

Circular Economy for Photovoltaics in Service of Energy Transition

Heather Mirletz, Silvana Ovaitt, Teresa M. Barnes MRS Spring 2024 April 24th, 2024 Heather.Mirletz@nrel.gov

Goal: Net Zero CO₂, ASAP

Requires energy transition. Deploying PV is essential to this goal. Globally, we need up to 75 TW of PV.

2010 1980 1950 Global temperature change (1850-2022) 1920 1890 1860

Existing PV technology is ready to accomplish energy transition

Globally, in 2023:

- Cumulative capacity of 1.4-1.6 TW
- Added 350-446 GW of PV capacity
 - U.S. added ~32 GW
 - E.U added ~46 GW
 - China added >200 GW
- PV is largest fraction of new capacity
- Cheapest source of electricity in most places globally

But, PV isn't perfect (otherwise, we wouldn't have jobs)

IRENA, IEA PVPS

Circular Economy for PV Sustainability

Circular Economy ≠ Recycling

vation roduct

model

Figure 1

Circularity strategies within the production chain, in order of priority

Circular economy		Strat	egies			
1	asing larity	Smarter product use and manufacture	Ro Refuse	Make product redundant by abandoning its function or by offering the same function with a radically different product	Innovatior	
Incre circu			R1 Rethink	Make product use more intensive (e.g. through sharing products, or by putting multi-functional products on the market)	in core technology	
			R2 Reduce	Increase efficiency in product manufacture or use by consuming fewer natural resources and materials	in in	
Rule of t	thumb: level of arity = natural s and less imental sure	Extend lifespan of product and its parts	R3 Re-use	Re-use by another consumer of discarded product which is still in good condition and fulfils its original function		
Higher I circula fewer n			R4 Repair	Repair and maintenance of defective product so it can be used with its original function		
resources environ pres			R5 Refurbish	Restore an old product and bring it up to date		
			R6 Remanu- facture	Use parts of discarded product in a new product with the same function		
			R7 Repurpose	Use discarded product or its parts in a new product with a different function		
		Useful application of materials	R8 Recycle	Process materials to obtain the same (high grade) or lower (low grade) quality		
Linear eco	nomv		R9 Recover	Incineration of materials with energy recovery	pbl.nl	
	,					

Potting et al. 2017

Source: RLI 2015; edited by PBL

Transition from linear to circular economy also has a time dimension think about use phase

Figge et al. 2018

PV in Circular Economy Tool PV ICE

System-dynamics, geospatial, open-source model that evaluates the material, energy and carbon viability of the PV manufacturing, deployment, reuse, and recycling industries across the Energy Transition, allowing exploration of supply chains with varying degrees and types of circularities.

https://www.nrel.gov/pv/pv-ice-tool.html

How do we measure impact of circular choices for PV lifecycles?

Virgin Material

Reduce Extraction of Virgin Materials

Multiple Metrics

Waste

Reduce Wastes

throughout PV lifecycle

Energy Demand

Minimize Energy demands of

processes and materials

Carbon Intensity

Minimize carbon intensity of lifecycle

Installed Capacity

Maintain PV Capacity to meet Energy Transition

Net Energy

Energy Generated minus Energy Demand

Energy Balance Energy Generated divided by Energy Demand

More metrics! **Supply Chain Security** Just and Reliable sourcing of materials

How Circular Economy aligns to PV module design aspects

Let's try out Efficiency

Efficiency is a "Reduce" Circular Economy action Includes bifaciality. How does improving efficiency impact our metrics?

Efficiency through bifaciality is "bonus" capacity

Efficiency helps maintain higher capacities

Efficiency slightly reduces peak material demand

Efficiency improves mass/power; need less material for the same power,

BUT, without material circularity or lifetime, requires more material post-2050 NREL | 11

Bifaciality: Improves Net Energy

Bifaciality improves net energy; all apparent scenarios have some bifaciality

Lifetime + Efficiency Maximizes Energy Balance

Efficiency and bifaciality alone does not maximize energy balance.

