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ABSTRACT: Mechanical residual stresses within multilayer
thin-film device stacks become problematic during thermal
changes because of differing thermal expansion and contraction
of the various layers. Thin-film photovoltaic (PV) devices are a
prime example where this is a concern during temperature
fluctuations that occur over long deployment lifetimes. Here,
we show control of the residual stress within halide perovskite
thin-film device stacks by the use of an alkyl-ammonium
additive. This additive approach reduces the residual stress and
strain to near-zero at room temperature and prevents cracking
and delamination during intense and rapid thermal cycling. We
demonstrate this concept in both n-i-p (regular) and p-i-n
(inverted) unencapsulated perovskite solar cells and mini-
modules with both types of solar cells retaining over 80% of their initial power conversion efficiency (PCE) after 2500 thermal
cycles in the temperature range of −40 to 85 °C. The mechanism by which stress engineering mitigates thermal cycling fatigue
in these perovskite PVs is discussed.

Halide perovskite semiconductors are a promising
emerging photovoltaic (PV) technology, but to
rapidly reach the commercialization stage, perform-

ance and upscaling must be achieved along with demonstrated
reliability in operation and under conditions exceeding the
testing conditions in which perovskites are routinely
measured.1−6 For commercialization, perovskite solar cells
(PSCs) must undergo and pass rigorous testing protocols
accepted by the research community, such as International
Summit on Organic Photovoltaic Stability (ISOS) procedures.7

PSCs are being explored for various applications, e.g.,
extraterrestrial environments,8,9 and a primary challenge in
this context is the ISOS-T-3 thermal cycling test, which
simulates conditions ranging from −40 to 85 °C. Although the
thermal stability of PSCs shows them to be capable of this, the
reported lifetime n80 (number of thermal cycles performed
while retaining at least 80% initial efficiency) is approximately
200−300 thermal cycles.10−15 During thermal cycling, the
decay of the mechanical integrity is the main cause of the
performance degradation, which remains poorly under-
stood.11,12

While significant improvements have been demonstrated in
the stability and upscaling of these materials (large-area PSCs

and perovskite modules), few reports have focused on their
mechanical reliability.16−20 PSCs have a low fracture energy
within the perovskite materials themselves, and low interfacial
adhesion energies in the layered PSC device stacks.21−23

Appropriately matching the coefficient of thermal expansion of
the perovskite layer to that of the adjoining layers prevents
fracture and premature delamination but is challenging to
accomplish given other constraints for high efficiency.24,25

Several research efforts have been dedicated to improving the
mechanical reliability. Dai et al. demonstrated that treatment
with self-assembled monolayers that react with surface
hydroxyl groups results in a 50% increase in the adhesion
toughness between the electron transport layer (ETL) and
perovskite layer.17 Cheacharoen et al. also showed PSCs in an
encapsulant (ethylene vinyl acetate) with a low elastic modulus
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to enable mechanical reliability that retained more than 90% of
their initial performance after 200 thermal cycles.11 However,
less attention has been given to the perovskite thin film layers,
which are sensitive and vital for improving the mechanical
reliability and PV performance.

In this study, we demonstrate control over the residual stress
of perovskite thin films after thermal annealing by incorporat-
ing alkyl ammonium molecules, such as n-octylammonium
iodide (OAI), into the perovskite precursor and, thus, thin
films. Because of the relatively large size of the OA+ cation, we
and others believe that these ammonium molecules mainly
incorporate at grain boundaries and interfaces rather than
internally within the perovskite lattice during crystalliza-
tion26,27 and relieve internal stress (from ∼23.4 to ∼0 MPa)
at room temperature (RT). This additive not only results in
increased PCE for both p-i-n and n-i-p PSCs and
unencapsulated perovskite solar minimodules (PSMs) but
also, more importantly, improves the thermal cycling lifetime
n80 to up to 500 thermal cycles in accordance with the ISOS-T-
3 procedure and 2500 cycles in an accelerated thermal cycling
test. The thermal cycling performance of PSCs and PSMs
reveals that minimizing the residual stresses at RT in
perovskite thin films reduces the residual stresses across the
temperature range and prevents further interface delamination
in layered PV devices during thermal cycling tests.

