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Spatiotemporal Automatic Calibration of Infrastructure Lidar, Radar,
and Camera with a Global Navigation Satellite System

Faizan Mir,1 Stanley Young,1 Rimple Sandhu,2 and Qichao Wang2

Abstract— Robust and accurate perception is important for
modern intelligent transportation systems (ITS), which use
sensors of various modalities for data fusion to create a digital
twin of an intersection. Sensor calibration is an important
process that creates a unified coordinate frame for the sensor
output data so that it can be used for data fusion. Classical
approaches for sensor calibration are time-consuming, require
an overlapping field of view for feature matching, and are not
feasible for ITS application as they cause disruptions in the
flow of traffic. In this paper, we present a spatiotemporal auto-
matic calibration approach to calibrate multiple infrastructure
lidar, radar, and cameras installed at a traffic intersection.
The approach uses global navigation satellite system (GNSS)
positioning information shared by connected vehicles, and when
the vehicle is detected by the sensor, we match the sensor
detections with the GNSS coordinates. The proposed algorithm
is evaluated with a real-world dataset utilizing detections from
two radars, cameras, and lidars with a test vehicle instrumented
with a post-processing kinematic (PPK)-corrected GNSS driv-
ing past the sensors installed at a four-way traffic intersection.
The experimental results show that the proposed automatic
calibration approach can achieve the transformation with a root
mean squared error of less than 0.5 for radar and lidar and less
than 2 for camera detections. The ability to rapidly calibrate
sensors not only benefits initial installations, but can also be
used for system health monitoring, while utilizing available
connected vehicle data to test the real-time sensor fidelity and
operational status.

I. INTRODUCTION

Modern intelligent transportation systems (ITS) employ
multiple sensors to obtain a robust estimate of the per-
ceived environment at a traffic intersection. This allows
the system to balance the shortcomings of one sensor
type with the advantages of another by utilizing sensors
with different modalities. The National Renewable Energy
Laboratory’s infrastructure perception and control concept
proposes a cooperative perception engine that leverages data
available from both infrastructure-based sensors (e.g., lidar,
radar, cameras) and cooperatively shared information from
connected autonomous vehicles and connected vehicles to
support a wide variety of infrastructure applications such
as trajectory-based optimized signal control, eco-approach
and departure, curbside management, and safety-affirmative
signaling [1][2]. In order to create a robust digital twin of
the intersection, accurate spatial registration is required from
these sensors for data fusion. The procedure of manually

1 Faizan Mir and Stanley Young are with the Center for Integrated Mo-
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2 Rimple Sandhu and Qichao Wang are with the Computational Sci-
ence Center, National Renewable Energy Laboratory, Golden, CO, USA
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calibrating a sensor is costly and time-consuming. Automatic
calibration is essential to manage the increasing number of
sensors, particularly in multisensor systems. There are about
300,000 signalized intersection in the United States [3], and
for a large-scale deployment, manually calibrating each sen-
sor at an intersection is not feasible. Hence, a robust system
is required to calibrate these sensors. Classical methods for
sensor calibration have been previously developed, such as
Zhang et al. [4] for multiple laser scanners and Xing et al.
[5] for a limited overlapping multicamera setup that requires
a calibration object be moved within the field of view of the
sensor. Therefore, during the calibration process, the route
that is being observed must be blocked for a few hours.
These techniques are ineffective, as frequent road closures
might negatively impact traffic flow and the calibration needs
to be performed each time a sensor moves significantly due
to vibrations or changing weather conditions. Multimodal
sensor calibration is a complex problem due to the different
physical measuring conditions and the difficulty in obtaining
corresponding features from different sensor modalities.

