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Abstract—In this paper, we examine the relationship between
aerial infrared (IR) defect analysis and photovoltaic (PV) per-
formance data for twelve utility- and commercial-scale solar
sites in the United States. To do this, we fuse the site diagram
GeoJSON’s, aerial infrared thermography (aIRT) defect analyses,
and associated inverter time series, allowing for a direct compar-
ison between site defects and time series data. Defect analyses
were provided by Zeitview, under its Solar Insights platform.
Following the data fusion process, we look at the relationship
between system performance and aIRT defects. We investigate
the relationship between degradation and hotspot defects, as well
as the relationship between AC power data and offline strings
and misaligned modules. In general, system degradation was not
affected by long-term or balance-of-system (BoS) defects as they
occurred infrequently in the data set. However, for one system,
a near statistically significant relationship (p-value=0.0571) was
found when comparing the degradation of inverter blocks with
several multi-hotspot defects to all other inverter blocks without
this particular defect. There was strong alignment when compar-
ing short-term recoverable module defects such as stuck trackers
and offline strings to time series data. In general, we found that
when an inverter block has more than 80% of modules flagged
for one of these defects, its AC power time data is flat-lined and
the inverter block is not producing.

Index Terms—photovoltaic, aerial infrared thermography
(aIRT), hotspots, potential-induced degradation (PID), bypass
diode, module degradation, system degradation

I. INTRODUCTION

The number of deployed photovoltaic (PV) installations has
rapidly proliferated over the past 15 years; in the last decade
alone, solar experienced a 24% annual growth rate [1]. As
of 2023, there are over 162 gigawatts of solar installed in
the United States, with the vast majority of solar capacity
attributed to utility-scale sites [1]. This rapid growth in
development, coupled with a highly competitive energy market
demanding maximum PV plant efficiency, has led to an
increased need for low-cost site monitoring to ensure system
health [2]. Consequently, the solar industry has increasingly
turned to aerial infrared thermography (aIRT) to scan solar
sites to detect issues. aIRT has been shown to be a cost-
effective and non-destructive monitoring technique to assess
the health of utility scale photovoltaic (PV) installations [3].
Furthermore, it only requires visual and thermal cameras
which don’t contact the solar arrays, so it is easy and safe
to deploy at scale [4].

Much research has been dedicated to using aIRT to assess
photovoltaic (PV) system faults, particularly using deep learn-
ing (DL) approaches. Le et al. [5] used a deep ensemble

neural network for the automated detection of solar module
anomalies, using a 20,000 aIRT image data set labeled for
solar site defects. Using this approach, the authors achieved
94% accuracy at detecting anomalies such as hotspots and
offline strings. Similarly, Pierdicca et al. introduced the solAIr
system for automated defect detection in aIRT images, also
using a deep learning approach [6].

Although there is an abundance of literature focused on the
automated detection of anomalies in aIRT imagery, there is
limited research focused on analyzing aIRT defects in unison
with associated PV performance time series data. This research
addresses this by fusing sites’ aIRT defects with their associ-
ated time series data, so we can relate performance directly
to defects. In particular, we investigate the relationships be-
tween degradation and hotspots. Hotspots occur when module
operating current is greater than a low-current producing solar
cell’s short-circuit [7], resulting a the cell operating in reverse-
bias and dissipating instead of delivering energy [8]. Hotspots
cause solar arrays to degrade faster, resulting in decreasing
power output of the module [8]. Hotspots can be quickly
identified via aIRT in solar arrays due to their temperature
differential from the rest of the module.

In addition to analyzing the relationship between degra-
dation and long-term defects such as hotspots, we examine
the relationship between soiling trends in time series data and
soiling defects, as well as short-term performance trends for
defects such as offline strings and stuck trackers around the
aerial site scan dates.

II. METHODS

A. Data Sets

For this research, sites available from the NREL PV Fleet
Data Initiative were analyzed. PV Fleets is a US Department of
Energy-funded project focused on the collection of fielded PV
performance data to perform large-scale degradation analysis
on the US fleet [9]. The associated PV Fleets database
contains time series data for over 6500 sites, ranging from
residential to utility-scale systems. The results presented in
this research include data from 12 sites, located in California
and Colorado. Both commercial and utility-scale sites were
analysed. A map of the sites is provided in Figure 1.

