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EVrest Employee Charging Program Pilot

Updates on EVrest pilot with data analysis and insights
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EVrest: EV Reservation System
Deployment

Complete Workplace EV Charge Reservation System (EVrest) ANL Alpha Pilot
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EVrest: EV Reservation System
ANL Deployment

• EV Charge Reservation Mobile App
• iOS and Android

• Allows EV Drivers the Ability to Reserve a Specific Port/Station for Future Use

• Integrates with ANL’s OCPP CSMS Platform to Enable Future Smart Charging 
Algorithm Development and EV Charging Behavior Research



5

EVrest
Background

10 of 12 AC Ports 
at Bldg. 300 go 
live

Registration 
Opened

7 of 8 AC Ports 
at Bldg. 242 go 
live

3 of 4 DC 
Charger at 
Bldg. 300 go 
live

10-09-23 10-13-23 11-22-23 11-29-23

161
Registered Users

81
iOS Devices

76
Android Devices
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EVrest
Session Data

10/10/23 – 4/2/24

127
Registered Users who have 
completed at least one 
reservation

2799
AC and DC Charge 
Sessions

58 MWh
Total Energy Dispensed
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What is the Distribution of Energy per Reservation (AC vs DC)?

Mean: 16.88 kWh per session Mean: 40.31 kWh per session
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Mean: 175.51 minutes (~3 hours)

What is the Distribution of Charge Duration per Reservation (AC vs DC)?

Note: Employees can reserve up to 4 hours, but we allow up to 4 hours 15 min of charging because we allow 
charging to begin in the 15 minute window before their actual reservation if the port is available.

Mean: 46.07 minutes
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EVrest Reservation Usage
Distribution Plots

• 3 distinct peaks corresponding to groups of users
• Possible explanations:

• Different launch dates at different locations around ANL
• User Behavior
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EVrest Reservation Usage
Distribution Plots

• 3 distinct peaks corresponding to groups of users
• Possible explanations:

• Different launch dates at different locations around ANL
• User Behavior
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Flexibility

Flexibility > 0: SCM could be applied
Flexibility <= 0: SCM can not be applied

Pre-Flexibility: Calculated based on driver 
inputs and used in SCM algorithms

Post-Flexibility: Actual flexibility calculated 
after charge session has occurred, 
dispensed energy is minimum of actual 
energy dispensed or requested energy.

Q: How can someone charge less than 
requested (green) but still have flexibility?
A: Driver or EV ends charging session before 
reaching driver’s target energy.

Q: How can someone charge more than 
requested (red) but still have flexibility?
A: Charge session is not stopped once the EV 
meets its requested mileage. Driver reserved 
the port longer than what was required to 
meet their mileage needs. 

Q: How do we combat inaccurate requests 
and physically impossible mileage requests?
A: Apply a check on the reservation screen

This requested miles is limited based on
• Max Power available to the EVSE (new)
• Max Power drawn by the vehicle (new)
• Range of the Vehicle
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Pre-Flexibility vs. Post-Flexibility
Comparison

• Points on the green line indicate that these 
sessions have accurate information.

• Points below this line, indicates that the request 
is larger than what was required, not allowing 
algorithms to take advantage of their actual 
flexibility

• Points above this line indicate an error in our 
estimation of the max power the vehicle can 
charge at (we base our estimation on historical 
data)
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Correlation of EV Driver’s Charging Attributes

Some interesting correlations:
• Average Requested Miles 

& Average Actual Miles Charged

• Average Reservation / Session Duration 

& Pre / Post-Flexibility

• Average Accuracy 

& Average Actual Miles Charged per 

Session

• Total Number of Sessions by EV Driver

& Post-Flexibility
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How Accurate are Driver Mileage Requests?
AC & DC sessions combined

• Variation in accuracy of 
requested miles across 
charging sessions

• Polynomial regression explains 
the varying trend:

• Lower values of 
requested miles (< 100 
miles) shows greater 
accuracy

• Higher miles (> 150) 
shows significantly lower 
accuracy, possibly due to 
EV users choosing 
arbitrarily large mileage 
values during reservation
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How Accurate are EV Mileage Requests for AC Charging?

Accuracy diverges above 100 miles due to power rating of EVSE and ~4 hour time limit
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How Accurate are EV Mileage Requests for DC Charging?
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How accurate are the requested miles as drivers use EVrest more?

• An increasing trend in 
accuracy of requested 
miles (vs. actual miles 
charged during charging 
sessions) is visible with 
increasing usage of EVrest
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How accurate are the requested miles as drivers use EVrest more?

• January 2024

• A decreasing trend in 
accuracy of requested 
miles (vs. actual miles 
charged during charging 
sessions) is visible with 
increasing usage of EVrest
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How accurate are the requested miles as drivers use EVrest more?

• An increasing trend in 
accuracy of requested 
miles (vs. actual miles 
charged during charging 
sessions) is visible with 
increasing usage of Evrest
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EVrest
Next Steps

• Continue operating EVrest at Argonne
• Look to harden platform, fix bugs, & add new features
• Implement Charge Scheduling on EVrest Platform (FY24 Q4 Deliverable)
• Explore ML predictive Analytics opportunities
• Explore other potential deployments outside the lab (Workplace or MUD)
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EVrest Employee Survey
Feedback

30 Employees participated in Survey
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EVrest Employee Survey
Feedback
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User Feedback

Great work! thank you for developing the app and it makes charging much more convenient!

The app has been great I think in cutting down a lot of frustrations that users have had(people parking in your 
spot randomly even though you booked in advance is a big one).

I like that it will cancel a reservation if not activated within 15 minutes of start time. This allows for others to take 
a spot if someone reserved it but didn't show up for the appointment time.

Map is easy to deal with, good feedback from User interface

I like that I know the charging station will be free if I've reserved it, and I like that the app lets me know when my 
car is finished charging.

It's a great system (so much better than Vector) 
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Improvement Suggestions

Are there any specific improvements you would suggest for the user interface?

Can you add a payment feature to only charge for the kW used? I have a hybrid and typically only 
charge 2.5 hrs at 3x/week.

Allow user to start the session, say, up to 15 mins before the reservation starting time without the need 
to delete the session then rebook the reservation if the user arrives slightly early. The 4 hour window 
can be kept the same.

A copy and paste option. Or something similar. I have a set schedule at work so I charge at the same 
time everyday. I counted 15 taps just to make a single reservation. Also entering in the miles seems 
useless.

Not much value in the “miles you plan to charge” from a user perspective.

It always asks what mileage I want to charge for a session. I don’t know the exact number, but I just 
want to charge it using the maximum power.



• Thank You

• Nithin Manne
nmanne@anl.gov

• Salman Yousaf
yousaf@anl.gov

Jason D. Harper
jharper@anl.gov

mailto:yousaf@anl.gov
mailto:yousaf@anl.gov
mailto:jharper@anl.gov
mailto:yousaf@anl.gov
mailto:yousaf@anl.gov
mailto:jharper@anl.gov
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Can Actual Energy for Charging Sessions be Explained and Predicted?

• Stacked-ensemble Machine Learning 
model trained on EV User’s historical 
attributes, such as:

• total number of sessions,
• historical accuracy of requested 

miles
• used to predict energy requirements (in 

miles) for charging sessions 

• Results show ML can predict actual 
energy requirements significantly better 
than EV User’s own expectations

• Mean Absolute Error (MAE) improved by 
47.3% with ML-based predictions:

• MAE for User Expectation:  34.8%
• MAE for ML Predictions:      18.3%



27

Can Actual Energy for Charging Sessions be Explained and Predicted?

