

Design of Zone-Based Hierarchical Protection System for 100% Renewable Microgrids

Soham Chakraborty and Jing Wang

Power Systems Engineering Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA.

Challenges

Paper #: 24TD0302

- ☐ Efforts on microgrids with mixed-type DERs (rotating machinebased, IBR-based (GFL+GFM)
- ☐ In 100% renewable microgrids, challenges are:
- > Low fault current contributions by the IBRs, restricted by switch ratings and fault limiter
- > Varying fault current levels of DERs due to the variability of the renewable resources.
- ☐ Reduced fault current results in complete failure/delayed tripping by overcurrent relays.
- □ Varying levels of the low fault current impacts the thresholdbased protection system and relay coordination.

Contribution

- ☐ Methodology to partition the microgrid into multiple zones based on lines, buses, etc. (regardless of the topology)
- ☐ Unique protection schemes for zone with the best reliability ☐ Hierarchical structure enabling relay coordination by assigning
- different speeds for zones.

 $\square I_{\mathrm{Th}} = \alpha \times \max(I_{i0}^{\mathrm{r}}, I_{i1}^{\mathrm{r}}, ..., I_{iB}^{\mathrm{r}}),$

> A condition hold (counter=M)

α, M are 2 and 200, respectively.

☐ Avoid nuisance tripping:

> α: CT saturation factor (IEEE C37.110-2007)

► I^r_{in}: Rated nodal current measured by nth relay

Zone 2 and Zone 3 Protection ★

 $\Box I_{\rm Th} = \alpha \times \sqrt{2} \times I_{\rm rated} \sin[2\pi(n+D)/N]$ > α: CT saturation factor (IEEE C37.110-2007) > I_{rated}: Rated line current of ZoP

- ➤ N: Number of samples/cycle
- > n Index of sample
- D: Sample delay in communication
- ☐ Avoid nuisance tripping:

 - > a condition hold (counter=M), > α, N, D, M are 2, 100, 2, and 200, respectively
- $\square T_{\text{dir}} = |\hat{V}_{\text{pol}}||\hat{I}_{\text{pol}}|\cos(\angle \hat{V}_{\text{pol}} \angle \hat{I}_{\text{pol}})$ > 67NEG, 67POS, 67PH
- ☐ I_{Block} = 4 times rated current
- □ V_{Th}= 25% of rated voltage
- ☐ Definite-time overcurrent characteristic,
- $t_{\rm op} = 5$ cycles

VR-overcurrent tripping characteristics are employed in the relays situated in Zone 1 and Zone 4 as a backup protection system with proper relay coordination.

Zone 2 Zone 3 Zone 4 Line differential-based protection IEEE 1547-2018 Category III Microgrid network and protection system under study Zone 4 Protection

