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Why does representativity analysis matter ? e

« RVE analysis enables model to be predictive. RVE analysis provides imaging
requirements for FOV.

Representativity analysis must be carefully defined

+ RVE is aspect ratio dependent. For electrodes: representative section area
(RSA) x electrode thickness. RVE is property-specific: RVE = max(RVE,)
considering all properties p relevant for the model.

* RVE is field of view (FOV) dependent. RVE convergence with FOV must be
determined to conclude on representativity, otherwise: risk of underestimation.

Microstructure representativity # performance representativity

« Error/representativity propagation from microstructure parameters to
electrochemical performances. eRVE are increasing with C-rate: larger
volumes are required to model electrodes at fast charge rate.

+ For C-rate <2.5, 154x144 pm? is large enough to verify electrochemical
performances representativity with a 5% threshold. For higher charge
rates, RVE analysis is not conclusive as FOV is not large enough to
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