Cumulative Emissions in 2050, 2100

Efficiency & Bifaciality minimizes emissions pre-2050 (fewer modules to meet capacity target) BUT 2nd largest emissions in 2100 due to large material demands later.

Let's try out Material Circularity

Material Circularity is a "Remanufacture" and "Recycle" Circular Economy action How does improving material circularity impact our metrics?

Cumulative Deployment 2000-2100 with Replacements

Envisioning a high material circularity with short lifetime to cycle to new tech fast

 \rightarrow Requires 4.5x deployment = 4.5x manufacturing

Virgin Material Demands

- MUST be >90% closed-loop recycled for *all component materials* to reduce material demand
- No current PV technology achieves this

Material Circularity peaks material demand, then lowers after 2050

High deployment rates after 2050 don't eliminate need for non-recycled materials

Material Circularity: Great at Waste Minimization

Recycling primarily keeps materials out of the landfill

Material circularity can help reduce carbon in second half of century

Let's try out Lifetime

Lifetime is both a "Reduce" and "Reuse" Circular Economy action How does improving lifetime impact our metrics?

All Module Lifetimes Require Replacements by 2100

Cumulative Deployment 2000-2100 with Replacements

Long lifetimes = 1.6x min deployment

For every 0.1%/year degradation, save 2 to 3 TWs of replacements by 2050

On average, save							
20 to 60 GW	2 to 3 TW	/ 20 to 23 TW					
by 2030	by 2050	by 2100					

Fewer replacements =

less manufacturing =

less logistics =

Reduce

Annual Deployment

Short-lived modules (15 years) require annual deployment
Short-lived modules (15 years) require annual deployment
Deployment = Manufacturing
Manufacturing = environmental impacts,
infrastructure, logistics, supply chains... jobs...

Virgin Material Demands & Lifecycle Wastes

- No material demand or waste downside to lifetime extension
- Lifetime improvements lower the threshold for improving material circularity

Material Circularity and Lifetime Reduce Virgin Material Demand

Short - linear to Long - circular

Lifetime: Maximizes Energy Balance

Lifetime improves energy balance Lifetime+Efficiency maximizes energy balance

Lifetime *now* to minimize emissions by 2100

How to prioritize design improvements where circular economy is in service to energy transition

Circular R-strategies for PV in the Energy Transition

Refuse: Refuse virgin and conflict materials.

Rethink: High energy yield PV systems, design for Repair and Reliability Integrated PV.

Reduce: Material substitution, increase manufacturing yield, decarbonize manufacturing.

Reuse: Merchant tail, resell in secondary markets. Repair: Onsite repair of modules and components. Refurbish: Demount and transport modules for repairs Replace storm-damaged modules on site . Remanufacture: Disassemble, replace cells, relaminate. Repurpose: Repower system with new components

Recycle: Separate modules and components, reclaim materials.

Remine: Mine input materials from landfills, refine.

Recover: Burn component materials for energy generation.

Directions and Thresholds for Improvement

Directions for improvement of PV technology Balance lifetime and material circularity

Mirletz et al. 2022, Plos One

Metric Table I ()

