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Electrode Microstructure and
Electro-Chemo-Mechanical Cracking
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Cathode Composition:
* Randomly-oriented grains “
* Anisotropic grain material properties S0 um Crystal
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Charge Cycling: Himes Cis
e Lithium movement between electrodes causes Time: 21948 s
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Electro-chemo-mechanical cracking:
* Inhibited lithium flow via tortuous diffusion path n T
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Governing Equations
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Reproducing Kernel Particle Method
(RKPM)
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Reproducing Kernel (RK) Approximation

RK Approximation: Shape Function Construction: ¥;(x)
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Coupled Linear Patch Test Construction

Let’s define a coupled BVP where the source term and BCs are associated with predefined fields.

The solution fields in the domain interior are expected to reproduce the predefined fields.
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Linear Patch Test Results for Coupled Electro-Chemo-Mechanical Problem

Relative Error Norm Equations
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Mesh Convergence Study of High-Order
Manufactured Solution
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Mesh Convergence Study of High-Order Solution
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Interface-Modified RK (IM-RK) Approximation for Weak and Strong Discontinuities

P, (X): IM-RK Shape Functions ¥, (X): RK Shape
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Kernel Function Modifications for Grain Boundaries: max[tanh(dist), 0]

IM-RK with Weak Discontinuity: Scaling with node on interface

Weak discontinuity introduced only for W, er race
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Image-Based Modeling of Statistically-Driven
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Neural Network Enhanced Reproducing Kernel (NN-RK) Approximation

Solution decomposition
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Mixed-mode Fracture of Doubly Notched Crack Branching in Isotropic Media
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Future Work: Approach for NNRK with Heterogeneous Media under Multi-Physics Loading

Coarse discretization for i with bulk
material pixel point subset t=0: [Li] 10"

Solution decomposition
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Conclusions

 Acoupled linear patch test has been formulated and passed for the coupled electro-chemo-
mechanical system, and optimal convergence rates are achieved.

* The interface-modified RK (IM-RK) approximation can introduce various discontinuities by leveraging
kernel scaling and strategic interface node placement

e [IM-RK discontinuity introduction shows significant Gibbs oscillation reduction without additional
degrees of freedom.

* NNRK s designed to be computationally efficient by superimposing a coarse solution with a localized
NN enrichment for fine/localized features.

* NN block-level approximations are designed to capture low order topology but can be superimposed
to capture complex topological geometries.
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