

Stuart Cohen National Renewable Energy Laboratory May 14th, 2024 *Many slides and figures are credited to other ReEDS team members and NREL staff.*

A brief history of ReEDS

Brief, not total

ReEDS was born on a basic premise

"The large scope and focus on today's dominant conventional energy forms [in existing models] do not allow a detailed treatment of the more important issues for wind energy technologies."

From: Short, W., N. Blair, D. Heimiller, and V. Singh (2003). Modeling the long-term market penetration of wind in the United States

The Evolution of ReEDS

1999 Spreadsheet model uses geospatial data for regional grid planning

DOE funds WinDS optimization model; documentation and first analysis is presented at AWEA in 2003

2008 WinDS becomes Regional Energy Deployment System (ReEDS)

Powered by ReEDS, the *Renewable Electricity Futures Study* is released—the catalyst for a decade of visionary studies

ReEDS is re-coded for improved efficiency and capabilities

2019 NREL releases ReEDS as an open-access tool

2023 ReEDS gains new spatial and temporal flexibility

2001

2012

2017

Continual advancement is possible by the broader ReEDS team

+ Many others who provide critical data, input, and guidance for the model

What does ReEDS do?

Overview

What does ReEDS do?

Given a set of input assumptions, ReEDS simulates the evolution and operation of US generation, storage, transmission, and some carbon mitigation technologies

How does ReEDS work?

ReEDS uses **optimization** to identify the **least cost investment and operation** of grid assets that simultaneously meets load, all other electricity service requirements, and other physical, environmental, or policy constraints.

Key inputs: Existing and Planned Capacity

2022 Generation and Transmission Capacity

Generation capacity based on data from the U.S. Energy Information Administration (EIA) National Energy Modeling System (NEMS)

Interface transmission limits derived from transmission data from The North American Renewable Integration Study (NARIS) using a "maximum potential flow" optimization

Key inputs: Demand and Technology Parameters

Technology cost & performance

+ Interconnection spur line costs

NREL | 11

Key inputs: Renewable Resource Availability

Temporal availability Open access 0.00 0.05 0.10 0.15 0.20 0.25 PV CF [fraction] 0.2 Wind CF [fraction] access Aug NSRDB: https://nsrdb.nrel.gov/ WTK: https://www.nrel.gov/grid/wind-toolkit.html SAM: https://sam.nrel.gov/

Spatial availability

rev

https://github.com/NREL/reV

Key inputs: State and National Policies

Regional and state policies

(Updated annually)

The Prospective Impacts of 2019 State Energy Policies on the U.S. Electricity System (Mai et al., 2020)

Including state-specific:

- Mandates and RPS carve-outs (e.g., offshore wind, solar)
- Technology deployment constraints (e.g., nuclear)

National policies

Existing and possible policies related to:

- Renewable Portfolio Standard / Clean Energy Standard [%]
- Emissions rate constraint [gCO₂/kWh]
- Technology-specific incentives (ITC, PTC, 45Q, etc.) NREL | 13

Key Outputs: Capacity and Generation

Key Outputs: Transmission

Transmission capacity expansion between model zones (134 zones shown) Including AC, DC, and interties

Key Outputs: System Costs and Average Prices

Key Outputs: Emissions and Health Impacts

Health impacts

Emissions (CO_2 , CH_4 , SO_2 , NO_x)

ReEDS has numerous features and options tailored to study emerging grid trends

- 7-years of hourly data helps characterize firm capacity credit and curtailment
- Technologies are differentiated by sub-types, vintages, performance, and resource classes
- Spatial and temporal flexibility enables highresolution regional case studies
- Endogenous CO₂ and H₂ production, transport, and storage facilitates new scenarios

How is ReEDS used?