In the n-i-p geometry, which we will discuss first, the mixed-
composition metal halide perovskite (MHP), (FAP-
bI3)0.95(MAPbBr3)0.05, was used for its high PCE and thermal
stability, and SnO2 was chosen for the ETL since it offers more
favorable energy level alignment with MHP and less possible
photocatalytic degradation with MHP compared with TiO2.28

We explored a series of alkylammonium halides but focused
specifically on n-octylammonium iodide with an alkyl (CH2)n
(n = 8) linker, which appears to best reduce the residual
internal stress in perovskite thin films. Additionally, we varied
the concentration by dissolving different amounts (0, 1%, 2%,
and 4%) of OAI in the perovskite precursor solution before
spin coating and created a set of perovskite thin films with 0,
1%, 2%, and 4% of OAI designated as OAI-0, OAI-1, OAI-2,
and OAI-4, respectively. Figure 1A shows the XRD results for
the set of perovskite films prepared following spin coating and
thermal annealing at 100 °C for 40 min. A decrease in the
XRD intensity of the OAI-4 peak is observed, while the XRD
intensities of the (001) and (002) peaks of OAI-1 and OAI-2
remain mostly unchanged. The high concentration of OAI in
OAI-4 disrupts crystallization, which results in the lower XRD
intensity, as shown in Figure 1A, and slightly lower domain
size, as presented in Table S2. Previous literature has reported
that alkylammonium molecules can be found at grain
boundaries of the perovskite thin films after annealing,29−33

Figure 1. (A) XRD patterns of the perovskite thin films with molar ratios of 0, 1%, 2%, and 4% of OAI to Pb, which were designated as OAI-
0, OAI-1, OAI-2, and OAI-4, respectively. (B) Schematic illustration of the XRD sin2ψ method for quantifying the residual stress. Note that
the stress for the perovskite is measured in the n-i-p device stack. (C) XRD patterns at different tilt angles for the OAI-1 perovskite thin film.
Higher values of ψ are shown as lighter colored lines. The specific angles ψ chosen for strain analysis are shown in Figure 1C,D (0°, 26.6°,
39.2°, 50.8°, and 63.4°). (D) XRD pattern at different tilt angles for the OAI-0 perovskite thin films. Higher values of ψ are shown in
progressively lighter colored lines. (E) d220 spacing versus sin2ψ for the OAI-0 and OAI-1 perovskite thin films. (F) Comparison of the
residual stress in the OAI-0, OAI-1, OAI-2, and OAI-4 perovskite thin films. Top-view SEM images of (G) OAI-0 and (H) OAI-1 perovskite
thin films (inset, cross-sectional SEM image of the corresponding perovskite thin film).
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and we agree with that assessment. We used time-of-flight
secondary ion mass spectrometry (ToF-SIMS) to track the
specific mass signature of the alkyl molecule. The correspond-
ing ToF-SIMS maps are included in Figure S1, which show a
uniform spatial distribution in the OAI-1 and OAI-4 perovskite
films. Given the homogeneous distribution and that we do not
see a change in the XRD pattern that would occur if OA+

occupied an A-site, we conclude it is likely that the alkyl
molecules are between grains and/or at grain surfaces.29−33

The XRD sin2ψ method (scheme illustrated in Figure 1B) is
a sensitive method for probing the residual internal stress/
strain in perovskite thin films with different amounts of OAI.34

The perovskite films were deposited on glass/indium tin oxide
(ITO)/SnO2 to resemble those used in devices following the
method of Jiang et al.35 In Figure 1C,D, the (220) interplanar
spacing (d220) is plotted as a function of sin2ψ for OAI-0 and
OAI-1, respectively. The monotonic decrease in the intensity
of diffraction peaks as a function of ψ for the OAI-1 (Figure
1C) is possibly caused by a decrease in penetration depth.
However, for OAI-0 (Figure 1D), the intensity is higher for ψ
= 26.6° and ψ = 39.2°, which suggests a different distribution

of crystallite orientation compared with OAI-1.36 In other
words, for OAI-0, there is an increased population of
crystallites oriented at ψ = 26.6° and ψ = 39.2°.

