\’S @ “'o Highlight Cost Tradeoff Benefits
SCCl |Qf\. ) @ * Demonstrations

U.S. Department of Energy o Lab Testbed: Multi-EVSE, OCPP 2.0.1
o Field Demo in Utility Environment

This work was authored [in part] by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department
of Energy (DOE) under Contract No. DE-AC36-08G028308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and
E‘ﬁ"“ERﬁEFY Office of ENERGY EFFICIENCY Renewable Energy Vehicle Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S.
Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a
& RENEWABLE ENERGY nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government
purposes.
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