A few examples

Identifying decarbonization pathways for the electric sector

20% wind by 2030

80% renewable by 2050

Zero-carbon by 2050

Zero-carbon by 2035

20% Wind Study (2008)

https://www.nrel.gov/docs/fy08osti/41869.pdf

Renewable Electricity Futures Study (2012)

https://www.osti.gov/servlets/purl/1338443/

Solar Futures Study (2021)

https://www.energy.gov/sites/default/files/ 2021-09/Solar%20Futures%20Study.pdf 100% Clean Energy by 2035 Study (2022)

https://www.nrel.gov/docs/fy22osti/81644.pdf

Exploring impacts of technology innovation

Wind Vision (2015)

Wind Vision: A New Era for Wind Power in the United States

Hydropower

Vision (2016)

Electrification Futures (2021)

Control Contr

Califor Murphy, Theu Mai, Yinong San, Polge Jadan, and Matteo Murato (Julisional Renewable Energy Eaboratory Brote Nelson, Northern Anzono University Byan Jones, Faoland Energy Research

Storage Futures (2021)

https://www.energy.gov/sites/prod/files /wv_executive_summary_overview_and _key_chapter_findings_final.pdf

https://www.energy.gov/sites/default/files/ 2018/02/f49/Hydropower-Vision-021518.pdf

https://www.nrel.gov/docs/fy21osti/72330.pdf

https://www.nrel.gov/docs/fy21osti/77449.pdf

Mulisectoral interactions with the electric sector

Energy-Water-Climate Interactions

Grid-Economy Interactions

Climate Change Economics, Vol. 9, No. 1 (2018) 1840015 (40 pages) () The Author(s) DOI: 10.1142/S2010007818400158

EXPLORING THE IMPACTS OF A NATIONAL U.S. CO₂ TAX AND REVENUE RECYCLING OPTIONS WITH A COUPLED ELECTRICITY-ECONOMY MODEL

AUSTIN CARDN⁻¹⁴, STUART M. COREN⁴, MANWELL BROWN¹ and JOHN M. BERLA¹ *Visce Program on the Science and Policy of Cold Molecular Manuschaetra Insulate of Technology Technology Manual Research Evens*, Calmbidge Mary 2019, USA *National Researched Evens*, Labourity *JOHN Davies Wast Parking Galance, Consol, USA VIEC Manuel, Mary Academic Collection View Consol, Consol,*

> Received 16 October 2017 Revised 20 December 2017 Accepted 4 January 2018 Published 20 March 2018

This paper provides a comprehensive exploration of the impacts of economy-wide CO2 taxes in the U.S. simulated using a detailed electric sector model [the National Renewable Energy Laboratory's Revised Energy Deckoment System (ReIDS)/Linked with a commutable syneral equilibrium model of the U.S. economy [the Manuchusetts Institute of Technology's U.S. Regional Energy Policy (USREP) model]. We implement various tax trajectories and options for using the revenue collected by the tax and describe their impact on household welfare and its distribution across income levels. Overall, we find that our top-down/bottom-up models affects estimates of the distribution and cost of emission reductions as well as the amount of movement collected, but that these are mostly insensitive to the way the revenue is recycled. We find that substantial abutement opportunities through fael switching and renewable penetration in the electricity sector allow the economy to accommodate estensive emissions reductions at relatively low cost. While welfare impacts are largely determined by the choice of revenue recyclin scheme, all tax levels and schemes provide net benefits when accounting for the avoided global climate change benefits of emission roductions. Recycling revenue through capital income tax rebutes is more efficient than labor income tax rebutes or uniform transfers to homscholds. While capital tax rebates substantially reduce the overall costs of emission abatement, they profit high income households the most and are regressive. We more generally identify a clear trade-off between equity and efficiency across the various recycling options. However, we show through

https://www.osti.gov/pages/servlets/purl/1576487

https://www.worldscientific.com/doi/abs/10.1142/S2010007818400158

NREL's Standard Scenarios

2023 marks the 9th edition of a report on a wide range of possible futures for the U.S. electric sector

Report

Scenario Viewer and Downloader

Cambium Database (hourly metrics for a subset of scenarios)

Dozens of scenarios reflect the latest thinking about possible U.S. electric sector futures

1600

1400

1200

200

2025

2030

2035

Scenarios

Mid-case Assumptions

- Central estimates for technology costs, fuel prices, . and resource availability
- Moderate Electrification Demand Growth
- Existing Policies as of September 2023