The positive slope (m) of the linear fit to the d220-sin2ψ data
for the axially aligned phase of OAI-0 indicates the presence of
residual biaxial tensile residual stress (or strain). In contrast,
OAI-1 shows a much lower magnitude and negative slope,
which suggests they likely transition to very weak residual
compressive strain, which we term as near zero in comparison
with the initial compressive case. The biaxial residual stress can
be calculated using the equation

=
+

E m
d1 n

R
220i

k
jjjj

y
{
zzzz

i
k
jjjjj

y
{
zzzzz

where m is the slope of the linear fit to the data, dn is the d220
spacing at sin2ψ = 0 (y intercept), E⟨220⟩ is Young’s modulus in
the ⟨220⟩ direction, and ν is Poisson’s ratio. E⟨220⟩ is estimated
to be 12 GPa.22,37 A typical ν value of 0.33 is assumed.38 The
calculated residual internal stresses for the set of perovskite
thin films are summarized in Figure 1F. Overall, the tensile

Figure 2. (A−D) Schematic illustration (not to scale) of the n-i-p regular planar PSCs. (B) J−V responses, in reverse and forward scans, of
champion n-i-p PSCs based on OAI-0 and OAI-1 perovskite thin films. (C) Stable output of champion n-i-p PSCs measured at a constant
voltage. (D) Schematic illustration (not to scale) of the n-i-p regular planar PSMs. (E) J−V responses, in reverse and forward scans, of
champion n-i-p PSMs based on OAI-0 and OAI-1 perovskite thin films. (F) Stable output of champion n-i-p PSMs measured at constant
voltage. (G) Schematic illustration (not to scale) of the p-i-n inverse planar PSCs. (H) J−V responses, in reverse and forward scans, of
champion p-i-n PSCs based on OAI-0 and OAI-1 perovskite thin films. (I) Stable output of champion p-i-n PSCs measured at constant
voltage. (J) Schematic illustration (not to scale) of the unencapsulated p-i-n inverse planar perovskite solar minimodules (PSMs). (K) J−V
responses, in reverse and forward scans, of champion p-i-n PSMs based on OAI-0 and OAI-1 perovskite thin films. (L) Stable output of
champion p-i-n PSMs measured at constant voltage.
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stress in OAI-0 is calculated to be 23.4 MPa, which is reduced
to nearly 0 MPa in OAI-1, OAI-2, and OAI-4 (showing minor
compressive strain). On the basis of this, the OAI-0 and OAI-1
samples were chosen for further morphological character-
ization using scanning electron microscopy (SEM). Figure
1G,H shows that the average apparent grain sizes of OAI-0 and
OAI-1 are approximately 810 and 820 nm, respectively.
Williamson−Hall (WH) analysis was performed to identify
the influence of OAI on structural or compositional
inhomogeneity, as well as verify the comparable grain sizes
from SEM. The results of WH analysis are summarized in
Figure S2 and Table S2 and, within measurement uncertainty,
show the addition of OAI has minimal impact on the
microstrain and grain size.

To examine the PV performance, PSCs based on OAI-0 and
OAI-1 were then prepared in both planar n-i-p and p-i-n device
structures. Figure 2A shows the n-i-p structure comprising
glass/ITO/SnO2/perovskite/Spiro-OMeTAD/Ag, and Figure
2G shows the p-i-n device structure comprising glass/ITO/
poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA)/
perovskite/C60/bathocuproine (BCP)/Ag. The composition
of the perovskite is the same in both cases. The current density
(J)−voltage (V) response under AM1.5G of the best
performing n-i-p and p-i-n PSCs based on OAI-0 and OAI-1
are presented in Figure 2B,H, and the corresponding PV
performance parameters are listed in Table S1. The addition of
OAI increased the open-circuit voltage (VOC) from 1.11 to
1.17 V in the n-i-p device and from 1.06 to 1.09 V in the p-i-n
device with little hysteresis. The short-circuit current density

(JSC) values for the best PSC based on OAI-1 compared
favorably with the respective values derived from the external
quantum efficiency (EQE) spectra of the PSC based on OAI-1
in Figure S3. The stabilized power output at the maximum
power point (MPP) of these PSCs is presented in Figure 2C,F
as the PCE. Statistics for the PV performance parameters JSC,
VOC, fill factor (FF), and PCE for PSCs (20 cells of each type)
are presented in Figure S4 and demonstrate reproducibility.
We also prepared both n-i-p and p-i-n perovskite solar
minimodules (PSMs) on the basis of OAI-0 and OAI-1. The
J−V responses of the best performing n-i-p and p-i-n PSMs are
shown in Figure 2E,K with values of 20.3% for the n-i-p PSM
and 17.5% for the p-i-n PSM, and the corresponding PV
performance parameters are listed in Table S2.

