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My Background

Chemical Engineer, focused on
process modeling and control, with
>30 years experience

* Principal Investigator for biomass
thermo-catalytic conversion
modeling project at NREL since
2008

* Prior employment:
— Bloom Energy
— Aspen Technology Inc.
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Presentation Overview

Process Focus: Biomass pyrolysis and
steam reforming for H,

Why: Inefficiencies towards target
products need to be exploited wisely

Process Resource: Off-gases from fast
pyrolysis (FP) and catalytic fast pyrolysis
(CFP)

Additional Relevance: Applicableto ___
biogenic off-gases from other processes

Methods: Conceptual process modeling
with heat integration

—

Key References
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| ocation and
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Decision-Making

Impacts of choices based on
locational feasibility
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Example Pyrolysis Process Designs

FP Configuration
Off-Gases for

Fluidization Fast Pyrolysis Off-Gases

(FP)

Circulating Fluidized Bed
(CFB): Fast Pyrolysis &
Char Combustor System

Oxygenated
Biocrude

Biomass \Vapors| Condensation

Char (combusted for heat)

Major Inputs Major Outputs Utility Integration Options
Woody biomass FP Biocrude Electricity

Electricity Heat and steam Steam

Other utilities Off-gases Fuel Gas

Abbreviations: FP = Fast Pyrolysis, CFP = Catalytic Fast Pyrolysis

CFP Configuration
Off-Gases for Fluidization Off-Gases &
H, for Catalytic Fast Condensable Products
CFP Pyrolysis (CFP)
1
l CFB | Fixed Bed _
Partially
‘ -
Biomass :IStsis 1 lj:at:a;:g:: Vapors| Condensation [Deoxygenated
Pyroly i g Biocrude
Char (combusted for heat) Aqueous Waste Stream
Major Inputs Major Outputs Utility Integration Options
Woody biomass CFP Biocrude Hydrogen
Hydrogen Heat and steam Electricity
Electricity Off-gases Steam

Other utilities

Chemical coproducts Fuel Gas
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Location/Infrastructure for Utilization

Standalone Biorefinery
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Limitations

* H, export

* Heat export

* Steam export

* Fuel gas
* @Gaseous
products

Electricity export
is flexible
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Making the Right Location-Specific Choices

(CFP Example)

Standalone
with only
electricity

export
feasible

Colocated
with
complete
flexibility for
utilization of
resources

(a) Conversion Energy
In/Out (LHV Basis)

(b) Biocrude
GHG Emissions

Price of Biocrude

CFP-1 Water in Biomass: 1.51~ Net - 17.7 20.5 399
Water Use: 3.06~ 40 = 340 344314
Cooling Tower Lotses: 3.21 = o~ o 400 B
— 30 8
Dry Biomass: Fuel Intermediate | =730 ks
100.00 (Biocrude): 42.41 | = £ 200
= o
LHV:|  Flue Gas: 1.17 § 10 &
100.30 3 H | -
Air Coolersetc:. w 0 2 9
37.30 o % 43 ifil
Misc: 0.30 Coi5r2.01 i ‘ TCI (Bil.$)-> 0.58 0.58 1.16 1.99
Electrigity: 4.29 -20 I &
_ &£
Chemical Coproducts: 5* W )
: @a  SLFES
g Net - -12.0 -9.1 380
CFP-3 Water in Biomass: 1.50~-
Water Usei4.91+ | 0 sz ) O s
Cooling Tawetl ses: 3.51 40 -g 400 =
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0000 . (Bk;n:lrude):‘dztl? %_ 0 § 200
ue Gas:0.91- & ,//: /5 =
tHvf . S 20 4 ¥ =
r Cool etc: 11.84] | O //; % ]
108.184 .5 ¢ Heat Loss:2.00- | @ 40 i @ = 0
Hydrogen: 14.71 50 I I I
Misc: 0.26 i m m TC(BilS)> 0.550.551.001.85
Electricity: 7.91 121.43 ) @Q ép &
&P
Chemical Coproducts: 'S SA @ & 0_;\'
B Others Feedstock W Fixed operating costs

Electricity purchase
Y Hydrogen purchase
% Bio-oil transport

B Catalysts & chemicals

Electricity export

77 Hydrogen export

7] Fuel gas export
Steam export

Total variable op.costs
Capital & other charges
M Total coproduct credit

7% Feedstock to colocation B Chemical coproducts

(€) Minimum Selling

EMSP — 3.40
17.7

3.80
-9.1 «—GHG

__4.00 30
[N
@ 3.50 = 20
~
23,00 10
[a

< 2.50
2.00

-
o O

CFP-1] [CFP-3
SA-2000 CL-2000

Displacement method used for assessing GHG impacts of energy resources
Abbreviations: SA = Standalone, CL = Colocated, MSP = Minimum Selling Price