Sensitivities

Generator Costs and Performance

- Advanced RE and Battery Cost and Performance
- Conservative RE and Battery Cost and Performance
- Advanced Nuclear Cost and Performance
- Advanced CCS Cost and Performance
- Conservative CCS Cost and Performance

Electricity Demand

- Low Demand Growth
- High Demand Growth
- Hydrogen Economy
- High Demand Growth and Hydrogen Economy

Emissions ector CO₂e E (MMT/year) 000 000 000 000 000 000 Electric

Grid Mixes

Emissions

Cost

Electric Sector CO₂ Emissions Trajectories

95% CO₂ **Current Policies** Reduction by 2050 Reduction by 2035

Capture

Expanded analysis with external users

Energy Volume 294, 1 May 2024, 130727	Explore content * About the journal * Publish with us *	The University of Texas at Austin Texas Scholar Works University of Texas Libraries Reportery Home • UT Electronic Theses and • UT Electronic Theses and • Protections of risk in inorc
	nature > nature communications > articles > article	Perceptions of risk in increasingly capital-intensive electricity grids : measuring the impacts of accurate cost of capital representation on in-
on the power system of the Midcontinent Independent System Operator area	Article Open access Published: 05 December 2022 Air pollution disparities and equality assessments of US national decarbonization strategies	vestment planning for future energy systems Abstract The US destric gift in experiencing argencedented charge as the vystem continues a path toread a more diversified and decatorized generation mix, with measured necember diversified and door energy Table Statement in which claim control control control control controls
Nhu "Cloire" Nguyen ° 옷 점, <u>David R. Johnson</u> ^{b c} ° Department of Agricultural Economics, Purdue University, West Lafayette, USA ^b School of Industrial Engineering, Purdue University, West Lafayette, USA ^c Department of Political Science, Purdue University, West Lafayette, USA	Icagan Goforth [©] & <u>Destenie Nock</u> [©] Nature Communications 13, Article number: 7488 (2022) <u>Cite this article</u> 8649 Accesses 21 Citations 34 Altmetric <u>Metrics</u> https://www.nature.com/articles/s41467-022-35098-4	isofor a way into its gray regulated memodoxies are towning composition marking, support of gray regulated memodoxies are towning to the towning with the power sector and intoducing a broader range of weather classes and perf- eremins. These tas for least or and regulated memodoxies are model to a support of the sector support of the CORCORMANT-RESS-2022.pdf (3.77 MB) Date Date 2022 05-11 consisting and the sector support of the Sector support of the Sector support of the sector support of the Sector support of the Sector support of the Sector support of the Sector support of the Sector support of the Sector support of the Sector support of the Sector support of the Sector support of the Sector support of the Sector support of the Sector support of the Sector support Sector Sector support Sector support Sector support Sect
nttps://www.sciencedirect.com/science/article/pii/S03605442240045	NEEDE ANTONN SUMMER STATUS AND A SUBJECTS I Marks I Game Calls I Summer Incident 2024 Logic 2	Authors Capacity expansion innovas, Iris is autoweb through the explosition of the definition but demondative descent religious and the time the time reliance Centerian, James Sean and the second to policymakes. First, the innovati, of repre- ting modelins and the second to policymakes. First, the innovati, of repre-
The Electricity Journal Volume 36, Issue 8, October 2023, 107334	Average and a Conserve set Lader Average and a Conserve set Lader Research Programs & Projects Conferences Attained Scholars NDER None Conver Pessories None + Besearch Yourkay Ragers + Robust Decarbonization of the US Power	https://repositories.lib.utexas.edu/items/ 0512ad20-dfb0-4baf-a688-4e20e4908ed5 Analyzing the Financial Implications of Increasing
A new era for rural electric cooperatives: New clean energy investments, supported	Robust Decarbonization of the US Power Sector: Policy Options	Renewable Energy Penetration in Indonesia's Power System
by federal incentives, will reduce rates, emissions, and reliance on outside power	James H. Stock & Daniel N. Stuart	1 st Unit Busilowati 2 ^{std} Nuke Puji Lestari Santoso 3 ^{std} Aulia Azmi Department of Management Department of Information System Department of Science and Technology Paralogy University of Raharja Tangering Stata, Indonesia Tangering, Indonesia Tangering, Indonesia doset0000 (jutyupan acid maleji janka) and anala analigi raharja info
	WORKING PAPER 20077 BOX 20.2010/v.20077 HISBUE DATE April 2021	4th Sabda Maulana 5th Adam Faturahman Departement of Information System Department of Information System