All PSCs and PSMs based on OAI-0 and OAI-1 were put
into a closed chamber (shown in Figure S5) for thermal
cycling under the recommendations provided by the ISOS-T-3
procedure (−40 to 85 °C, N2, 6 h per cycle). For the n-i-p
PSCs and PSMs, the PCE of the PSCs based on OAI-0
decreased quickly from the initial 21.2% value to 2.1% after
200 cycles, while the PCE of the PSCs based on OAI-1
retained 19.0% (82% of the initial PCE of 23.2%). However,
we observed a much faster degradation in n-i-p PSMs without
the OAI additive (OAI-0), which decreased to 0% after 100
cycles. The PCE of the n-i-p PSM based on OAI-1 decreased
to 17.7% after 100 cycles and 13.4% after 500 cycles. For p-i-n
PSCs and PSMs, the PCE of PSCs based on OAI-0 decreased
from 18.5% to 9.5% after 200 cycles, while the PCE of PSCs
based on OAI-1 decreased to 20.2% (94% of the initial PCE).

Figure 3. Evolution of the PCE of n-i-p PSCs (A), n-i-p PSMs (B), p-i-n PSCs (C), and p-i-n PSMs (D) over 500 temperature cycles between
−40 and 85 °C, 6 h per cycle. Typical J−V curves (reverse scan) were obtained after 100 cycles for the n-i-p PSCs (E), n-i-p PSMs (F), and p-
i-n PSCs (G) and after 10 cycles of the p-i-n PSMs (H). The evolution of the PCE of n-i-p PSCs (I) and p-i-n PSCs (K) over 5000
temperature cycles between −40 and 85 °C for 5 min per cycle. Typical J−V curves (reverse scan) after 2500 cycles were obtained for the n-
i-p PSCs (J) and p-i-n PSCs (L).
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The J−V curves for PSCs and PSMs after 100 cycles are shown
in Figure 2B,D,F, and after 10 cycles in Figure 2H, with the
main loss ocurring in the FF and VOC. Both n-i-p and p-i-n
PSCs demonstrated a critical point (100 cycles for n-i-p PSCs
and p-i-n PSCs) where they transition from slower decay to
faster decay.

We also tested n-i-p and p-i-n PSCs in an accelerated
thermal cycling test capable of a much greater total number of
cycles in a reasonable amount of time (see the Supporting
Information for more details). The thermal shock test was set
as −40 to 85 °C with 5 min per cycle, which may represent
harsher cycling conditions for PSCs with faster ΔT and a
greater number of total cycles. The n-i-p and p-i-n PSCs based
on OAI-1 still maintain 72% and 81% of the initial efficiency
after 5000 cycles, respectively, while the n-i-p and p-i-n PSCs
based on OAI-0 only retain 13% and 37%, respectively, after
2500 cycles. To the best of our knowledge, this is the first
report of thermal cycle testing exceeding 500 cycles. From the
J−V response of the n-i-p (Figure 3J) and p-i-n (Figure 3L)
PSCs based on the OAI-1 and OAI-0, the main loss of PV
performance during rapid thermal cycling is also the reduction
in VOC and FF, which is consistent with the observation of

PCE evolution during standard thermal cycling. Furthermore,
in p-i-n PSCs, we modified the perovskite composition and
improved the PCE of p-i-n solar cells based on the OAI-1 to
24.3%. The improved p-i-n solar cells based on OAI-1 are
more resistant to degradation than the improved p-i-n cells
based on OAI-0 in thermal cycling test (Figure S6). To better
understand this behavior, we comprehensively characterized
the n-i-p PSCs after 100 cycles, and the results are presented
below.