Without a calibration object, an association problem must
be solved on the basis of relative spatial and temporal
alignment of cars in the intersection. In this paper we present
a technique for multimodal sensor calibration at a traffic
intersection without an explicit use of calibration objects.
Calibration is achieved by tracking the test vehicle instru-
mented with a post-processing kinematic (PPK)-corrected
global navigation satellite system (GNSS) within the sen-
sor frame. The positional data from the GNSS-equipped
test vehicle are shared over to the infrastructure with a
vehicle-to-infrastructure (V2I) setup. Most modern vehicles
are equipped with a GPS, although these positional data
are not commonly available for use in traffic infrastructure
systems. However, the approach in this work can be currently
used by city traffic departments for calibration and will be
convenient for future adoption as vehicle geographic data
become available via V2I for traffic infrastructure systems
from connected vehicles. To solve the problem of auto-
calibration we used the Rauch-Tung-Striebel (RTS) smoother
for the temporal alignment of sensors and solved an opti-
mization problem to calculate the translation and rotational
alignment of the sensors. We evaluate our approach on real-
world data utilizing detection from two radars, lidars, and
cameras installed at a four-way traffic intersection in the city
of Colorado Springs, Colorado, USA, to show that it can
achieve precise sensor calibration while utilizing detection
from multiple sensor modes.
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II. RELATED WORK

Sensor calibration has been extensively researched in both
academia and industry. The goal of calibration, more espe-
cially extrinsic calibration, is to determine the spatiotemporal
transformation—i.e., the relative rotation, translation, and
system clock delay—between two sensors. However, the
focus has been to calibrate homogeneous sensors (e.g., cam-
era to camera, radar-radar, lidar to lidar) [6][7][8]. Most of
the research on sensor calibration from different modalities
has been done with a focus on simultaneous localization
and mapping (SLAM) [9]; however, these methodologies
are not suitable for ITS applications. Generally, the sensor
calibration can be classified into target-based and targetless
methods. Target-based approaches require a calibration target
such as a checkered board or a polygon board that can be
accurately tracked within the sensor [10][11][12] and pro-
vides a reference for calibration. These methods can provide
precise sensor calibration but can be hard to implement in
a continuously moving traffic environment. On the contrary,
targetless methods do not rely on a calibration target and
extract features from the environment and then apply feature
matching to find the correspondences between the sensors
[13], [14], [15]. However, using these approaches on a traffic
intersection presents two common challenges: (1) roadside
point clouds are relatively sparse, as sensors are mounted
high up on the poles to get a better field of view of the
intersection, and (2) these approaches cannot be applied to
sensors from different modalities such as radars, which are
commonly used for traffic applications but lack descriptive
visual features and output data in the form of detected
objects.

These calibration ideas have recently been expanded
to include different types of sensors and optimized for
infrastructure-based perception. Peršić et al. [16] designed
a triangular retroreflector calibration target for a radar and a
3D lidar. The calibration method used two-step optimization:
reprojection error optimization followed by field of view
optimization, leveraging radar cross-section measurements.
Ge et al. [14] presented a targetless approach for calibrating
an RGBD camera and millimeter-wave radar that involved
extracting geometric constraints to provide initial estimates
of extrinsic parameters using simulated annealing, and then
using object velocity to fine-tune the calibration. Domhof et
al. [17] proposed a joint lidar, radar, and camera calibration
method by using a specially designed calibration target that
uses four circular holes on a planar object to represent a
unique geometric 3D shape detected by all three sensors.
Ren et al. [6] presented TrajMatch, a spatiotemporal calibra-
tion methodology for roadside lidars that used a semantic
matching feature and trajectory-level matching to calibrate
the lidars. However, the paper only addresses the calibration
for lidars and does not include sensors of other modalities. In
Schöller et al. [18], an auto-calibration method for roadside
radar and camera was presented by using a convolutional
neural network to estimate the rotational calibration between
sensors. However, the paper only focuses on rotational cali-

bration and cannot be employed on a conventional four-way
intersection.

A. Temporal Calibration
Time-based calibration is usually required because of

the different sampling frequencies of sensors. Researchers
have presented various approaches for temporal alignment
of asynchronous signals such as Gaussian process regression
[19] and data interpolation [20]. In Tanzmeister and Steyer
[21], an alignment algorithm is proposed that takes the sensor
with the highest sampling rate as the reference. In Du et
al. [22], a vehicle motion-fitting model was proposed for
temporal alignment between a camera and a millimeter-wave
radar.

