
Accelerating a sustainable, just, and 
equitable transition to zero-carbon 

electricity generation by 2035.

Central Data Resource

• Reduces the Tucker decomposition by assuming central 
tensor is super-diagonal3,5

• Decomposes full tensor into sum of rank-1 tensors
• Contributions of modes to different dimensions of the data 

are easily extracted from mode vector norm

• Tucker decomposition generalizes the SVD to higher-order 
tensors by replacing singular values with a smaller (but dense) 
tensor of the same order as original3,4

• Difficult to quantify contributions of modes to different 
dimensions of the data

• SVD computes an orthogonal, rank-1 decomposition of matrix1

• Decomposition modes are ordered and quantified by their 
contributions to the original matrix

• Foundational technique for principal component analysis (PCA) 
and proper orthogonal decomposition (POD)
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The photovoltaic (PV) industry is simultaneously targeting long warranties and new 
materials/designs for high-energy-yield modules, requiring an advanced 
methodology to forecast long-term durability of products with un-proven materials 
combinations. Extended, sequential, and combined stress testing methods are 
gaining popularity for assessing durability of PV modules/materials beyond the 
early-stage mortalities. Importantly, multiple degradation mechanisms can proceed 
simultaneously, and their separate contributions to the overall power loss should 
ideally be quantified. This work examines the use of data-driven tools towards 
developing a strategy for faster learning cycles in accelerated stress testing. 

Acknowledgements

1. V. Klema and A. Laub, "The singular value decomposition: its computation and some applications," IEEE Transactions on Automatic Control, vol. 
25, pp. 164-176, 1980.

2. J. Xu and S. R. Van Doren, “Tracking equilibrium and nonequilibrium shifts in data with TREND,” Biophysical Journal, vol. 112, pp. 224-233, 2017.
3. T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Review, vol. 51, pp. 455-500, 2009.
4. L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psychometrika, vol. 31, pp. 279-311, 1966.
5. F. L. Hitchcock, “Multiple invariants and generalized rank of a p-way matrix or tensor,” Journal of Mathematics and Physics, vol. 7, pp. 39-79, 

1928.

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy 
(DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy 
(EERE) under the Solar Energy Technologies Office Award Number 38259. This research was performed using computational resources sponsored by the U.S. 
Department of Energy's Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory. The views expressed in 
the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the 
article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the 
published form of this work, or allow others to do so, for U.S. Government purposes.

Modified IEC TS 63209-2:2022 sequential stress procedure:
DH200: Damp heat for 200 hours with 85 C and 85%-RH

      A3: Full-spectrum light exposure under 65 C chamber temperature,    
90 C black panel temperature, 0.8 W/m2-nm intensity at 340nm, 
and 20 %-RH for 2000 hours

   TC50: Thermal cycling from 85 to -40 C with ramp rates defined in IEC 
61215, and current injection equivalent to short-circuit current

  HF10: Humidity-freeze for 10 cycles between 85 C with 85 %-RH and -40 C 
with non-controlled humidity
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Investigated 8 mini-modules with varying encapsulant and 
packaging structures
• Photoluminescence (PL) images (808nm light, 1 Sun)
• Electroluminescence (EL) images (0.9A and 9A)
• Current-Voltage (IV) metrics

Goal: Characterize and quantify the evolution of distinct 
degradation modes in silicon PV modules undergoing 
accelerated stress testing

Approach: Leverage two-dimensional matrix and higher-order tensor 
decompositions to extract interpretable modes from image 
stacks across accelerated stress testing stages
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• Data obtained from “Degradation Pathways in Glass/Glass Bifacial PV 
With Emerging Encapsulants and Half-Cut Cells” DuraMAT project
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Singular Value Decomposition (SVD) Tucker Decomposition Canonical Polyadic Decomposition

Outcome & Impact
• Tensor approaches identify and isolate meaningful degradation modes from stress testing datasets

• Compared tensor decompositions to matrix-based SVD, which produces efficient modes for 
data reconstruction but provide limited interpretability

• Tensor-based approach enables the consideration of multiple imaging types, stressing 
procedures, module characteristics, etc.

• Generalizable methods can be used to characterize degradation across many materials and devices
• Correlate contributions of CP modes to IV metrics across stress testing stages

• Delamination and cracking modes correlate most strongly with evolution of fill factor during 
testing and highlight appearance in PL and high-current EL imagining

• Short-circuit current showed weaker correlation with linear modes and may require more 
complex methods to identify key drivers of performance degradation

Data Decomposition Methods

Interpreting Modal Decompositions Correlating Modes with Performance Metrics
Fill Factor

Short-circuit CurrentCP Decomposition

SVD Tucker Decomposition

• SVD can only consider a single parameter at time and modes do not exhibit physical 
relationships with data

• Tucker captures evolutions along different parameters but are not easily interpretable
• CP modes can be explicitly quantified in terms of their contributions to each parameter

Mode 50 Mode 32 Mode 24 Mode 34

Mode 20 Mode 7 Mode 33 Mode 9

• Fill factor degradation exhibit stronger correlations with identified linear modes than short-circuit current
• Correlated modes highlight delamination found PL images for glass/transparent-backsheet modules 

and cracking found in the high-current EL images for glass/glass modules
• Modes for short-circuit current vary more in highlighted degradations, including crowding features and 

delamination modes
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