SA-2000 = SA 2000 tonnes/day, CL-2000 = CL 2000 tonnes/day

Impacts of making other additional choices are presented in:
Sustainable Energy Fuels, 2023,7, 4955-4966. https://doi.org/10.1039/D3SE00745F
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Steam-Reforming for
Hydrogen Production
from Biogenic Gases

Impacts on existing steam-
reforming processes; conceptual
assessment via process modeling
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Process Configuration for Impact Assessment
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Sample of Results — Tracking Substitution of [fIEty.—".
Natural Gas (NG) with Pyrolysis Off-Gases [l

_ — I PY-NG (feed), NG (fuel).
— Tatal Fossil — — Net Biogenic ~ = 900 psig - 350 psig -----150 psig = - -15 psig 20,000 | —Total Elec. AS eX pected
0___|_|__|_. e Eis.m L N 5 ([, Feed Cmp V4
g ¢ § 2000 Fmeens dog— S0 |4 -10,000 : 10,000 1 —_ FiuslCnp . .
z e e w8 e o- —emes | SUDSTItUtion of fuel
- [ - s E -
Fe e d 8 ’ - I' A E -6,000 -~ et - i; ;-Ulunn E bl | : g
1 el T 2 200 S Wwat Pmp 'd t I a
0 g - i -8,000 ' 50,000 = s o s yoeesi] HE recy SI e na u ra gas IS
s (A) (B) © 05 1 (€) 0 05
S I d e Maole fraction PY gas in PY-NG mix Mole fraction PY gas in PY-NG mix Mole fraction PY gas in PY-NG mix . . . .
—H2 H20— -CO €02 = = CHA ——H20:CH4 ——Refarmer - — WG5S Reactor ——Pre-ref AT - = pre-ref outlet flow e a S I e r W It h l I l I n I l I I a I
g 0.80 At Pre-Reformer Outlet 20 2 g 65,000 o o 15000 g
g ! EE TTE| OB ] .
m aC £ 060 T 15 ¢ = deem=ne /] 2|5 £ t
2 € 60,000 _ - - D 2,000 = o 10000 =
P o | 1|3 R : process impacts.
2 1 kS g ss000 _— ‘1,000 @ g 0 soo0 3
¥ o020 ~=~- — 5 8 £ T 2 2 s o
oo =TT ¢ | 8 seow ! 0 & 100 . L
= 0 05 1 0 05 1 0 05 1
(D) mole fraction PY gas in PY-NG (E)  Mole fraction PY gas in PY-NG mix (F)  Mote fraction PY gas in PY-NG mix Ot h e r key
III. NG (feed), PY-NG (fuel).
——Total - Fossil = = Net — . -Biogenic = -9009;15 d g;;,;,-s ..... 150 p;ié— .“1}5 psig 5000 —Total Elec. Sh0. oo
= . ol il s sensitivities
=== T - | 2000 - £ 4000 = FuetCmp
% 40,000 § S , E - = - = Comb.fans H I d d .
o e TR e g O . —Air Cool |nC u e .
8 20000 3 £ it =
u e o weB000 b oo E | ST ———— Wat Pmp
1] -8,000 L= (e e — - H2 recy t L] b t
5 1 \ | B steam:carbon ratio
S i d e Mole fraction py-gas in PY-NG mix [B} Mole fraction PY gas in PY-NG mix ( } Mole fraction PY gas in PY-NG mix
—H2 H20 == €O = - (02~ = CHA——H20:CH4 Reformer WGS Reactor ——Pre-ref AT - = Pre-refoutlet flow a n d CO I n Off_ga SeS
g 0.80 At Pre-Reformer Outlet 49 g 56,000 1,900 T a0 a0 = 2
& 060 3 ; £ 2 LS. 800 E
mpact || & 5§ | peaseziazacel a8 | o8 =
5 . 2 5 a g 4 3400 3 .
G020 fo=====c=ce———- 105 £ 52000 1,700 g % .m 00 2 Adv. Sustainable Syst. 2023, 2300241
;; o o 8 | Fso00 1,600 S & . 3000 ; https://doi.org/10.1002/adsu.202300241
2 0 05 1 0 0s 1 i L i NREL 10
{D} Mole fraction PY gas in PY-NG (E} Mole fraction PY gas in PY-NG mix (F) Mole fraction PY gas in PY-NG mix l



https://doi.org/10.1002/adsu.202300241

Key Conclusions from Steam-Reforming Analysis

 Besides fuel side substitution of NG with off-gases, feed replacement
up to 25% (depending on off-gas) composition may be possible
within design tolerances (often ~15%)

* Enabling CO, use with partial dry-reforming can increase efficiency

e By reducing steam consumption concurrently (with syngas output
composition richer in CO)

* Pre-reformers will play a critical role
— Handle compositional variations & shield main reformer
e Caveat: These are process model results

— Industrial implementation will have other considerations
e E.g., corrosion, safety, supplier design guarantees etc.

* Analysis method can be applied to other biogenic gases
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Thank you for your attention
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