The aIRT defect analysis used in this research was provided
through Zeitview’s Solar Insights platform, in GeoJSON for-
mat. Using drones and airplanes, Zeitview has scanned over
6100 solar sites across the US, ranging from commercial to
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Fig. 1. Map of sites analyzed in this research. Several systems were co-
located, and are represented via darker dots.

utility-scale. Following each scan, the associated site is ana-
lyzed for anomalies using machine learning (ML) techniques.
Flagged defects include the following:

• Hotspots
• Stuck trackers/misaligned modules
• Potential-induced degradation (PID)
• Soiling
• Offline strings
• Bypass diode issues
• Physical damage or anomalies, such as broken glass,

damaged modules, and missing modules
For utility-scale sites with multiple inverters, it is important

to accurately map the inverter data streams to their associated
geographic location, so they can be correctly compared to
aIRT results. To do this, PV Fleets data partners provided site
diagrams for the sites used in this analysis.

B. Automatically Converting Site Diagrams to GeoJSON For-
mat

Converting site diagram information for solar installations
into machine-readable format is challenging. In particular,
mapping equipment to its associated geographic location can
be difficult and time-consuming, especially when performed
manually. Additionally, as-built drawing format can vary sig-
nificantly across sites. In spite of this, for the site diagrams
provided, we were able to identify particular sections within
as-built drawings that mapped inverter blocks to their asso-
ciated locations. Although this process will vary depending
on site diagram format, we provide a general framework for
automation for this particular scenario. We plan to eventually
expand upon this work by identifying and automating for
additional site diagram configurations, and releasing these
processes publicly via Github.

Figure 2 illustrates the automated process for converting
an as-built PDF into GeoJSON format with mapped system
blocks. If block tables like the one shown in Figure 2 are
available, they are processed into GeoJSON format via the
following set of steps:

• Step 1: Extracting the PDF image containing tables for
the northing-easting coordinates of each inverter block to
a Python Pandas dataframe object, via the OpenCV and

EasyOCR packages [10], [11]. Individual tables and their
associated cells are found via an OpenCV contouring
algorithm [12]. The algorithm pre-processes the image
by converting it to grayscale, applying thresholding, and
inverting and dilating to highlight the table structure and
remove noise. The individual table cells are then cropped
and assessed via the EasyOCR package. The text for
each cell is extracted and fed into a Pandas dataframe, in
accordance with the determined table structure.

• Step 2: Manually verifying the EasyOCR outputs to
ensure that all coordinates were successfully transferred
to the dataframe object and that any output errors are
corrected.

• Step 3: Converting northing-easting coordinates to
WGS84 format via the Python PyPROJ package [13].

• Step 4: Generating a polygon based on the sets of
coordinates extracted for each inverter block. To do this,
the alphashape package was used [14]; in particular,
alpha shapes draw a bounding box around a set of points.
Each polygon generated was manually reviewed to ensure
accuracy.

• Step 5: Feeding generated inverter block lists and their
associated polygon information into GeoJSON format.
This GeoJSON will be fused with aIRT defect GeoJSON
data during the main analysis.

Fig. 2. Diagram illustrating the initial site diagram PDF and final mapped
site GeoJSON.

C. Data Fusion

The data fusion process that allows for accurate comparison
of solar time series data against aIRT defects is shown in
Figure 3. The data fusion process is as follows:

• Step 1: The GeoJSON representation of the site diagram
is merged with the associated aerial IR GeoJSON, yield-
ing defects by inverter block. To do this, the Python
Shapely package is used to generate polygon objects
which allow for direct comparison [15].

• Step 2: The time series data streams associated with the
site are mapped to their associated inverter block, using
sensor naming conventions provided by site owners.

• Step 3: Inverter-level degradation rates are calculated
using the time series data. To calculate inverter-level
degradation, the RdTools methodology outlined in [9]
was used, using AC power inverter-level data and ambi-
ent temperature and irradiance data from the site me-
teorological station. The Python PVAnalytics package
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[16] was used to pre-process each of the time series
data streams. Furthermore, each degradation analysis
was manually reviewed for data issues and egregiously
inaccurate analyses were removed. In total, 54 out of a
total 446 analyses were manually flagged for data quality
issues and removed. For cases where multiple inverters
were associated with a single system block, the median
degradation value across the inverters was taken as the
block’s degradation value.

• Step 4: The inverter block data streams and their associ-
ated degradation rates were combined with defect infor-
mation by inverter block, allowing for a direct comparison
between aIRT and time series data/degradation.

