Transforming ENERGY

NREL Agrivoltaics Technical Assistance in the United States: Lessons Learned

Brittany Staie, Dana-Marie Thomas, James McCall, Jordan Macknick, Thomas Hickey, Brian Mirletz, Chong Seok Choi, Silvana Oviatt

A CONTRACTOR

The InSPIRE Project-

Innovative Solar Practices Integrated with Rural Economies and Ecosystems

InSPIRE has 24 field research projects across the United States.

Field-based research:

- Novel agrivoltaic and traditional utility-scale PV designs integrated with multiple activities
- Assessing agricultural yields and irrigation requirements in arid environments
- Grazing standards and best practices
- Pollinator habitat and ecological services

Analytical research:

- Cost-benefit tradeoffs of different agrivoltaic configurations
- Tracking agrivoltaic projects across the U.S.
- Assessing research gaps and priorities

https://openei.org/wiki/InSPIRE

Clean Energy to Communities (C2C) Program

C2C provides communities with expertise and tools to achieve their **clean energy goals** through in-depth partnerships, peer-learning cohorts, and expert match.

C2C Expert Match Participants:

- Local governments
- Tribes
- Community-based/nonprofit organizations
- Universities, colleges, and community colleges

C2C Agrivoltaics Technical Assistance at NREL

Knowledge Transfer

Provides resources for capacity building and project development:

- Agrivoltaics 101 Resources
- Data Access
- Online Tools

Educational and Stakeholder Outreach

Transfers knowledge to audience for action:

- Training
- Webinars
- Expert Support
- **Guest Lectures**

Modeling and Analysis

Applies knowledge, interprets data to support community action:

- Analysis & Modeling
- System Design
- Site Visits

Demonstration Facilities and Research

Assist with on-site research development and partnerships:

- Research Methodologies and Questions
- Partnership Development
- Curriculum Development
 Support

C2C Expert Match Agrivoltaics Team

Brittany Staie Agrivoltaic Designs/ Crop and Farmer Compatibility

Dana-Marie Thomas Agrivoltaics Community Lead

James McCall Technoeconomic Analysis

Jordan Macknick Interdisciplinary

Thomas Hickey

Agrivoltaics Implementation

Brian Mirletz

Technoeconomic Analysis/Irradiance Modeling

Chong Seok Choi

Sunlight Analysis/ Soil/Monitoring Capabilities

Silvana Oviatt Irradiance Modeling

C2C Agrivoltaics Technical Assistance Communities

NREL Agrivoltaics Technical Assistance Framework

C2C Case Study: Seed Time Harvest Farms

Proposed Agrivoltaics Site

Community:

- Organization: Seed Time Harvest Farms
- Owner/Farmer: Cetta Barnhart
- Location: Monticello, Florida

Community Goals:

- Agrivoltaics site to produce clean energy and healthy produce for local community
- Educational opportunities for local farmers with an emphasis on empowering BIPOC farmers
- Rural economic development; providing additional streams of income based on opportunities for best land use
- Replicable agrivoltaics project for the region

C2C Technical Assistance Deliverables:

- Agrivoltaics tour at Jack's Solar Garden in Longmont, Colorado
- Technoeconomic analysis of various agrivoltaic designs
- Analysis of farmable area and sunlight quality
- Requirements document to bring to local solar developers

C2C Case Study: Seed Time Harvest Farms

Meters from Hub-Height

Traditional - extra row spacing Elevated panels

Elevated panels - extra spacing Elevated panels - interrow spacing Vertical Bifacial

Traditional

Key Takeaways

Agrivoltaic sites are not one size fits all

- Important to focus on community goals, site-specific conditions, and historical/cultural context
- Local policy can inform the deployment and designs of agrivoltaics

Communities across the United States are very interested in agrivoltaics but need more support for implementation

- Communities often need access to resources and support to assist in their project development
- Connections with other local stakeholders (e.g., developers, utilities, academic institutions, farmers, graziers) can help to meet project goals

Important to connect communities to each other to facilitate peer-to-peer agrivoltaic learning

• As commercial agrivoltaic production increases in the United States, communities have communicated interest in learning from successful case studies and creating networks

Future Steps

NREL Agrivoltaic Resources

Development of agrivoltaic 101 and technical resources for communities C2C Agrivoltaics Cohort

Facilitate peer-topeer learning and information sharing

BIPOC Farmer Workshop

Upcoming workshop to showcase success stories and provide resources and strategies for community engagement

NREL InSPIRE Project

Continued research to help inform agrivoltaic stakeholders

Continued Technical Assistance

NREL to support technical assistance through multiple programs

Questions?

Brittany Staie

Brittany.Staie@nrel.gov

C2C Website: https://www.energy.gov/eere/cleanenergy-communities-program

InSPIRE Website:

https://openei.org/wiki/InSPIRE

NREL/PR-6A20-90143