• Shows the potential for predictive 
power in historical EV user 
behaviour

• Larger dataset of Evrest user history 
with fine-tuned modelling could 
provide even more interesting 
results

• Predictions for energy required and 
user flexibility for charging sessions 
could become inputs for charge 
scheduling models and greatly 
improve impact



Salman Yousaf, Nithin Manne and Jason D. Harper
ANL EV-Smart Grid Interoperability Center

Advanced Mobility and Grid Integration Technology
April 4, 2024

- Predicting Requested Energy 
(Mileage) for Reservations 
using Machine Learning

- Smart Charge Scheduling
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning 

• EVrest user’s own estimations for energy for charging reservations are inaccurate:
– Root Mean Squared Error for AC Charging: 51.23

• Users often 
overestimate their 
energy 
requirements.

• Actual energy 
received during 
charging sessions 
is often lower than 
requested energy.
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning 

• Using historical reservation and charging sessions data, we developed a Deep Neural Network 
that predicts requested energy (mileage) for an EV reservation

• Deep Neural Network Architecture
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning 

Training Data Overview

Source: Real Time Data from EVrest reservations and charging session records

Data Features: 

• User Information
– EV User ID: Unique identifier for each user.

– Historical User Characteristics: 

• Historical Average Energy Request Accuracy: Assessment of user's past request accuracy, measured by comparing requested to actual energy needs.

• Total Number of Sessions: Cumulative count of user's charging sessions, reflecting user experience and frequency

• Vehicle Details
– Vehicle ID: Unique identifier for each vehicle.

– Make & Model: Vehicle's brand and model name, providing insights into vehicle type and potential charging needs.

• Reservation Metrics
– Start Time: Hour and day of the week when the charging session is reserved, highlighting peak usage times and patterns.

– Duration: Length of reservation, offering insights into charging behaviour and station occupancy.

• Reservation Type (AC / DC Charging)

Prediction Target
– Actual Miles Charged: The actual mileage charged during the session, serving as the label for predicting user behavior and charging needs
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning 

• AC Charging: Improved RMSE (Root Mean Squared Error) by ~68% 

EV User’s Estimations Model Predictions
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning 

• DC Charging: Improved RMSE (Root Mean Squared Error) by ~30%

EV User’s Estimations Model Predictions
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning 

• Model’s predictions reduced RMSE 
(Root Mean Squared Error) when 
compared with user’s own predictions 
by:
– 68% for AC Charging
– 29% for DC Charging
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning

• Prepopulate predicted ‘miles planned to charge’ to assist 
users while creating a reservation

• Users can choose to change the prepopulated value 
based on their needs

• ML-based prepopulated predictions take into account 
historical trends and attributes, such as:

– User’s historical reservations
– User vehicle’s historical characteristics
– Reservation timing and duration

• Deep Learning Model is trained with new data and new 
predictions are generated with a daily frequency
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Predicting Requested Energy (Mileage) for Reservations using Machine Learning 

Input Data Features
1. Driver’s Attributes

• ID
• Historical Average Accuracy
• Number of Completed Sessions

2. Vehicle’s Attributes
• ID
• Make, Model

3. Reservation Start Time
• Day of Week
• Hour of Day

4. Reservation Duration
• 15-minute increments

Deep Neural 
Network

Predicted 
Miles for 
Reservation

User Enters 
Reservation Details 

on EVrest

EVrest uses 
prediction to 
prepopulate 

requested energy 
for User
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Deployment Insights:
Predicting Requested Energy (Mileage) for Reservations using Machine Learning 
From March 27 – April 3, 2024:

• Total of 158 Sessions

• 56.4% of users chose to proceed with ML-prepopulated requested energy mileage while creating EVrest reservations

• Accuracy comparison:

Sessions with ML-Prepopulated Values Sessions with Users’ Manually Entered Values

RMSE: 25.9 RMSE: 29.4
• Reservations that used ML-Prepopulated Requested Energy reduced (RMSE) error by ~30%



38

Predicting Requested Energy (Mileage) for Reservations using Machine Learning

• Initial Deployment Insights:
– The platform was launched 8 days ago, offering early but valuable insights.

– Continuous accumulation of usage data will enrich our understanding and drive deeper analysis

• AI Model Evolution:
– Our Machine Learning (ML) model is in ongoing training with live data from EVrest reservations and charging sessions.

– This dynamic training approach ensures constant improvement and optimization of our Deep Neural Network, adapting to 
evolving user needs and behaviors.

– Continouous training of ML Model allows us to monitor and analyze the training and further optimization of our Deep Neural 
Network

• User Experience and AI Integration:
– User’s confidence with ML-prepopulated energy requirements provides insightful ideas on behaviour

– Exploring the potential of making ML-prepopulated energy suggestions the default, encouraged by their accuracy and user 
reception.

• Future Considerations:
– Assess the long-term impact of AI-prepopulated options on user behavior and platform efficiency.

– Continuously evaluate user feedback to refine and enhance the AI's accuracy and usefulness.
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Smart Charge Management

• Argonne’s Building 300 – 
Peak charging loads are 
becoming unsustainable, and 
can potentially lead to 
hardware failures

• Simulations on historical 
charging data using a Linear 
Programming scheduling 
algorithm shows: 
– smart charge management 

can successfully reduce 
peak demand to stay within 
constraints
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Smart Charge Management

• Simulations using 
smart charge 
scheduling show 
average peak power 
reduction of ~22% 
across days where 
charging is above 
20kW
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ML-based Requested Energy (Mileage) Predictions to drive Smart Charge 
Management

• ML-based requested energy predictions for 
reservations can be used to drive Smart Charge 
Management

• Analysis on historical data shows ML-based 
requested energy predictions for reservations 
improve flexibility:
o Average Original Flexibility: 0.127
o Average ML Predictions Flexibility: 0.206
o Average Flexibility Change: +61.6%

• Flexibility offered through ML-based requested 
energy predictions is sufficient for managing 
peak demand for ANL Building 300

• Next steps include deploying a Smart Charge 
Management platform integrated with ML-based 
requested energy predictions

ML-Prepopulated Requested Energy Flexibility

   Actual Historical Flexibility

Simulated vs. Historical Charging Session Flexibility Distribution



• Thank You

• Salman Yousaf
yousaf@anl.gov

• Nithin Manne
nmanne@anl.gov
Jason D. Harper
jharper@anl.gov

Open for Questions!

mailto:yousaf@anl.gov
mailto:yousaf@anl.gov
mailto:jharper@anl.gov
mailto:yousaf@anl.gov
mailto:yousaf@anl.gov
mailto:jharper@anl.gov
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OCPP 2.0.1 development work



44

OCPP 2.0.1 Node-Red nodes



45

OCPP 2.0.1: Node-Red Nodes

What is OCPP? 
• Open Charge Point Protocol (OCPP) is a communication standard for electric vehicle (EV) charging 

stations. 
• Think of it as a common language for chargers and charging network software to talk to each other. 

Problem OCPP Solves: 

• Promotes interoperability: Any OCPP-compliant charger can work with any OCPP-compliant network 
software, regardless of manufacturer. 

• Avoids vendor lock-in: Businesses are not limited to using a single provider for chargers and software. 
• Simplifies network management: OCPP allows for centralized control and monitoring of charging 

stations from different vendors. 