Cross-sectional SEM images of the PSC based on OAI-0
after 100 cycles (Figure 4A) revealed two types of irreversible
morphological degradation features at the interface: cracks in
the grains and delamination at the interface between the
perovskite and SnO2 layers. In contrast, such degradation
features were not observed in the corresponding SEM image of
the PSC based on OAI-1 (Figure 4B). We also performed
XRD for PSCs based on OAI-0 and OAI-1 after different
numbers of thermal cycles, as shown in Figure S7. The XRD
pattern shows a lack of an obvious 2D phase (which would be
apparent at angles less than 10°) formed during the perovskite
deposition process.30 Before 100 cycles were reached, no
additional XRD peaks corresponding to the PSCs were

Figure 4. Cross-sectional SEM images of the as-fabricated PSCs (A) with OAI-0 and (B) with OAI-1 after thermal cycling. TA spectra at
various pump-probe delay times of the PSCs (C) with OAI-0 and (D) with OAI-1 after thermal cycling. The pump excitation energy is 3.1 eV
(400 nm) at the SnO2/perovskite interface. (E) TA kinetics summary for PSCs (C) with OAI-0 and (D) with OAI-1 after thermal cycling.
Solid line: before thermal cycling. Dotted line: after thermal cycling. (F) Interfacial toughness of SnO2/perovskite thin films in solar cell
structures calculated using the double cantilever beam method before and after thermal cycling.
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observed, and only a small decrease (∼5%) in the XRD peak
intensity could be observed for the perovskite layer. However,
after 100 cycles, a decrease in the intensity (∼35% drop) was
observed in the PSCs based on OAI-0, which indicates
accelerated structural disorder of the perovskite materials after
delamination, similar to what is commonly reported for flexible
solar cells.16,39

Moreover, the PSCs based on OAI-0 and OAI-1 before
(Figure S8) and after 100 cycles of thermal cycling were also
examined by transient absorption (TA) spectroscopy. A laser
with a wavelength of 400 nm was used to illuminate the glass
side so that the TA signal was predominantly generated from
the interface of the perovskite and SnO2 layers, thereby
enabling us to probe the behavior of the photocarriers
generated from the interface of the perovskite and SnO2 layers
before and after thermal cycling. We also deposited pure OAI-
0 and OAI-1 onto glass/ITO substrates for comparison. After
100 thermal cycles, the TA kinetics results (Figure S9) show
negligible differences between OAI-0 and OAI-1. However,
after 100 cycles of thermal cycling, compared with the TA
kinetics results for pure OAI-0 and OAI-1, we clearly observed
a shorter lifetime in PSCs based on the OAI-0, which we
believe is a single-layer passivation from the hole transport
layer (HTL)/perovskite interface because of the delamination
between the perovskite layer and the ETL, as shown by SEM
(Figure 4A). The delamination effect between the perovskite
thin films and the ETL layer before and after thermal cycling
was also examined by measuring the interfacial toughness (GC)
between the perovskite thin films and the ETL layer using a
dual beam cantilever technique (Figure 4F). The GC value
before thermal cycling shows negligible differences for the
PSCs based on the OAI-0 (1.67 ± 0.32 J/m2) and the OAI-1
(1.71 ± 0.45 J/m2). After 100 thermal cycles, the GC value
inevitably decreases to 0.41 ± 0.25 for PSCs based on OAI-0
and 0.78 ± 0.22 J/m2 for those based on OAI-1 (Figure 4F).
The fractured surfaces (before and after thermal cycling) are
presented in Figure S10, which indicates the beneficial effect of
the OAI in preserving the mechanical integrity of the buried
interface during thermal cycling. For the PSCs based on the
OAI-1, the neutral residual stress of the OAI-1 at room
temperature allows the perovskite layer to better match the
adjacent layers and endure the changes that result from
temperature fluctuations. Furthermore, the grain surfaces
benefit from the OAI molecules, which could help isolate
grains from increasing stress, which in turn prevents
mechanical failure. However, without the additive, the high
residual tensile stress in the OAI-0 PSCs facilitates a decrease
in the interfacial toughness after thermal cycling and leads to
fatigue.40,41 Taken together, our results suggest that stress
engineering of perovskite thin films in PSCs or PSMs is an
effective approach for significantly enhancing the thermal
cycling performance of perovskite PV devices, as demonstrated
by using multiple common device structures.
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