<u>Nikit Abhyankar</u>[°] ♀ ⊠ , <u>Umed Paliwal</u>[°], <u>Michael O'Boyle</u>^b, <u>Michelle Solomon</u>^b, <u>Jeremy Fisher</u>^c, <u>Amol Phadke</u>[°]

- ^a University of California, Berkeley, United States
- ^b Energy Innovation, LLC, United States
- ^c The Sierra Club, United States

https://www.nber.org/papers/w28677

University of Raharja

Tangerang, Indonesia

sabdacitraharia info

University of Raharja

Tangerang, Indonesia

adam faturahman@raharia.info

https://ieeexplore.ieee.org/abstract/document/10455284

How to access and use ReEDS

Become a user

Download and use ReEDS yourself

Regional Energy Deployment System

The Regional Energy Deployment System (ReEDS) is NREL's flagship capacity planning model for the power sector.

The model simulates the evolution of the bulk power system-generation and transmission-from present day through 2050 or later.

Learn more about the ReEDS model on GitHub, check out the user guide for suggestions on improving usage of the model, or watch a video training series. Each tutorial focuses on a different aspect of the model and includes a demonstration by a ReEDS developer. For additional questions about the model, please contact the ReEDS staff.

ReEDS Model Is

The ReEDS model is now open source.

Now Available

Access on ReEDS GitHub.

Welcome to the Regional Energy Deployment System (ReEDS) Model!

This GitHub repository contains the source code for NREL's ReEDS model. The ReEDS model source code is available at no cost from the National Renewable Energy Laboratory. The ReEDS model can be downloaded or cloned from <u>https://github.com/NREL/ReEDS-2.0</u>.

A ReEDS training video (based on the 2020 version of ReEDS) is available on the NREL YouTube channel at https://youtu.be/aGj3Jnspk9M?si=iqCRNn5MbGZc8ZIO.

Contents

- Introduction
- Required Software

https://www.nrel.gov/analysis/reeds/

https://github.com/NREL/ReEDS-2.0

NRFI | 27

Collaborate with the NREL ReEDS team

- ReEDS staff listing: <u>https://www.nrel.gov/analysis/reeds/staff.</u> <u>html</u>
- Information on NREL partnerships: <u>https://www.nrel.gov/workingwithus/</u>
- Information on NREL internships: <u>https://www.nrel.gov/careers/internships.</u> <u>html</u>
- U.S. Department of Energy funding opportunities:

https://www.energy.gov/funding-financing

• NREL is eligible and interested in a wide variety of non-DOE funding opportunities

Strategic Public-Private Partnerships >

NREL develops multiyear collaborations with governments, communities, utilities, and industry leaders to implement meaningful solutions for tomorrow's energy landscape.

Programs for Entrepreneurs >

Fast-track your startup's success by connecting with NREL's network of investors, foundations, and industry partners.

University Partnerships Program >

See how we combine scientific knowledge with state-of-the-art facilities to

So, in Conclusion:

- 1. ReEDS is a continually evolving, versatile tool to explore power sector futures using a variety of performance, economic, and environmental metrics.
- 2. The model has advanced features tailored to study renewable energy and other technologies, policies, and institutions directed towards decarbonization.
- 3. You can become a ReEDS user by downloading the source code and/or working with the ReEDS team.

Thank You. Questions?

www.nrel.gov/analysis/reeds Stuart.Cohen@nrel.gov

NREL/PR-6A40-89903

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Transforming ENERGY

Photo from iStock-627281636

POWERED BY Sienna

Clayton Barrows

NREL Power Grid Researcher and Sienna Developer

June 11 | 10 a.m. MT | 12 p.m. ET