OCPP “101”
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OCPP 2.0.1: Node-Red Nodes

Unique ID Command Name Json Payload

Unique ID Json Payload

Unique ID Code Details

Message Request (CALL)

Message Response (CALLRESULT)

Error Message (CALLERROR)

Msg Type (2)

Msg Type (3)

Msg Type (4)

[2, "19223201", 
"BootNotification", { 
"reason": "PowerUp", 
"chargingStation": { 
"model": 
"SingleSocketCharger"
, "vendorName": 
"VendorX" } } ]

[3, "19223201", {    
"currentTime": "2013-
02-01T20:53:32.486Z", 
"interval": 300, 
"status": "Accepted" } ] 

[4, "162376037", 
"NotSupported", 
"SetDisplayMessageRe
quest not 
implemented", {} ] 

Description

OCPP Message Types Message examples



47

OCPP 2.0.1: Node-Red Nodes

Why Node-RED? Perfect for Prototyping and Production

• Rapid Prototyping: Quickly test your ideas by dragging and dropping nodes to create workflows. 
• Easy to Learn: Intuitive interface lowers the barrier to entry for non-programmers. 
• Wide Range of Nodes: Pre-built functionality for common tasks saves development time.
• Scalable: Start small and scale your applications to production use. 
• Deployment Ready: Flows can be deployed with a single click. 
• Customizable: Create your own nodes to extend functionality for your specific needs.

What is Node-RED?

• A visual programming tool for wiring together hardware, 
APIs, and online services.

• Uses a web browser interface - no complex coding required! 
• Great for building event-driven applications. 

Node-Red “101”
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OCPP 2.0.1: Node-Red Nodes

What it is:
• Node-Red “nodes” that support the sending and receiving of OCPP messages, including the 

connection and authentication of the underlying WebSocket layer.
• Separate “nodes” for implementation by either a charge station (CS) or a charge station 

management system (CSMS).
• Support for OCPP 2.0.1.
• Packages OCPP message arrays based on a defined Json structure
• Handles tasks like creation of unique message Ids and can direct OCPP responses based on those 

Ids to the appropriate functions/nodes. 
• Can be used in addition to the existing Node-Red OCPP 1.6 nodes previously available.

What it isn’t:
• They do not implement a fully functional CS or CSMS.

• It is not a full software stack like the Linux Foundation EVerest project.
• It is up to the user/developer to implement the full business logic based on the OCPP 

message being passed and the available hardware and data storage.
• Usage requires the user/developer to have an understanding of the OCPP protocol.
• Nodes do not interpret or act upon OCPP messages themselves.

Node-Red OCPP2 Nodes “101”
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OCPP 2.0.1: Node-Red Nodes

OCPP 1.6 OCPP 2.0.1

• Security not required but supported 
(see OCA OCPP Security White Paper)

• Security Profiles
• #1 Basic (user/password)
• #2 Basic + TLS CSMS
• #3 Basic + TLS CSMS + TLS CS

• SOAP </> & JSON [{}] • JSON [{}] only

• Multiple OCPP nodes for message handling • Single node for message handling

•    OCPP SOAP schema validation only • OCPP JSON schema validation

• Custom dynamic commands (non-ocpp 
commands like connect, disconnect, etc.)

• OCPPCommCtrlr and SecurityCtrlr dynamic 
variable settings for WebSocket and security 
functionality

• Open Source for 6 years used by other labs, open-
source projects, and 3rd parties

• CS server (CSMS) 
• Used for ANL Smart Energy Plaza CSMS prior to 

EVrest rollout
• CP client (CS)

• Used in ANL OptiQ EVSE project.
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OCPP 2.0.1: Node-Red Nodes

CSMS Node Config CS Node Config

Node Setup
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OCPP 2.0.1: Node-Red Nodes

Output ports:
1. Standard non-directed
2. Dynamically linked
3. Optional OCPP logging

Recommendation:
Make use of the new Node-Red “Link” node capabilities like 
dynamic linking
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OCPP 2.0.1: Node-Red Nodes

OCTT tested

OCTT test tool Node-Red CSMS proto
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OCPP 2.0.1: Node-Red Nodes

Installation in Node-Red:
• Use the “Manage Palette” menu
• Search and Install

• node-red-contrib-ocpp2
-or-
• cd ~/.node-red installation folder
• npm install @anl-ioc/node-red-contrib-ocpp2

Git Repository:
• github.com/Argonne-National-Laboratory/node-red-contrib-ocpp2

Bryan Nystrom 
• bnystrom@anl.gov

https://github.com/Argonne-National-Laboratory/node-red-contrib-ocpp2
mailto:bnystrom@anl.gov


Concentrated charging 
infrastructure: reconstructing trip 
sequences from traffic data that 
reflect use patterns
Jeewon Choi, Thad Haines, Matt Lave, Andrea 
Mammoli, Emily Moog, Will Vining 

EV@Scale Deep Dive Meeting, April 4, 2024

UNCLASSIFIED UNLIMITED RELEASE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & 
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. 
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525

SAND2024-03963O
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Overview

• Why we need synthetic trip generation

• Required characteristics of a synthetic trip

• What the trip sequences look like in reality

• Methodology to reconstruct trips that respect 
statistics and also look like typical routes

• What synthetic trip sequences look like

• Distinguishing between EV users with different 
charging access

• Do the synthetic trip sequences look like the real 
ones?

• Dealing with trips that cross boundaries

• Trip endpoints to actual routes, including real 
addresses and speed

UNCLASSIFIED UNLIMITED RELEASE

• What changes for MHDV – schedules

• Reconstructed MHDV trips

• Hesitant EV driver workshop – what we 
expect to get out of it

• How we plan to use this in our simulations
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Why we need synthetic trip generation

• We are interested in the interplay of 
charging opportunities at home, at work 
and en-route

• We want to model when, where and why 
drivers charge their vehicles, via a 
Markov Chain-based ABM

• We need to generate large numbers of 
synthetic trip sequences that match the 
statistics

• From traffic “big data”, we can extract 
origin-destination pair distributions

• Problem - how to reconstruct trips in a 
realistic way, that reflect commuting 
behavior and daily / weekly schedules?

UNCLASSIFIED UNLIMITED RELEASE

Photo by Sebastian Enrique on Unsplash 

https://unsplash.com/@sebenrique12?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-highway-filled-with-lots-of-traffic-under-a-bridge-fITjgoVw6GU?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash


57

Required characteristics for synthetic trips

• Collectively, synthetic trips should reflect 
the OD pair statistics, that can be 
extracted from datasets such as Wejo, 
Geotab or cell phone data

• Synthetic trips should reflect real driving 
spatial patterns: repeated trips between 
home and work (anchor points) and 
occasional trips to other destinations

• Synthetic trips should reflect temporal 
characteristics of real trips – work 
schedules, average speed due to 
congestion

UNCLASSIFIED UNLIMITED RELEASE

Richmond, VA

Newport News, VA

H

W
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What the trip sequences look like – wejo data

UNCLASSIFIED UNLIMITED RELEASE

A few trips in 8 counties All trips in 8 counties
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List-constrained Markov chain trip sequence generation

UNCLASSIFIED UNLIMITED RELEASE

Long list of trips based 
on O-D pair distribution

OD pair stats 
from wejo data

Ph-w Ph-d

Pw-h

Pw-d

Pd-w

Pd-d

Pd-h

H 
W

X



60

Trip probabilities are also derived from real data

UNCLASSIFIED UNLIMITED RELEASE

weekday
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Probabilities courtesy of Steven Schmidt INL
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What the synthetic trip sequences look like

UNCLASSIFIED UNLIMITED RELEASE

16 trips 10000 trips
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Differentiating between EV users by access to private charging

UNCLASSIFIED UNLIMITED RELEASE

• Use census block data to 
assign probability of driver 
either renting or living in 
MUD

• Information provided in “No 
Place Like Home” report links 
likelihood of private EVSE to 
rental vs. owned

• Use this information to 
determine whether driver has 
access to private EVSE

has access to private EVSE

relies on public EVSE
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Turning coarse trips in a sequence into specific trips

UNCLASSIFIED UNLIMITED RELEASE

• Trip chains are based on a square grid

• Each agent has a home and work grid square 
that are fixed. A random address, chosen 
from a list of all addresses in the box, is 
chosen within the grid to be the specific 
home/work location

• The home and work addresses remain fixed 
for the entire trip chain

• For all trips ending somewhere else (not at 
home or work) a random address is chosen 
within the grid square where the trip ends
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Differentiating between EV users by access to private charging

UNCLASSIFIED UNLIMITED RELEASE

• Once the trip endpoints are transformed 
from grid squares into addresses we can 
find the route, travel time, and energy 
required for each trip.