		Capacity	Ma	SS	Energy		Carbon				
		Total Deployment	Raw Material Demand	Lifecycle Wastes	Energy Demands	Net Energy	Energy Balance	Cumulative Emissions 2050	Cumulative Emissions 2100		
Scenario		ΤW	bmt	bmt	TWh	TWh	Unitless	CO2eq bmt	CO2eq bmt	Benefits	Harms
Business as Usual	PV ICE	191	10.1	5.1	144,000	7,044,000	50	14.7	31.2	0	3
	PERC	188	8.2	2.1	122,000	7,569,000	63	13.4	23.5	6	0
	SHJ	188	7.8	2.0	116,000	7,719,000	67	12.8	22.4	6	0
	TOPCon	188	8.0	2.1	119,000	7,644,000	65	13.1	22.9	6	0
	Low Quality	265	11.0	4.2	193,000	6,995,000	37	16.0	34.6	0	5
	Long-Lived	145	8.7	3.2	107,000	7,333,000	70	14.1	23.9	4	0
	High Efficiency	263	12.2	8.1	150,000	7,699,000	52	11.5	32.2	2	3
EX	Circular	401	9.3	1.2	154,000	7,034,000	47	18.5	29.2	1	3
Ambitious	High Eff + Long-life	189	9.0	4.7	110,000	7,740,000	71	11.7	24.2	5	0
	Long Life + Recycling	152	8.8	2.9	112,000	7,328,000	66	14.1	24.1	3	0
	Recycled Si + Long-life	227	8.2	1.3	147,000	7,041,000	49	15.1	25.5	2	1
	Circular + Long-life	272	8.9	1.5	148,000	7,040,000	49	19.2	28.6	1	2
	Circular + High Eff	401	7.2	1.9	137,000	7,051,000	52	15.8	25.0	2	2
	Minimize		Maxim	ize	Mini	mize	Maximize	Minimize			

bmt = billion metric tonnes

Benefit

Harm

Lifetime improvement minimizes harms and maximizes benefits during energy transition.

But how "not perfect" are we talking?

Let's put current PV technology impacts in these metric categories into decarbonization context.

How much waste are we talking?

A black eye for green energy? Renewable energy growth brings mounting waste challenge

How much waste are we talking?

\\\//

Mirletz 2023 PVRW

Cumulative PV "Waste" by 2050 in Perspective

Carbon in Context: Cumulative through 2100

Annual emissions from fuel sources eclipse PV emissions

Jackson et al. "Persistent Fossil Fuel Growth Threatens the Paris Agreement and Planetary Health." *Environmental Research Letters.* Dec 2019.

Takeaway Messages

Even if we made no improvements, PV "waste" and carbon intensity are *manageable* and miniscule compared to doing nothing.

Efficiency & Bifaciality

 improvements can reduce peak material demands (30%) and increase energy yield (9%)

Material Circularity

- Alone cannot reduce impacts of deploying low quality module
- Great for reducing waste (76%)
- Can reduce virgin material demands (up to 29%)
- Pre-2050 material sourcing: adjacent industries, responsible mining practices...

Lifetime improvements ease the path to energy transition

- delay the need for replacements
- reduce the number of replacements
- increase energy yield
- provide a grace period to ramp up material circularity

Cir	cular Economy R-Action	PV module Design Aspect		
	Reduce	Efficiency		
	Reduce & Reuse	Lifetime		
Re	emanufacture & Recycle	Material Circularity		
ces	Circular ≠ Ree Don't mal	Economy cycling forget to ke it last		

heather.mirletz@nrel.gov

NREL/PR-5K00-89753

PV ICE Tool: <u>www.nrel.gov/pv/pv-ice-tool.html</u>, <u>github.com/NREL/PV_ICE</u>

Analyses coming soon to an EPJ PV near you!

Thank you!

EPJ Photovoltaics Vol, No (2024) © H. Mirletz et al., Published by EDP Sciences, 2024 https://doi.org/10.1051/epjpv/2024015

Available online at

www.epj-pv.org

Special Issue on 'EU PVSEC 2023: State of the Art and Developments in Photovoltaics', edited by Robert Kenny and João Serra

ORIGINAL ARTICLE

OPEN ∂ ACCESS

Questions?

Prioritizing circular economy strategies for sustainable PV deployment at the TW scale

Heather Mirletz¹⁽⁰⁾, Silvana Ovaitt^{1,*}, Seetharaman Sridhar^{1,2}, and Teresa M. Barnes¹

This work was authored [in part] by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement 38269, and under DE-EE0007897 awarded to the REMADE Institute, a division of Sustainable Manufacturing Innovation Alliance Corp. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Inclusion and Diversity: One or more of the authors of this paper self-identifies as an underrepresented ethnic minority in science. While citing references scientifically relevant for this work, we also actively worked to promote gender balance in our reference list.