B. Spatial Calibration
After establishing the temporal correspondence, the spatial

alignment can be calculated analytically by using commonly
employed point-set registration techniques such as iterative
closest point (ICP) [23]. The ICP algorithm works very
well for SLAM applications where the pose between two
transformations is small. It does not provide reasonable
results for ITS applications, as it is heavily dependent on
a good initial guess of the transformation.

III. CALIBRATION METHODOLOGY
In this section, we describe the proposed auto-calibration

algorithm. The problem formulation and required presump-
tions are mentioned first, followed by a detailed explanation
of the calibration algorithm.

A. Problem Formulation
Consider a multisensor (Si) setup at an intersection

with N sensors such that Si, i ∈ [1, N ]. We can define
a set of 3D data points in world coordinates as W =
{w1, w2, w3, ...wi}, and we can define a set of N sen-
sors as PSN

= {PS1
, PS2

, PS3
, ...PSN

}, where PS1
=

{p11, p12, p13, ...p1i } represents a set of 3D data points for the
first sensor. The points in the sensor and world coordinates
have the same dimension and are given as:

pNi = [xN
i , yNi , tNi ]T , pNi ∈ R3

wi = [xw
i , y

w
i , t

w
i ]

T , wi ∈ R3

Therefore, each point in the sensor coordinate frame can be
mapped to a point in the world coordinate frame:

wi =

[
Rw

Si
Tw
Si

0 1

]
︸ ︷︷ ︸

Hw
Si

.pNi (1)

where Rw
Si

is the rotation matrix and Tw
Si

is the translation
matrix. For a point, we can define the coordinate transform
as:

p̂ =

cosθ −sinθ 0
sinθ cosθ 0
0 0 1

×

xy
t

+

txty
dt

 (2)

where θ is the angle between the two points, tx and ty are
the translation in x and y, and dt is the time offset.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

2



B. Algorithm Overview
An object is detected as soon as it is in the field of view

of the sensor, assigned an object ID, and classified into cate-
gories such as cars, trucks, bicycles, pedestrians, etc. with its
position and velocity information. The proposed framework
takes the object trajectory information from multiple sensors
and extracts features from the object list, which are invariant
to object rotation and transformation, as the detections are
made by each sensor in their localized coordinate frame.
As with any multisensor setup, each sensor has a different
detection frequency, and it is important to align these to a
common time resolution to find the spatial alignment. Next,
we use an RTS smoother for the temporal alignment of
the selected object trajectory from the sensor and the PPK-
corrected GNSS-equipped test vehicle. To increase tracking
performance, the motion of the vehicles must be precisely
represented with their dynamic behavior. Here we employ
a constant velocity motion model to model the vehicle
traveling through the intersection.
The state vector for the constant velocity model is defined
as:

ẋ = [px, py, vx, vy]
T

where px and py represent the position in the x and y
direction, respectively, and vx and vy is the velocity in the
x and y direction, respectively. The discrete time state-space
form can be defined as:

xk = Akxk−1 + qk

yk = Hxk + rk

where qk ∼ N (0, Qk); T = tk − tk−1;

Ak =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 ;Qk =


σ2
1T

3

3 0
σ2
1T

2

2 0

0
σ2
2T

3

3 0
σ2
2T

2

2
σ2
1T

2

2 0 σ2
1T 0

0
σ2
2T

2

2 0 σ2
2T


The discrete-time Kalman smoother, also known as the RTS
smoother, is implemented to align the data from the sen-
sors and the PPK-GNSS-equipped test vehicle. The Kalman
smoother involves a two-step process: a forward standard
Kalman filter and a backward smoothing filter. Equations
(3)–(9) describe the Kalman filter and smoother algorithm.

Kalman Filter

Prediction

xk+1|k = Fkxk|k (3)

Pk+1|k = FkPkF
T
k +Qk (4)

Update

Kk+1 = Pk+1|kH
T [HPk+1|kH

T +R]−1 (5)
xk+1|k+1 = xk+1|k +Kk+1[yk+1 −Hxk+1|k] (6)

Pk+1|k+1 = Pk+1|k −Kk+1[R+HPk+1|kH
T ]KT

k+1 (7)

where K is the Kalman gain and P is the error covariance
matrix.
The smoother calculates the state posterior distribution p(xk |
yk:k+N ). The recursive equations for the backward step
follow.