• Using the Open Street Map road 
network and speed limit data we use 
the A* algorithm to find the route with 
the shortest travel time.

• For each route we calculate the energy 
required to drive that route.
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What about trips that cross boundaries?

UNCLASSIFIED UNLIMITED RELEASE

All wejo trip sequences that enter area 
of interest at least once – 166825 
sequences

All wejo trip sequences with at 
least 50% of trips in area of interest 
– 128586 sequences

All wejo trip sequences with at 
100% of trips in area of interest – 
90083 sequences
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Dealing with trips that cross boundaries

UNCLASSIFIED UNLIMITED RELEASE

entry point

exit point
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Small business traffic simulation

UNCLASSIFIED UNLIMITED RELEASE

Photo by Brian on Unsplash

• Typical annual miles driven range from ~ 15K miles to 
~ 90K miles per year for service trucks / vans

• At least 500,000 establishments with 1-5 vehicles in 
their fleet

• Most small business employees take their trucks 
home after work

• Using an EV could improve profits for a small 
business by better tracking, lower fuel cost and lower 
downtime

• Charging may be an issue for trucks that cover many 
miles

https://unsplash.com/@firstinitial_b?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-sign-for-clayton-plumber-hangs-from-a-pole-zgNwZnA2VtE?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
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Geotab data

UNCLASSIFIED UNLIMITED RELEASE

Photo by Brian on Unsplash

• Geotab data used for MHDV trip analysis

• Geotab provides OD pairs directly

• Process to build synthetic trips similar to 
the one used for wejo data, with similar 
issues

https://unsplash.com/@firstinitial_b?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-sign-for-clayton-plumber-hangs-from-a-pole-zgNwZnA2VtE?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
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Small fleet synthetic trip sequences

UNCLASSIFIED UNLIMITED RELEASE

Photo by Brian on Unsplashhourly trip probabilities adapted for service vehicles

https://unsplash.com/@firstinitial_b?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-sign-for-clayton-plumber-hangs-from-a-pole-zgNwZnA2VtE?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
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Planned workshop at UTK and national survey – what we hope to 
learn

UNCLASSIFIED UNLIMITED RELEASE

Photo by Jason Goodman on Unsplash• From the workshop
– What are good questions to ask in a survey?

– Are small businesses interested in operating EVs?

– Is our research useful to city planners, community organizations 
and other stakeholders?

– Unknown unknowns

• From the national survey
– How do potential EV users with limited access to charging with 

acquiring and owning an EV?

– What is the expected charging behavior for these potential new 
users, in personal transportation?

– What is the expected charging behavior for these potential new 
users, in business use?

https://unsplash.com/@jasongoodman_youxventures?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/woman-placing-sticky-notes-on-wall-Oalh2MojUuk?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
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Where we go from here and thank you!

UNCLASSIFIED UNLIMITED RELEASE

• Trip sequences that cross boundaries 
gracefully

• Hourly probabilities obtained from 
survey results and / or data 

• Integrate data with EVIPro and 
Caldera

• Implement ABM to model charging 
response to external pressures



Smart Charge Management 
(SCM) and mid-route 
charging

Manoj Sundarrajan
Steven Schmidt

April 4, 2024
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Caldera Charging Decision Module (CDM) - Agent-based Modeling

• Each EV is modeled as its own agent driving and charging as needed within Caldera. 

• Process
– Input a large number of vehicle itineraries

• Point A to Point B to Point C, etc.  Several days or even several weeks of data.

– Track SOC of each vehicle each leg of itinerary

– When needed, deviate from itinerary to charge at public high-powered station

– Utilize routing-engine tool osrm-backend (akin to Google Maps)
• See https://github.com/Project-OSRM/osrm-backend

– Collect charge events and model using Caldera Grid or Caldera ICM

• Modes
– Unscheduled charging mode (Base-case)

• Go directly to station without checking availability, first-come-first-serve

– Scheduled charging mode
• Remote communication with multiple stations to determine best choice
• Lowest opportunity-cost

https://github.com/Project-OSRM/osrm-backend
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Agent-based modeling

Point C Point D

Itinerary

Point A

Point B

• Imagine a car driving from point A to point 
B to point C, etc.

• Travel-times and distances computed using 
a routing-engine

• We use the osrm-backend tool
• See https://github.com/Project-OSRM/osrm-

backend

https://github.com/Project-OSRM/osrm-backend
https://github.com/Project-OSRM/osrm-backend
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Departure

80% 50%50%

Agent-based modeling, Short-dwell/Mid-Route

Departure Departure DepartureArrival Arrival Arrival Arrival

10% 10% 0% 0% 0%

Time

Dwell Period Dwell Period Dwell Period
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Departure

80% 50%50%

Agent-based modeling, Short-dwell/Mid-Route

Departure Departure DepartureArrival Arrival Arrival Arrival

10% 100% 90% 90% 72%

Time

Some dwell periods
have charging

(e.g., Home or Work)
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Departure

80% 50%50%

Agent-based modeling, Short-dwell/Mid-Route

Departure Departure DepartureArrival Arrival Arrival Arrival

Time

Station
Departure

Station
Arrival

10% 10% 58% 58% 40%3% 65%

Inserted
Mid-route Charging

Waypoints

Future SOC values
updated

Sometimes we need
mid-route charging
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Departure

80% 50%50%

Agent-based modeling, Short-dwell/Mid-Route

Departure Departure DepartureArrival Arrival Arrival Arrival

Time

Station
Departure

Station
Arrival

10% 10% 58% 58% 40%3% 65%

Future waypoints shifted 
into the future if needed

(Travel times and 
distances computed using 

a routing engine)
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Unscheduled Charging

Home

Work

Public
Destination

Public
Destination

Itinerary

80%

30%

2%
0%

Fast 
Charging
Station

• Car picks a station without knowing 
availability beforehand

• First-come-first-serve plug-in to 
charge
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Home

Work

Public
Destination

Public
Destination

Itinerary

80%

30%

62%
50%

75%

Unscheduled Charging

• Car picks a station without knowing 
availability beforehand

• First-come-first-serve plug-in to 
charge

Fast 
Charging
Station
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Scheduled Charging

Home

Work

Public
Destination

Public
Destination

Itinerary

80%

30%

2%
0%

• Communicates with multiple 
stations along route

• Stations reply with a bid

• Station prices, out-of-way 
distance, etc., affects choice.

• Lowest opportunity-cost

Fast 
Charging
Station

Fast 
Charging
Station

Fast 
Charging
Station

Fast 
Charging
Station
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Home

Work

Public
Destination

Public
Destination

Itinerary

80%

30%

62%
50%

75%

• Car chooses a station,

• schedules a charge

• and adjusts route 
accordingly.

