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Goal: Net Zero CO,, ASAP

Requires energy transition.
Deploying PV is essential to this goal.
Globally, we need up to 75 TW of PV.

Haegel et al 2023
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Existing PV technology
is ready to accomplish
energy transition

But, PV isn’t perfect

(otherwise, we wouldn’t have jobs)

Globally, in 2023:
* Cumulative capacity of 1.4-1.6 TW

* Added 350-446 GW of PV capacity
— U.S. added ~32 GW
— E.U added ~46 GW
— China added >200 GW

e Reduce material demand

: : . * Reduce wastes
* PVis Iargest fraction of new capauty ¢ Reduce energy demands

* Cheapest source of electricity in most * Reduce carbon intensity
* Improve energy yield

places globally

NREL | 3
IRENA, IEA PVPS



Circular Economy for PV Sustainability
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Circular Economy # Recycling

Figure1
Circularity strategies within the production chain, in order of priority Tra nS|t|O N from I inear to CIrcu Ia r econo my
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PV in Circular
Economy Tool
PV ICE

System-dynamics, geospatial,
open-source model that
evaluates the material, energy
and carbon viability of the PV
manufacturing, deployment,
reuse, and recycling industries
across the Energy Transition,
allowing exploration of supply
chains with varying degrees
and types of circularities.

Materials and Systems Flow Concept (Mass Flow)
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Includes pathways for circularity specific for PV

www.nrel.gov/pv/pv-ice-tool.html



https://www.nrel.gov/pv/pv-ice-tool.html

How do we measure impact of circular choices for PV lifecycles?
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How Circular Economy alighs to PV module design aspects

Circular PV module
Economy Design
R-Action Aspect
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Let’s try out

Efficiency is a “Reduce” Circular Economy action
Includes bifaciality.
How does improving efficiency impact our metrics?



O
o

through bifaciality is “bonus” capacity (===

Effective Capacity: No Replacements

Efficiency <«
Lifetime <«

e )
o O

(o))
o O

Effective Capacity [TW]
()

N W B U,
)

[
o O

- Circular

0
2000

Capacity Target
PV_ICE

PERC

SH

TOPCon

Low Quality
Long-Lived
High Eff

High Eff + Long-life
Long-Life + Recycling
Recycled-Si + Long-life
Circular + Long-life
Circular + High Eff

Material Circularity

If modules
were immortal

2010 2020 2030 2040 2050 2060 2070

Efficiency helps maintain higher capacities

2080

2090 2100

NREL | 10



slightly reduces peak material demand@

Annual Material Demands Decade Average Post 2050 e —

Business as Usual Extreme Ambitious Material Circularity
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. Improves Net Energy

— . Efficiency <«
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Baseline Extreme Ambitious Material Circularity

6\)“' 00/0 0.10 )
v
\}|
ot

0.08 1

0.02 +

Net Energy Normalized
[Fraction]
g

0.00 A
PR N 5 & < |
(@) S o @
2\ I \9& SS C @%,oq o":'d Qg(;-\ <& t® (}: O
X X X

Bifaciality improves net energy; all apparent scenarios have some bifaciality
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Lifetime Maximizes Energy Balance Q

Effici h
Energy Balance fetime gmmm
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Cumulative Emissions in 2050, 2100 ‘

Baseline Extreme Ambitious
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Efficiency & Bifaciality minimizes emissions pre-2050 (fewer modules to meet capacity target)
BUT 2" [argest emissions in 2100 due to large material demands later.
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Let’s try out Material Circularity

Material Circularity is a “Remanufacture” and “Recycle” Circular Economy action
How does improving material circularity impact our metrics?



Cumulative Deployment 2000-2100 with Replacements
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Virgin Demands
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Annual Material Demands
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Material Circularity: Great at Waste Minimization
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Cumulative Emissions in 2050, 2100
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Let’s try out Lifetime

Lifetime is both a “Reduce” and “Reuse” Circular Economy action
How does improving lifetime impact our metrics?



All Module Lifetimes Require Replacements AR
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Cumulative Deployment 2000-2100 with Replacements

. . Effici h
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@ Effective Capacity: No Replacements

For every 0.1%/year degradation,
save 2 to 3 TWs of replacements
by 2050

Decreasing
lifetime
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Annual Installs with Replacements Decade Average Post 2050 Eﬁ‘fe‘fi”nz::

Business as Usual Extreme Ambitious Material Circularity
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Virgin Material
Demands &
Lifecycle Wastes

* No material demand or waste
downside to lifetime extension

* Lifetime improvements lower
the threshold for improving
material circularity
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Efficiency <«
Lifetime <«

Material Circularity
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Lifetime: Maximizes Energy Balance Q
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Cumulative Emissions in 2050, 2100
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Deployments =
material demands =
energy demands =
carbon

How to prioritize design improvements
where circular economy is in service to energy transition



Circular R-strategies for PV

in the Energy Transition

(Refuse: Refuse virgin and conflict
materials.