A simple example illustrating the site defect fusion is
available via Github [17]. This example uses a commercial in-
stallation on the NREL campus, so inverter block comparisons
are not available.

Fig. 3. Diagram illustrating the data fusion process.

In addition to fusing the data sources, the provided code
generates several figures, including an interactive satellite
image displaying both the site and defect GeoJSON data
(generated via the Python Folium package [18]), and short-
term performance plots taken around the site inspection date
(generated via the Python Plotly package [19]). Examples of
these graphics are shown in Figures 4 and 5, respectively.

Fig. 4. GeoJSON data for the site (in green) and associated aerial IR defects
(in red) displayed in an auto-generated interactive Folium graphic.

Fig. 5. Short-term system performance around aerial IR scan period (in red)
in an auto-generated interactive Plotly graphic.

III. RESULTS

A. Defect Analysis
Figure 6 shows the module defect counts from aIRT,

summed across all systems. Short-term performance issues,
which we will define as issues where system performance
is recoverable with routine site maintenance, are shown in
the first subplot and dominate the defect types found. In
particular, misaligned modules, which are associated with
stuck trackers, and offline strings were the most commonly
observed issue across all 12 systems. There were far fewer
instances of defects associated with long-term performance
issues, which we define as issues causing long-term under-
performance of the system. Issues associated with long-term
defects or Balance-of-System (BoS) problems are shown in
the second subplot of Figure 6. Such defects include hotspots
(355 modules across all categories), and potential-induced
degradation (PID) (5 modules).

Fig. 6. Number of module defects across all systems, as determined from
aIRT.

Total module percentage defects were examined in an effort
to better understand the frequency of their occurrence. Total
module counts were tabulated via site diagram information.
To calculate frequency of occurrence, the following equation
was used:

module defect percentage =
module defect count

total module count
(1)
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TABLE I
PERCENTAGE MODULES BY DEFECT TYPE, ACROSS ALL SYSTEMS

Defect Type Percentage (%)
Multiple Hotspots (<10 deg C) 0.00625
Single Hotspot (<10 deg C) 0.01182
Single Hotspots 10C-20C 0.00189
Single Hotspot >20C 0.00040
Suspected PID 0.00029
Bypass Diode Issues 0.0322
String Offline 4.03179
Underperforming/Isolated Module 0.02444
Misaligned Module 5.68616
Missing Module 0.12722
Soiling 0.02462
Sub-string Short Circuit 0.00574

Table I shows defect frequency results. Long-term or BoS
issues are incredibly infrequent in this data set, with bypass
diode issues most commonly occurring at 0.0322% of the time.
Aggregated hotspot defects have a frequency of approximately
0.02%. Short-term or recoverable defects are much more
frequently occurring, with misaligned module/stuck tracker
defects occurring with a frequency of 5.69% and offline
string defects occurring with a frequency of 4.032%. Overall,
these defect occurrence percentages are promising for solar
operators, as it is much easier and cheaper to fix mechanical
issues causing short-term performance losses than it is to fix
long-term performance issues.

B. Long-Term Performance

1) Degradation: To ensure anonymity and allow for direct
comparison across systems, all degradation values presented in
this study were min-max normalized on a system level, with 0
as the lowest degradation and -1 as the highest degradation. To
reduce noise and focus primarily on long-term or BoS defect
relationships, inverter blocks with more than 100 misaligned
modules or offline strings were removed from the analysis.
Although both of these are short-term defect types, if not
resolved, they could be misconstrued as faster degradation and
increase noise when evaluating for other types of defects.

The degradation rates of inverter blocks with certain types
of defects were compared against inverter blocks where the
defect was not present. Table II outlines the degradation
rates of systems with and without these defects, as well
their statistical T-test p-values. Statistically significant p-values
(<0.05) indicate that inverter blocks containing a particular
type of defect degrade faster than inverter blocks without this
defect present.

The presence of multiple hotspots (<10 degrees Celsius) did
appear to lead to higher degradation rates in inverter blocks,
with a statistically significant p-value of 0.0093. Because some
of the blocks contained only one or two multiple hotspot de-
fects out of hundreds or thousands of modules, the statistically
significant relationship is most likely a coincidence.