Scheduled Charging

Fast 
Charging
Station

Fast 
Charging
Station

Fast 
Charging
Station

Fast 
Charging
Station
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Itinerary Data

• Characteristics of Itinerary Data
– Input: Collection of move-events:

• Itinerary unique-id and vehicle type

• Start and end time, start and end location (lat, lon)

• Destination type (Home, Work, Public, etc)

• EVSE available at destination

– Input:  Initial SOC for each itinerary

– Additional requirements:

• Arrival and departure location must match (no teleportation)

• Each itinerary must have exactly one home and one work location

• Itineraries always depart from home in the morning and return to the same home at the end of the day

– At run-time:

• Travel times computed using osrm-backend routing engine

• SOC at each waypoint computed based on travel distances and vehicle efficiency (wh-per-mile)
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Itinerary Data

• Itineraries from NREL
– Real world trips in Virginia purchased from WEJO, trip chained to form individual vehicle itineraries.

• Itineraries from Sandia
– Plan:

• Sandia team will stochastically-generate itinerary data

• INL team will run simulations with Sandia’s itineraries to compare with Sandia’s analysis.
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Home Charging Levels

• A probability of home charging availability is computed for each 
county.

– Based on the NREL study:

• “There's No Place Like Home: Residential Parking, Electrical Access, and 
Implications for the Future of Electric Vehicle Charging Infrastructure”.

– Estimates levels of home charging access based on housing attributes
• National data on vehicle ownership

• Residence type

• Housing density

• Housing rent or own

• Data supported with survey of 3772 U.S. individuals

– County-level data

• If an itinerary’s home has L2 charging:
– Upon arrival at home, a L2 charge event occurs if:

• SOC < 80%

• The driver remembers to plug-in (95% chance)
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Work Charging Levels

• A probability of work charging availability is computed for each zip code.
– A generalized linear model is used to estimate the probability that a business 

establishment has workplace charging available

• Based on:
– Population density,

– Establishment density,

– Company size distribution,

– Median income,

– Average Annual payroll,

– Average company size.

• Zip-code level
– Zip-codes with sufficient data are used to fit the model  (Alternate Fuel Data Center 

AFDC data)
– The fitted model is used to estimate all zip codes in the country.
– Availability is scaled up for 2040 scenario with 1.03% annual establishment growth 

and 485k workplace chargers based on NREL’s 2030 charging needs assessment.

• If an itinerary’s work has L2 charging:
– Upon arrival at work, a L2 charge event occurs if:

• SOC < 65%

• The port is available (66% chance)

• The driver remembers to plug-in (95% chance)



87

Public (Destination) Charging Levels

• 6.7% of public destination locations have L2 charging available
– From EVI-Pro lite online tool.

• If a public destination has L2 charging:
– Upon arrival, a L2 charge event occurs if:

• SOC < 50%

• Driver remembers to plug-in (95% chance)
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XFC Charging Stations

• 318 number of public charging stations.
– Charging station locations based on current charging stations and gas 

station locations.

– 1500 total plugs based on EVI-pro lite tool.

– Plugs distributed to stations based on how busy a station is.

– Currently, all plugs support up to 350kW.

• Public charging stations are used by a vehicle when 
certain conditions are met

– Itinerary is adjusted to allow vehicle to go to public charger before 
continuing on its way

– Range anxiety metrics
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Range Anxiety Metrics

• When to divert to a public charging station?
– Depends on if an upcoming waypoint has destination-charging available
– Depends on if we’re going to work, home, or a public destination

• If an upcoming waypoint has destination charging (home,work,public):
– Allow lower SOC before public charging is desired

• If SOC will fall below the threshold:
– Divert to a public station to charge.

Upcoming destination
has L2 charging

No upcoming
destination charging

Arriving at home 7% SOC or 15 miles range 14% SOC or 40 miles range
Arriving at public 
destination

7% SOC or 15 miles range 12% SOC or 35 miles range

Arriving at work 7% SOC or 15 miles range 10% SOC or 30 miles range
NOTE:  When going to work, the driver is more anxious to make it on time, so threshold allows a lower SOC when going to 
work.
Whereas, when going Home or to a Public Destination location, the driver is assumed to have more flexibility.

• Threshold values (specific values are still debatable):
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Smart Charge Management

• Scheduling Mode:
– Unscheduled Charging:

• Looks into the future only one leg at a time

– Scheduled Charging:

• Looks multiple travel-legs into the future

• Station Pricing Mechanisms:
– Constant pricing

– Station-busyness based pricing

– Station peak-power-usage based pricing
Threshold

Ports used

Cost

Power

Time
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Cost metrics

• Costs can be used to influence 
vehicle behavior

– Spatial and Temporal Shifts
– Shift from busy station to less-busy
– Help alleviate station overage-charges

• Prevent slow-charging vehicles from 
clogging up fast-chargers

– If time and energy costs are set 
appropriately

• Additional fixed costs may be 
different for each station

– Control for unique scenarios
– Make sure the station near Mr. Trump’s 

resort is never full so he never gets mad.

• Varying station cost based on station 
demand (busyness)

– Lower-bound vs upper-bound cost
– Linear interpolation based on station-usage

EVSE Type Cost While Charging

Time ($/min) Energy ($/kWh) Connection Cost ($)

Low High Low High Low High

L2 1440 0.02 0.52 0.10 1.50 0.00 1.00

L2 17280 0.07 0.57 0.10 1.50 0.00 1.00

DCFC 50 0.10 0.60 0.10 1.50 0.00 1.00

XFC 350 0.20 0.70 0.10 1.50 0.00 1.00

Vehicle Class Cost While Driving

Time ($/min) Distance (Wear and Tear) ($/mile)

Default 1.00 0.05

Possible Values (not set in stone):
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Extreme Cases

• What do cars do when all stations are busy?

– Unscheduled:

• Cars go from station to station looking for a place to charge until they are stranded.

– Scheduled:

• Cars wait and wait, trying to schedule again and again every few minutes, until they can’t wait any 
longer and are declared stranded.
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Simulations

• Questions we want to answer:

– How effectively can we influence cars to shift XFC charging?

• Spatially:   Influence cars to charge at a different public charging station

• Temporally:  Influence cars to charge earlier or later

– What specific cost controls are most effective at influencing charging behavior?

• Peak-power vs. station-busyness controls

• Different controls have different benefits

– Benefits to:

• Electrical grid – avoid charging during peak power usage

• Station operators – avoid demand charges

• EV drivers – avoid full/busy stations, and minimize cost, time charging
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Initial Results

• Pending a currently-running simulation



FUSE EV charge load modeling update:
“Short-dwell” vehicle 
travel itinerary development 

Matthew Bruchon, Yi He, Zhaocai Liu, 
Jesse Bennett

March 2024
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FUSE EV charge load modeling overview

Goal: characterize potential 2040 plug-in EV charging 
loads to enable analysis and demonstration of 
smart charge management and vehicle-grid 
integration strategies

Newport News, VA

Richmond, VA
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FUSE EV charge load modeling to date

• Analysis began with light-duty passenger vehicles

• We then considered medium- and heavy-duty vehicles (MHDV) with charging needs fully met by  
long-dwell depot charging 

Projected
EV count

Regional 
daily energy

Peak power 
per h9 hex cell*

Peak load
time of day

Passenger cars 700,000 1.50 GWh 600 kW 5 – 10 PM

Local freight 17,000 410 MWh 1.4 MW 5 – 9 PM

School buses 3,000 670 MWh 900 kW 5 – 11 PM

Transit buses 500 250 MWh 9.0 MW 3 PM – 2 AM

Summary statistics for Richmond and Newport News, VA (2040 estimates) 

*h9 hex cells are approx. 0.04 mi2 (0.1 km2)
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Short-dwell charging needs vary by vocation

Modeled in 
earlier stages of FUSE

(not pictured: light-duty vehicles)

Bruchon, Matthew, Brennan Borlaug, Bo Liu, Tim Jonas, Jiayun Sun, Nhat Le, Eric Wood. “Depot-Based Vehicle Data for 
National Analysis of Medium- and Heavy-Duty Electric Vehicle Charging”. National Renewable Energy Laboratory. 
NREL/TP-5400-88241. February 2024.