Kalman Smoother

xk|k+N = xk|k + Ck[xk+1|k+N − xk+1|k] (8)

Ck = Pk|kF
TP−1

k+1|k (9)

where Ck is the smoother gain. Once we have the sensor
points at the same time resolution as the GNSS positional
data, we can match the position points from the trajectory at
each time stamp to find the transformation that best fits the
system until it reaches a threshold. The spatiotemporal prob-
lem can be set up as an optimization problem to minimize
the matching error between the two sets of data points and
is described as:

Hw
Si

= argmin
P∑
i

∥∥∥wi − (Rw
Si

× pNi + Tw
Si
)
∥∥∥ (10)

We can use singular value decomposition [24] to calculate
the rotational matrix R and translation vector T.

IV. EVALUATION AND RESULTS

A. Experimental Setup

The proposed calibration framework was evaluated at a
four-way traffic intersection in the city of Colorado Springs,
Colorado, USA. The intersection has a statue in the center
that acts as a blind spot, and the sensors lose track of the
object when behind the statue and get detected again as they
move out of it. The sensors were installed at a corner of the
intersection to track the cars in the intersection, as well as
the ones approaching from the north and west. Two Econolite
EVO radars were set up, with one directed toward the north-
south and the second pointed toward the east-west (Figure
1). This ensured a full coverage of the intersection, as well
as the approaching vehicles shown in Figure 2. Each EVO
radar has a 110° field of view and about 250 m of range
and can classify cars, trucks, and pedestrians. The sensor
data were sent to an EVO Radar Hub for processing and
recorded at a resolution of 10 Hz. Two Axis cameras were
also mounted to record the data at the intersection, with each
camera pointed in the same direction as the radar, as shown
in Figure 1. A deep-learning model for object detection and
classification developed by Kapsch was employed for real-
time classification of the objects (cars, trucks, and pedestri-
ans) inside and approaching the intersection using an edge
device recording at a time resolution of 20 Hz. A set of
lidars were also installed at the intersection. The lidars were
pointed toward the intersection to detect and classify objects
from the 3D point cloud data. This setup containing three
different modes of sensors—with radar providing long-range
detection, cameras detecting objects inside the intersection,
and complementary 3D information from the lidar—provides
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Fig. 1: Mounting location of the sensors with a statue in
the center at the traffic intersection in the city of Colorado
Springs, CO, USA.

Fig. 2: The field of view of radar (blue) and camera (red)
and Lidar (orange) at the intersection, with darker shades
representing the overlap between sensors.

a robust image of the intersection that is essential for ITS
applications and creating a digital twin.

A high-accuracy Emlid real-time kinematic GNSS was
mounted on the top of a test vehicle, while a base unit was set
up near the intersection for PPK correction of the geographic
coordinates sent by the vehicle as it passed thought the
intersection at a time resolution of 30 Hz. Figure 3 shows the
GPS tracks of the instrumented vehicle as it passed through
the intersection.

B. Results

As the test vehicle moves through the intersection it
records its position in WGS-84 geodetic coordinates. First,
the geodetic latitude and longitude coordinates are trans-
formed to Earth-centered, Earth-fixed (ECEF) coordinates
and then transformed to an east, north, up (ENU) tangent
plane in terms of x and y data points. With the GNSS

Fig. 3: PPK-GNSS tracks from the instrumented vehicle at
the intersection.

positional data as our ground truth, we are able to determine
the time-stamped detection from the sensor and apply these
transformations to calibrate them. The vehicle and pedestrian
tracks recorded for an hour and detected by the multisensor
setup at the four-way traffic intersection are shown in Figure
4. The tracks shown are in local sensor coordinate frame.
The positional track of the test vehicle as it passes through