However, in an effort to better understand if the relationship
between multiple hotspots and degradation is real, distributions
were examined at a system level. System 4, which had the most
modules flagged for multiple hotspot issues in the entire data

TABLE II
COMPARING SYSTEM BLOCK AC POWER OUTPUTS TO DEFECTS

Defect Type Normalized Me-
dian Defect Rd

Normalized Me-
dian Non-Defect
Rd

p-value

Multiple
Hotspots (<10
deg C)

-0.75 -0.50 0.0093

Hotspots (all) -0.51 -0.52 0.519
Suspected PID -0.65 -0.46 0.4
Bypass diode Is-
sues

-0.51 -0.58 0.544

set, experienced higher degradation rates in inverter blocks
with multiple hotspots detected vs. inverter blocks with no
hotspots (p-value: 0.0571). The distributions for this system
are shown in Figure 7. In particular, one block in system 4 had
28 modules out of a total 7680 modules detected with multiple
hotspots present (approx. 0.4%), as well as an additional
3 modules with single hotspots defects. An additional 40
modules were flagged as offline in this block; this is in line
with the rest of the inverter blocks being compared, where
the median modules marked as offline was 40 and the mean
was 53. Because the number of offline string modules is
generally constant when comparing across blocks, the main
difference between this particular block and all other blocks
is the presence of multiple hotspot defects. This could indicate
that multi-hotspot defects could increase degradation rates;
although, there may be other unknown factors at play here that
may be contributing to faster degradation for this particular
inverter block. Figure 8 shows the location of these hotspot
defects in context of the inverter block. All multi-hotspot
defects are located along a single string.

Fig. 7. Box plot showing the normalized degradation distribution for inverter
blocks with multiple hotspots, vs. inverter blocks without. These results are
for system 4 only.

Many systems experienced similar degradation rates when
comparing defect vs. non-defect distributions. Generally, long-
term defects only affected a few modules across an inverter
block, which may contain hundreds or thousands of modules.
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TABLE III
SYSTEM 4 MULTI-HOTSPOT BLOCK DETAILS

Total Number Modules 7680
Number Multi-Hotspot Modules 28
Number Single-Hotspot Modules 3
Number Offline String Modules 40
Avg Number Offline String Modules (all blocks) 53
Median Number Offline String Modules (all blocks) 40

Fig. 8. Screenshot of multi-hotspot defects for the heavily affected block in
system 4.

Given this scale, the impacts of these defects will likely not
impact overall degradation rates for the entire inverter block. If
degradation was calculated at a string level, these relationships
would be more prominent, and stronger relationships could be
formed.

Furthermore, systems being compared in this analysis are
in different geographic locations, with different module types,
and have their own unique set of issues. Although we attempt
to minimize differences by normalizing degradation rates on a
system level so systems can be compared side-by-side, these
additional factors may be causing noise in the distribution
comparisons.

On a positive note, many of the systems analyzed in this
research are relatively robust to certain defect issues at an
inverter block level, as overall degradation rates did not
increase by a statistically significant margin in the presence
of these types of issues. This bodes well for overall system
reliability.

2) Soiling: In this section, we examine the relationship
between soiling signals present in time series data against
detected aIRT soiling defects. To calculate the inverter-level
soiling ratio in the time series data, the stochastic rate &
recovery algorithm (SRR) in the RdTools package was used
[20]. Soiling outputs were manually reviewed after SRR cal-
culation to ensure accuracy; this included checking for a "saw-
tooth" pattern representative of a soiling-cleaning event, which
is prevalent in heavily soiled systems. Systems were manually
reviewed and labeled as no/minimal soiling or soiling based on
this pattern and associated SRR outputs. An example output of
SRR is shown in Figure 9. Due to the prevalence of saw-tooth
behavior, this system was classified with soiling issues.

In total, 5 systems in the data set were labeled for the

Fig. 9. Inverter-level renormalized energy time series for a system with heavy
soiling.

presence of soiling. Total system module soiling defect counts
for no/minimal soiling systems were compared to defect
counts for systems with soiling present. A box plot showing
these distributions is provided in Figure 10. Additionally,
soiling/non-soiling distributions of percentage soiling defects
is displayed in Figure 11. It is important to include this
distribution, as systems can vary significantly in size.

Fig. 10. Number of detected soiling defects for systems that display soiling
time series behaviors vs. systems that do not.

When juxtaposing Figures 10 and 11, aIRT analysis cor-
rectly identifies systems with soiling issues, but it doesn’t
do so proportionally when looking at percentage of modules
affected. For the systems that displayed soiling behaviors via
time series analysis, soiling signals were prevalent across all
inverter AC power time series data analyzed. However, only
a few modules were flagged for soiling defects via the aIRT
analysis.