Typical nationwide vocational travel patterns
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Short-dwell charging needs vary by vocation

Modeled in
short-dwell analysis 

(not pictured: drayage)

Modeled in 
earlier stages of FUSE

(not pictured: light-duty vehicles)

Typical nationwide vocational travel patterns

Bruchon, Matthew, Brennan Borlaug, Bo Liu, Tim Jonas, Jiayun Sun, Nhat Le, Eric Wood. “Depot-Based Vehicle Data for 
National Analysis of Medium- and Heavy-Duty Electric Vehicle Charging”. National Renewable Energy Laboratory. 
NREL/TP-5400-88241. February 2024.
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Short-dwell charging needs vary by vocation

Modeled in
short-dwell analysis 

(not pictured: drayage)

Modeled in 
earlier stages of FUSE

(not pictured: light-duty vehicles)

Typical nationwide vocational travel patterns

Bruchon, Matthew, Brennan Borlaug, Bo Liu, Tim Jonas, Jiayun Sun, Nhat Le, Eric Wood. “Depot-Based Vehicle Data for 
National Analysis of Medium- and Heavy-Duty Electric Vehicle Charging”. National Renewable Energy Laboratory. 
NREL/TP-5400-88241. February 2024.
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Multiple labs are coordinating to model short-dwell charging demands

Idaho
National Lab

Light-duty vehicle 
travel and charging 

analysis

School bus, transit bus, 
and local freight travel 
and charging analysis

Long-dwell 
charge 

sessions

Short-dwell 
travel 

itineraries

NREL 
Travel Modeling

Sandia 
National Lab

OpenDSS 
Co-Sim

NREL
Grid Modeling
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Multiple labs are coordinating to model short-dwell charging demands

Idaho
National Lab

Light-duty vehicle 
travel and charging 

analysis

School bus, transit bus, 
and local freight travel 
and charging analysis

Long-dwell 
charge 

sessions

Short-dwell 
travel 

itineraries

Long-haul, drayage, 
regional freight 
travel analysis

NREL 
Travel Modeling

Extreme fast 
charging station 

locations

Caldera Grid: 
charging 

load/node

Caldera CDM:
short-dwell

charge sessions

Sandia 
National Lab

OpenDSS 
Co-Sim

NREL
Grid Modeling

Public charging 
station locations
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We model three short-dwell medium- and heavy-duty vocations

Long-haul Drayage Regional freight

Class 7-8 tractors Class 7-8 tractors • Class 3-6 cargo vans, step vans, 
straight trucks

• Class 7-8 tractors

Largely interstate freight Freight delivered to/from ports Operating radius over 150 miles

Less consistent domicile location More consistent domicile location More consistent domicile location

Modeled using FAF and Geotab Modeled using Port of Virginia data 
and Geotab

Modeled using Geotab
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Long-haul modeling approach

Freight Analysis Framework (FAF) and Geotab based approach

Obtain entry and exit road links from FAF network 

Obtain entry and exit volume (2040 long-haul) from FAF truck volume 
data 

Obtain stop location and time information from Geotab 

Generate synthetic travel itineraries within the study region by 
matching entry points, exit points, and stops

Assign vehicle characteristics to travel itineraries
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Long-haul modeling step 1:
Obtain entry and exit road links from FAF network 

• FAF database has estimates of US freight flows for states and metropolitan areas

• Flows include all modes of transportation and 42 commodity types

• The Bureau of Transportation Statistics (BTS) produces the FAF with support from the Federal Highway 
Administration (FHWA). The main FAF5 input is the 2017 CFS.
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Long-haul modeling step 1:
Obtain entry and exit road links from FAF network 
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Long-haul modeling step 2:
Obtain 2040 entry and exit volumes from FAF truck volume data 

FAF long-distance truck volume for each link with direction for year 2040
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Long-haul modeling step 3:
Obtain stop location and time information from Geotab 

Stop analysis from Geotab can provide 
stop location and time information 
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Long-haul modeling step 4:
Generate itineraries by matching entry points, exit points, and stops

Region Daily Trips Mean Travel 
Distance

Mean Dwell 
Time

Richmond 3187 55 miles 6.2 hours

Newport 
News 1208 59 miles 2.6 hours

Annual average volumes are scaled using 
monthly and weekly scaling factors

Source: NREL DECARB analysis (Brennan Borlaug et al.)
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Step 5:
Assign vehicle characteristics to travel itineraries 

• From TEMPO: 0% EV-150, 2.6% EV-300, 5.8% EV-500, 91.6% non-EVs1

Vehicle Class
Battery Range
(mi)

Battery Size 
(kWh)2

Fuel Economy 
(kWh / Mile)2 Depot kW Opportunity kW En-Route kW

Heavy (Classes 7-8) 150 289 kWh 1.804 30 110 500

Heavy (Classes 7-8) 300 578 kWh 1.804 60 220 1000

Heavy (Classes 7-8) 500 963 kWh 1.804 100 360 1500

1. Catherine Ledna, Matteo Muratori, Arthur Yip, Paige Jadun, Christopher Hoehne, Kara Podkaminer. Assessing total cost of driving competitiveness of zero-emission trucks. 
iScience 27 (4), 2024. 

2. Ehsan Sabri Islam, Daniela Nieto Prada, Ram Vijayagopal, Charbel Mansour, Paul Phillips, Namdoo Kim, Michel Alhajjar, and Aymeric Rousseau. Detailed Simulation Study 
to Evaluate Future Transportation Decarbonization Potential, 2024.
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Drayage modeling approach

Geotab OD 
analysis

Chesterfield

Hampton

Hanover

Henrico

Newport News

James City

Williamsburg

York

Richmond

Journey duration 
distribution and 

distance 
distributionFUSE counties

Add 
intermediate 

stops

Geotab stop 
analysis

Stop location, 
stop duration 
distribution

POV port truck 
transactions

NIT

VIG

NNMT

RMT

VIP

POV 
terminals

PPCY

Freight Analysis 
Framework (FAF) 

data

# of truck 
journeys 
per port 
terminal

Drayage truck itinerary

# of truck journeys,
journey duration,
journey distance 

per domicile 
location

Lightbox 
warehouse 
locations

POV 
warehouse 
locations
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POV terminal
Current 
throughput TEU 
capacity

Operating acres Forklift capacity On-dock rail track 
(linear feet)

Average daily 
truck 
transactions

Truck data source

Norfolk International 
Terminal (NIT) 2.2M 378 / 27,416 2307 Port of Virginia

Virginia International 
Gateway (VIG)

2.2M 291 / 19,644 3088 Port of Virginia

Newport News Marine 
Terminal (NNMT) / 165 65K 18,990 221 Estimation

Richmond Marine 
Terminal (RMT) 86,000 121 52K 19,640 170 Port of Virginia

Virginia Inland Port (VIP) 78,000 161 13K 17,820 154 Estimation

PPCY / / / / 2333 Port of Virginia

• Average daily truck transactions for NIT, VIG, RMT, PPCY are obtained from Port of 
Virginia (POV) website statistics.