Rethink: High energy yield PV
systems, design for Repair and
Reliability Integrated PV.

Reduce: Material substitution,
increase manufacturing yield,
decarbonize manufacturing.

Ao pijse®C

Reuse: Merchant tail, resell in \
secondary markets.

Repair: Onsite repair of modules
and components.

Refurbish: Demount and
transport modules for repairs
Replace storm-damaged modules
on site .

Remanufacture: Disassemble,
replace cells, relaminate.
Repurpose: Repower system with

\new components ‘

R d)

ecycle: Separate modules an
components, reclaim materials.

Remine: Mine input materials
from landfills, refine.

Recover: Burn component
materials for energy generation.

NREL | 31



Virgin Demands
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Metric Table (Zz2\P) “‘ ‘
Egal“AA AL TAN

Capacity Mass Energy Carbon
Raw ] Cumulative | Cumulative
Total . . Lifecycle| Energy Net Energy o oo
Material Emissions | Emissions
Deployment Wastes | Demands Energy Balance
Demand 2050 2100
Scenario TW bmt bmt TWh TWh Unitless | CO2eq bmt | CO2eq bmt Benefits Harms
PV ICE 191 5.1 YR 7,044,000 ED 14.7 31.2 e
ﬁ '_g - 122,000 /,569,000 b3 13.4 mﬁ-
= 35/SHJ : : 12.8
@ % TOPCon 1 | 119,000 65 | 131
Low Quality : 193,000 6,995,000 37 34.6
-3l Long-Lived : : 7,333,000 m!.-l“
|3l High Efficiency : 8.1 m - 52 | 32.2
& Circular , Mols0B  7.034.000
3 . . 7,328,000 24.1
Z 147,000 [EEAZEROTE 45 I R
g Circular + Long-life 8.9 1.5 g:Xe00R 7,040,000 49 19.2 2
1.9 137,000 [waessNelele) 52 15.8 25.0 2 2

Minimize Maximize Minimize Maximize Minimize
bmt = billion metric tonnes

[Benefit Harm

Lifetime improvement minimizes harms and maximizes benefits during energy transition.




But how
“not perfect”
are we talking?

Let’s put

current PV technology impacts
in these metric categories into
decarbonization context.

Wishlist:

e Reduce material demand
Reduce wastes

Reduce energy demands
Reduce carbon intensity
Improve energy vield

NREL | 34



How much waste are we talking?

’ 05/2023
A black eye for green energy? Renewable

energy growth brings mounting waste
challenge




How much waste are we talking?

CBS MORNINGS > 05/2023
A black eye for green energy? Renewable

energy growth brings mounting waste

challenge
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Mirletz, H., H. Hieslmair, S. Ovaitt, T. L. Curtis, and

CumUIatlve WaSteS T.M. Barnes. 2023. “Unfounded Concerns about

[mi”ion metric tDI'IS] Photovoltaic Module Toxicity and Waste Are Slowing
Decarbonization.” Nature Physics

Municipal Waste R ———— Plastic Waste

Read the paper: https://rdcu.be/dnOZR
12.355

PV Module Waste
Worst Case: 160
Best Case: 54

%0 Manageable




Carbon in Context: Cumulative through 2100

Annual CO, emissions
Carbon dioxide (CO,) emissions from fossil fuels and industry*. Land use change is not included.
Baseline World
e 1 1 D it mat| 35 billion t

-+ 30 billion t

30000 -
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Cumulative Emissions from PV
15 billion ¢ to deploy 75 TW is equivalent
to 1 year of current global emissions

15000 -
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0 - O t r T T T T 1
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Data source: Global Carbon Budget (2022) OurWorldIinData.org/co2-and-greenhouse-gas-emissions | CC BY

Masson-Delmotte et al. IPCC 2021
Wikoff et al. Joule 2022



Annual Global Emissions by Source
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Jackson et al. “Persistent Fossil Fuel Growth Threatens the Paris Agreement and Planetary
Health.” Environmental Research Letters. Dec 2019.




Ta keaway Messages Circular Economy PV module

R-Action Design Aspect

Even if we made no improvements, PV “waste” and carbon intensity are Lifetime
manageable and miniscule compared to doing nothing.

- e Remanufacture Material
Efficiency & Bifaciality % Femyele Gireularity

improvements can reduce peak material demands (30%)
and increase energy yield (9%)

Circular Economy

Material Circularity = Recycling

* Alone cannot reduce impacts of deploying low quality module

Lifetime improvements ease the path to energy transition

Great for reducing waste (76%)
Can reduce virgin material demands (up to 29%)
Pre-2050 material sourcing: adjacent industries, responsible mining practices...

Don’t forget to

make it last

delay the need for replacements

reduce the number of replacements

increase energy yield

provide a grace period to ramp up material circularity
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heather.mirletz@nrel.gov

PV ICE Tool: www.nrel.gov/pv/pv-ice-tool.html,
github.com/NREL/PV ICE

Analyses coming soon to an EPJ PV near youl!

.
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