C. Short-Term Performance

1) Time series: Time series data from a one-week period
before and after each site scan was captured, with the intent of
analyzing short-term site performance around the aIRT scan
date. In particular, we examined cases with string outages
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Fig. 11. Module percentage of soiling defects for systems that display soiling
time series behaviors vs. systems that do not.

and misaligned modules, which were the two more frequently
occurring defects in the entire data set. We isolated a subset
of inverter block cases with over 500 module defects for the
associated defect category, and looked at the associated AC
power time series output. In total, we examined the AC power
time series data associated with 35 unique inverter blocks (1
block had both misaligned modules and offline strings issues).
Each block was classified into one of three categories based
on its time series behaviors:

• Producing (AC power data signal looks normal)
• Curtailment or other unknown issues (flatline in the

middle of the day indicating curtailment behavior or other
strange behavior)

• Offline (AC power data is flatlined at 0)
Figure 12 shows an example normalized AC power output

for a system block flagged for 640 offline modules. The block
appears to have an outage until the scan date, and then is
heavily curtailed. The inverter set-points were checked with
the system operator to determine system curtailment.

Fig. 12. Normalized AC power production for a system block flagged for
string offline issues, with the aIRT scan date highlighted in red.

The percentage of modules affected on an inverter block
level was calculated and compared across classifications and
defect types, as shown in Figures 13 and 14. These boxplots

show good alignment between the time series and aIRT defect
data. When over 80% of the modules are affected by offline
string defects, the entire inverter block is generally offline.
When only a small fraction of modules are flagged with offline
string defects (<10%), the AC power data associated with
the inverter block is still producing as expected. This also
applies to curtailment; the inverter block is still producing,
but production is throttled.

These trends also hold for misaligned module/stuck tracker
defects, as shown in Figure 14. These results indicate that
inverter blocks were completely offline when over 80% of their
trackers were misaligned. These results were confirmed di-
rectly with Zeitview; in their process, modules were originally
flagged as offline in the aIRT analysis, and their designation
was set as "misaligned module" if the associated tracker was
misaligned. Consequently, these flagged modules are both
offline and associated with stuck trackers.

Fig. 13. Box plot of percentage module defects by inverter block by outage
category, for inverter blocks flagged for offline strings.

Fig. 14. Box plot of percentage module defects by inverter block by outage
category, for inverter blocks flagged for misaligned modules/stuck trackers.

IV. CONCLUSIONS & NEXT STEPS

In this research, a process for automating joining aIRT
defect data and solar time series data is introduced. This
includes both the automation of specific site diagram formats
into GeoJSON format, and the fusing of data set GeoJSON’s
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via Python. Following this process, defect data is compared to
time series data from 12 systems in the United States. Most
defects are infrequently occurring, with the exception of offline
strings and misaligned modules/stuck trackers.

Due to the infrequency of long-term and BoS defects, sys-
tems did not experience faster degradation rates when presence
of these defects was detected. However, one particular system,
system 4, had frequently occurring multiple hotspot defects.
When comparing the inverter block with these defects to
all other blocks, a near statistically significant relationship
indicating faster degradation in the presence of hotspots was
determined. This indicates a possible relationship between
hotspots and degradation in field installations.

The relationship between short-term recoverable defects, in-
cluding offline strings and stuck trackers/misaligned modules,
and AC power time series data was investigated. Percentage
module defects aligned closely with time series performance.
In general, when over 80% of modules in an inverter block are
labeled with one of these defects, the associated time series
data show that the block is completely offline.

Because this is a largely unexplored topic in the literature,
there is still much work to be done in this space. In particular,
the authors of this work plan to expand the analysis to more
systems in the NREL PV Fleets Initiative. Additionally, we
are working with Zeitview to obtain aIRT scans for sites over
time, allowing for time-dependent defect analysis. By adding
this time component, we can examine how defects change over
time for a particular system and further relate this to time series
data.

The standardization and automation of site diagrams into
GeoJSON format would significantly aid in performing analy-
ses such as this one. We plan to further investigate this field of
research, and develop a Python toolkit to aid in automating this
process. Although this is a problem that is not generalizable,
identifying common formats and automating the GeoJSON
conversion could save solar site operators considerable time
when fusing aIRT and PV site performance data.
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