• Port features obtained from POV and online sources.
• Estimate daily truck transactions for NNMT and VIP based on port features.

Drayage modeling step 1:
Determine daily drayage truck visits
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O-D Analysis outputs:
• Journey counts per 

combination of O-D pair and 
connector zone

• Journey distance distribution
• Journey duration distribution
• Running speed

Drayage modeling steps 2-3:
Geotab Origin-Destination (O-D) and Stop Analysis

Geotab analysis parameters
O-D Analysis parameter Stop Analysis parameter

Vehicle class Class 7-8 trucks

Industry Retail trade, transportation and warehousing, and 
wholesale trade

Zones (of stops or origin-
destination pairs) Richmond & Newport News counties

Stop duration threshold < 360 minute stops 
chained into journeys

360 min (domiciles), 120 
min (other stops)

Connector Port of Virginia ports N/A

Vocation All Hub and Spoke

Stop Analysis outputs:
• Vehicles per stop location
• Stop duration distribution
• Arrival time at the stop 

location

Domicile locations

Modeling steps:
1. Assign journeys to each domicile location
2. Get dwell time of each vehicle at the domicile 

location
3. Calculate journey start time based on arrival time 

and dwell time at the domicile location
4. Get intermediate stop duration distributions
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(Journey distance – 
2*domicile to port 
distance) ≤ 20 mi?

Yes No

• Choose one warehouse from 
either warehouse list

• Randomly order port and 
warehouse stops

• Get warehouse and port 
dwell times

• Calculate the arrival and 
departure times at the 
warehouse and the port

(Remaining distance – 
domicile to port distance) 

≤ 20 mi?

• Get warehouse and port 
dwell times

• Calculate the arrival and 
departure times at the 
warehouse and the port

• Calculate distance traveled

• Journey start time
• Intermediate stop 

durations
• Running speed

No

Journey completed at domicile

Yes

• Choose only one warehouse-
to-port trip, using a random 
warehouse from P.O.V. list

• Randomly order port and 
warehouse stops

Sample journey distance from Geotab

Drayage modeling step 4:
Determine intermediate stop locations and build itineraries
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Long stop 
locations, 
statistics

Short stop 
locations, 
statistics

Regional freight modeling approach

O-D Analysis

Journey 
distances

Journey 
volumes

Stop Analysis

Geotab API

INPUT DATA PROCESSING

RESULTINTERMEDIATE 
DATA

Lightbox land 
use data

Experian vehicle 
registrations

TEMPO 
adoption 

projections

Potential 
short stop 
locations

Potential 
domicile
locations

Daily 
journey 
statistics

Stop 
sampling

Journey 
sampling

Journey-to-stop
matching 

optimization

Vehicle 
itinerary 
dataset

Domicile 
sampling
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O-D Analysis outputs:
• Journey counts per combination 

of O-D pair and class
• Journey distance distribution per 

O-D pair and class
• Journey duration distribution per 

O-D pair and class

Regional freight modeling:
Geotab Origin-Destination (O-D) and Stop Analysis

Geotab analysis parameters
O-D Analysis parameter Stop Analysis parameter

Vehicle class Class 3-8 trucks

Vocation Regional

Zones (of stops or O-D pairs) Counties in VA, states in 250-mile radius Richmond & Newport News counties

Connector Richmond & Newport News counties N/A

Excluded connector Port of Virginia ports N/A

Stop duration threshold < 360 minute stops chained into journeys 360 min (domiciles), 
15-360 minutes (other stops)

Stop Analysis outputs:
• Long stop cluster locations and 

durations for each class
• Short stop cluster locations and 

durations for each class
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Regional freight modeling: stop location characterization

• We query stop locations from Geotab. 
However:

– For regional freight, some mid-route stops 
may happen outside of the nine-county 
region

– Geotab data does not cover the full 
population of fleets or potential stops

• To add synthetic stop locations, we use 
third-party land use data (Lightbox):

1. Pull shapefiles of stop clusters from Geotab

2. For each type of vehicle, build a frequency 
table of land uses within stop clusters

3. Randomly sample additional parcels 
matching the observed distribution of land 
uses

Stop location types per weight class
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Regional freight modeling: journey-to-stop sampling

For each combination of weight class and origin-destination pairing, the following steps are run:

1. Define journey start and end locations
a) Sample journey distances from that O-D and weight class’s Geotab distribution

b) Sample within the origin and destination counties to determine locations of long stops (≥ 6 hours) from which to begin and 
end the journey

2. Sample short (< 6 hour) stops to serve as candidate mid-route stops

3. Conduct a matching optimization 
– Objective: minimize fleetwide travel distance, subject to:

• Each vehicle’s travel distance ≥ its defined journey distance

• Network flow preservation constraints

4. Convert matched sets of stops into a dataset of move events
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Next Steps

• Support the integration of short-dwell travel itineraries into Caldera agent-based modeling framework

• Development of additional modeling scenarios for long-dwell and short-dwell charge loads
– Generate week-long light-duty vehicle itineraries with revised charger availability assumptions (e.g., workplace) to investigate 

additional community charging demand

– Additional charger configurations

– Additional EV adoption scenarios to test different levels of grid loading

• Ongoing support for grid impact and smart charge management analysis 



• Thank you!

Matthew.Bruchon@nrel.gov



Coincidence Analysis
Polina Alexeenko, Matt Bruchon, 
Jesse Bennett



Motivation

FUSE Project

• Goal: develop SCM and VGI approaches for high EV penetration

• Challenges:
− optimal approach depends on multiple factors (e.g., vehicle mobility, vocation)
− detailed SCM/VGI simulation is complex

• This study:
− “bridge” between direct SCM/VGI analysis and fleet characteristics
− examines coincidence: the extent to which EV loads align
− uses coincidence to heuristically evaluate SCM/VGI potential
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Factors impacting coincidence

• When vehicles connect
− Arrival at EVSE

− Departure from EVSE

− Lower variance → greater coincidence

Arrival distributions
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Factors impacting coincidence

• When vehicles connect
− Arrival at EVSE

− Departure from EVSE

− Lower variance → greater coincidence

• How vehicles charge
− energy consumption (kWh)

− charging rate (kW)

− Greater energy → greater coincidence

Energy distributions
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Types of coincidence

Charging Coincidence
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• Depends on arrival, energy, and rate

• Measured in power (kW) per vehicle

• Quantifies timing and magnitude of peaks



126

Types of coincidence

Charging Coincidence
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• Depends on arrival, energy, and rate

• Measured in power (kW) per vehicle
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Vehicle groups studied

Freight
• 16,000 vehicles

• Cargo van, cutaway, straight truck, and step vans

• Average energy 50 kWh

Transit
• 423 vehicles

• Three transit agencies

• Average energy 367 kWh

Light-duty vehicles (LDV)
• 935,000 vehicles

• Includes public (35%) and home charging (65%)

• Average energy: 26 kWh (home), 11 kWh (public)
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Results: charging coincidence
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Results: charging coincidence

Peak timing

• Evening (∼8 PM) for freight and LDV-Home

• Early morning for transit bus

• Late morning for LDV-Public
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Results: charging coincidence

Peak timing

• Evening (∼8 PM) for freight and LDV-Home

• Early morning for transit bus

• Late morning for LDV-Public

Peak magnitude and duration

• Highest magnitude: transit (∼40 kW)

• Lowest magnitude: LDV (<4 kW)