the intersection is shown in Figure 5. In Figure 5a, the initial
positional data of the test vehicle are shown as detected
by Radar 1 (black) and Radar 2 (blue). After applying
the proposed algorithm, the positional data from the radar
sensor are transformed into a common coordinate system. In
Figure 5b, the trajectory after applying a Kalman smoother
is shown in black and blue for Radar 1 and Radar 2,
respectively, whereas the data points represent the actual
detection after transformation. The vehicle and pedestrian
tracks after calibrating the sensors using the proposed auto-
calibration framework are shown in Figure 6. The detections
from Radar 1 and Radar 2 (Fig. 6c) have the least calibration
error and are able to provide information about the vehicles
approaching the traffic intersections as far as 100 m. The
detections from the cameras as shown in Figure 6a match
with the GPS tracks; however, there are certain detections
that do not match with the GPS tracks. This deviation
can be explained by the following reasons: (1) the camera
suffers with distortion and needs additional post-processing
to remove this distortion, or (2) there is an error in the center
point of the vehicle in the image plane. The camera uses a
fixed vehicle center point based on bounding box dimension
to determine the center point of the vehicle, but this method
is not consistent if the vehicle approaches the camera at
various angles, hence causing the error in detection. Finally,
for lidar we have good matching results in the intersections,
as shown in Figure 6b. However, as we move away, we
start to observe higher errors. This could be because the
lidar was pointed down toward the intersection to get more
information, and at farther distances it had fewer points
reflecting off the objects.
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(a) Radar 1 (b) Radar 2

(c) Camera 1 (d) Camera 2

(e) Lidar (f) PPK-GNSS

Fig. 4: Vehicle and pedestrian tracks detected by (a) Radar 1, (b)
Radar 2, (c) Camera 1, (d) Camera 2, (e) Lidar, and (f) tracks of
test vehicle instrumented with PPK-GNSS passing through a four-
way intersection.

C. Evaluation Metrics
The accuracy for the proposed calibration method is

evaluated for each sensor by calculating the error in final
transformation with the test vehicle data:

Error(SN ) =∥wi − p̂1∥2 (11)

where wi is the position vector for test vehicle and p̂i is the
position vector of the sensor after transformation.
The above error metric is combined into a single metric per
sensor using the root mean square error (RMSE) given as:

RMSE(SN ) =

√∑k
1(Error(SN ))2

k
(12)

The RMSE values for each sensor after transformation using
the proposed framework are given in the following table:

Sensor RMSE Value (m)
Radar 1 0.30
Radar 2 0.35

Camera 1 1.7
Camera 2 1.9

Lidar 0.37

The RMSE values are low for radar and lidar, as we were
able to get consistent detection for a test vehicle object ID,

(a) Positioning of the vehicle in local sensor coordinate frame

(b) Positioning of the vehicle after transformation

Fig. 5: Positional data of the vehicle: (a) initial output and (b) final
solution.

(a) Camera 1 and 2 (b) Lidar

(c) Radar 1 and 2

Fig. 6: Vehicle and pedestrian tracks detected by (a) Camera 1
and 2, (b) Lidar, and (c) Radar 1 and 2 transformed after using the
proposed framework.
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but in the case of the camera, the RMSE values are higher
due to the detection errors explained above. While manual
sensor calibration using a calibration target outperforms the
proposed auto calibration in terms of accuracy, such target-
based calibration is not practical for a traffic intersection as
already discussed. As our results are within an acceptable
range it can be further used for data fusion. The proposed
algorithm relies on GNSS for calibration and would suffer if
there is a loss of GPS signal and in a dense urban setting as a
weak GPS signal would lead to reduced calibration accuracy.
Low sensor sampling rate would also affect the calibration
accuracy as it would lead to higher motion estimation errors.
The sensor time clocks must be accurately synchronized
to prevent inaccurate spatial registration due to clock drift,
which would also impact calibration performance.

V. CONCLUSIONS
In this work, an automatic calibration method is presented

for calibrating infrastructure-based radar, lidar, and cameras
that use trajectory information provided by a GNSS-equipped
test vehicle to find the extrinsic calibration parameters for
the sensors. By calibrating different types of sensors we are
able to achieve a robust perception of the intersection. In
future work, the algorithm should be tested at different road
layouts such as urban, rural and highway setting. To ensure
the proposed algorithm is agnostic of sensor brand or model,
it should be evaluated with various sensor configurations,
brands and further extended to perform system health mon-
itoring and analyze sensor fidelity at the traffic intersection.
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