• Peak duration (time within 90% of peak) similar
across LDV, freight

• Duration shortest for transit buses
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Results: charging coincidence

Peak timing

• Evening (∼8 PM) for freight and LDV-Home

• Early morning for transit bus

• Late morning for LDV-Public

Peak magnitude and duration

• Highest magnitude: transit (∼40 kW)

• Lowest magnitude: LDV (<4 kW)

• Peak duration (time within 90% of peak) similar
across LDV, freight

• Duration shortest for transit buses

Peak variability

• Highest (∼60%) for LDV-Public

• Lowest (∼33%) for freight
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Results: dwell coincidence
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Results: dwell coincidence

Maximum dwell coincidence

• 40% for LDV-Public

• 100% (full coincidence) for all others
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Results: dwell coincidence

Maximum dwell coincidence

• 40% for LDV-Public

• 100% (full coincidence) for all others

Minimum dwell coincidence

• 0% for LDV-Public

• Highest for transit (30%)
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Results: dwell coincidence

Maximum dwell coincidence

• 40% for LDV-Public

• 100% (full coincidence) for all others

Minimum dwell coincidence

• 0% for LDV-Public

• Highest for transit (30%)

Dwell variability

• Maximum interdecile range (IDR) around 14%

• Similar across vehicle groups

• Max IDRs occur in evening and morning
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Measuring flexibility

• Flexibility: the extent to which loads can be reshaped

• Depends on when vehicles connect and how they charge

• Exact characterization of flexibility is complex

• Goal: develop intuitive measure of flexibility

Value of flexibility depends on

• When loads are flexible

• Magnitude of achievable load reduction

• Duration of load reduction
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Measuring flexibility

• The flexibility matrix M : a heuristic for flexibility

• Measures load reduction potential at each time interval

• M ∈RT × D where
− T number of time periods
− D number duration periods

• M (t, d) : maximum possible load reduction between times t and t + d

M (t, d) =
1
d

d−1∑

i=0

(ut+ i t+ i−m )

where
− ut is uncoordinated load at t
− mt minimum possible load at t
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Interpreting the flexibility matrix: examples

Flexibility of 10-vehicle freight fleet
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Interpreting the flexibility matrix: examples

• M (7 PM, 1): 10 kW/vehicle reduction potential
between 7 PM - 8 PM

Flexibility of 10-vehicle freight fleet



140

Interpreting the flexibility matrix: examples

• M (7 PM, 1): 10 kW/vehicle reduction potential
between 7 PM - 8 PM

• M (1 AM, 1) : potential for 3 kW/vehicle reduction
between 1AM - 2AM

• M (7 PM, 1)  > M (1 AM, 1) because few vehicles
charge at night (in uncontrolled setting)

Flexibility of 10-vehicle freight fleet



141

Interpreting the flexibility matrix: examples

• M (7 PM, 1): 10 kW/vehicle reduction potential
between 7 PM - 8 PM

• M (1 AM, 1) : potential for 3 kW/vehicle reduction
between 1AM - 2AM

• M (7 PM, 1)  > M (1 AM, 1) because few vehicles
charge at night (in uncontrolled setting)

• Reading across bottom row reveals (flexible) peak number
and duration

Flexibility of 10-vehicle freight fleet
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Interpreting the flexibility matrix: examples

• M (7 PM, 1): 10 kW/vehicle reduction potential
between 7 PM - 8 PM

• M (1 AM, 1) : potential for 3 kW/vehicle reduction
between 1AM - 2AM

• M (7 PM, 1)  > M (1 AM, 1) because few vehicles
charge at night (in uncontrolled setting)

• Reading across bottom row reveals (flexible) peak number
and duration

• Reading across column reveals flexibility duration

Flexibility of 10-vehicle freight fleet
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Results: flexibility & reduction potential

Freight Transit

LDV-Home LDV-Public
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Results: flexibility & reduction potential

Maximum reduction potential

• Occurs at uncoordinated peak times

• Close in magnitude to uncoordinated peak

Freight Transit

LDV-Home LDV-Public
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Results: flexibility & reduction potential

Maximum reduction potential

• Occurs at uncoordinated peak times

• Close in magnitude to uncoordinated peak

Reduction potential timing

• LDV-Public: reduction potential only in
daytime

• All others have night-time reduction potential Freight Transit

LDV-Home LDV-Public

1
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Results: flexibility & reduction potential

Maximum reduction potential

• Occurs at uncoordinated peak times

• Close in magnitude to uncoordinated peak

Reduction potential timing

• LDV-Public: reduction potential only in
daytime

• All others have night-time reduction potential

Reduction potential duration

• Potential decays rapidly with duration for LDV-
Public, Transit

• LDV-Public, Transit are less flexible

• Potential decays slowly for freight, LDV-Home

• Freight, LDV-Home more flexible

Freight Transit

LDV-Home LDV-Public
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Flexibility: control implications

• Control timing

• Freight/LDV Home peaks align with typical high-price periods

• Dynamic pricing (e.g., real-time or TOU) may reduce freight/LDV-Home peaks

• Transit and LDV-Public loads peak during typical low-price periods

• Transit/LDV-Public load reduction requires alternative pricing schedule or time-agnostic policy
(e.g., demand charges)
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Flexibility: control implications

• Control timing

• Freight/LDV Home peaks align with typical high-price periods

• Dynamic pricing (e.g., real-time or TOU) may reduce freight/LDV-Home peaks

• Transit and LDV-Public loads peak during typical low-price periods

• Transit/LDV-Public load reduction requires alternative pricing schedule or time-agnostic policy
(e.g., demand charges)

Control duration

• Magnitude of reduction potential decays with reduction duration

• Speed of decay captures value of sustained control

• Can inform duration of control signals (e.g., length of DR event)

• Short-duration control may be more effective for LDV-Public/Transit

• Longer-duration control effective for Freight/LDV-Home
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Summary

Coincidence analysis

• Consider four vehicle groups: transit, freight, light-duty home, and light-duty public

• Examine uncoordinated charging and dwell coincidence

• Quantify cross-temporal load flexibility for each vehicle group

Findings

• Peak times vary: freight, LDV-Home peak in evening while transit, LDV-Public peak in morning

• Dwell coincidence high for freight, LDV-Home, and trasnit; low for LDV-Public

• Effective control strategies different across vehicle groups

Next steps

• Study mixed composition fleets

• Incorporate models of geographic coincidence

• Study impacts of multi-resolution geographic coincidence on resultant load
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Smart Charge Management Stakeholder Feedback

• Discussions from the Semi-Annual Stakeholder Meeting on Codes and Standards, Use 
Cases, and Valuation of SCM

• Strong need for end-to-end standards certification, enforcement, and interoperability 
testing

• Need for SCM use cases with large fleets, travel centers, emergency response and 
resilience, V2X, widespread residential applications

• Value of SCM in avoided service transformer and distribution feeder upgrades, avoided 
long lead-times for interconnection, need for parallel processing of soft costs



•Thank You!
• Please mark your calendars for the next 

Semi-annual Stakeholder Meeting:

• September 25-26

• Idaho National Laboratory

Fall Deep Dive Focus Topics:
• SCM/VGI Controls

o New SCM/VGI and HELICS Updates
o Broad Analysis Results

• Grid Impact Assessments
o L/M/HDV Controlled/Uncontrolled
o Highlight Cost Tradeoff Benefits

• Demonstrations
o Lab Testbed: Multi-EVSE, OCPP 2.0.1
o Field Demo in Utility Environment

This work was authored [in part] by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department 
of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and 
Renewable Energy Vehicle Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. 
Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a 
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government 
purposes.
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