
Fig. 2 gives the relative difference in terminal objective value for 
each tested algorithm. This value is computed as

where the ro subscript indicates a Riemannian optimization solution 
and the ipopt subscript indicates the IPOPT solution. Fig. 3 gives the 
maximum constraint violation for the tested algorithms and IPOPT. 
Fig. 4 gives the number of iterations performed prior to termination. 
For IPOPT, this is the number of iterations reported by the optimizer 
output. For the Riemannian algorithms, this is the number of 
iterations performed by the unconstrained subproblem optimizer. For 
all three figures, failure to terminate is indicated by omitted values.
    The RAL and REP with RGD subsolver perform reasonably well 
with RAL-RGD outperforming REP-RGD. In all but one case, RAL-
RGD has a relative objective difference within 1% of the IPOPT 
solution whereas REP-RGD differences tend to be higher. The 
constraint violations are small being on the order of 10-5 in most tests. 
These are larger than the IPOPT values (between 10-8 and 10-5). 
REP-RGD does produce solutions with significant constraint violation.
    Both RCG variants perform poorly. While all cases terminated, the 
solutions are of poor quality. The relative objective function 
differences are significant (on the order of 1). The constraint violation 
is frequently large and rarely less than 10-2. The poor performance 
seems to be the result of early termination of the RAL-RCG and REP-
RCG algorithms.
    The RQN based algorithms clearly performed the best with RAL-
RQN slightly outperforming REP-RQN. These two methods also 
failed to terminate more than the others. This is likely due to un-
optimized implementations of the retraction and vector transport 
rather than a failing in the algorithm. Both algorithms consistently 
produce solutions comparable to IPOPT in terms of objective function 
value and constraint violation.

An embedded submanifold of Euclidean space is given by

where        is the Jacobian of    at    and is of full rank for all            .            
We limit ourselves to manifolds of this form here.

Given a point            , the tangent space is defined by

For a submanifold of Euclidean space, the tangent space coincides 
with the kernel of the Jacobian:

That is, the tangent space is the tangent (hyper-)plane of the manifold 
at   .

The tangent bundle is the disjoint union of all tangent spaces

A Riemannian manifold is a smooth manifold paired with a 
Riemannian metric                                      The Riemannian metric 
generalizes the notion of the Euclidean inner product so that 
geometric notions such as angles can be given on smooth manifolds. 
We take our metric to be the standard Euclidean inner product

The subscript emphasizes the fact that the vectors are restricted to 
the tangent space of the manifold at the point   .

For a function                    , the Riemannian gradient of    is 
defined as the unique vector field           on      such that for all

, we have

where       is the differential [10] of   . For our case, we have

where    is any smooth extension of    to     , and     denotes the 
standard Euclidean gradient.

For each method, we require a retraction and potentially a vector transport. Our retraction is taken from [12]. The idea is to 
search for the manifold in a direction normal to the tangent space. This is often called the orthographic retraction in the 
literature. For a point            , a search direction    , and step size     , we perform the iteration

until             is sufficiently small at which point we set
    For the embedded submanifold case, an obvious vector transport is given by taking the orthogonal projection of a vector 
into the necessary tangent space. To be exact, for any retraction    , we define                          where              , and
          is the previously defined orthogonal projector to the tangent space.
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Fig. 2. Relative difference in objective function 
compared to IPOPT value. Values are omitted when 
the algorithm failed to terminate.

Fig. 3. Maximum constraint violation. Values are 
omitted when the algorithm failed to terminate.

Fig. 4. Number of total inner loop iterations before 
termination. Values are omitted when the algorithm 
failed to terminate.

As transmission infrastructure ages and higher-penetrations of 
renewable generation become common, interest has increased in 
using alternating current (AC) physics in power systems design, 
analysis, and operation [1]. The core problem of many operations 
models is optimal power flow (OPF). Using AC physics with OPF 
results in a nonlinear, nonconvex optimization problem which is 
generally solved with interior point methods such as that 
implemented in IPOPT [2]. As the size of the power system 
increases, the ACOPF problem can be difficult to solve [3] due to the 
linear algebra problem at the core of interior point methods [4, 5].
    The advent of optimization on smooth manifolds [6] suggests an 
alternative. The AC power flow equations form a smooth submanifold 
of Euclidean space called the power flow manifold [7]. We use the 
packages PowerModels.jl [8] and Manopt.jl [9] to demonstrate that 
Riemannian optimization techniques produce similar quality solutions 
as IPOPT as measured by the terminal objective value and maximum 
constraint violation.

Riemannian Manifolds
Fig. 1. Depiction of a single iteration of a first-order 
Riemannian optimization algorithm.

Consider the Riemannian optimization problem

To solve this problem, we need a few additional tools.
    A retraction is a smooth map 
such that for each curve                       , we have                 and 
              . A retraction ensures that new iterates of an algorithm are 
on the manifold. The notion of a retraction is a generalization of the 
exponential map [6,10,11].
    A vector transport is a smooth linear map 
                       such that, for all             and for all                   , there 
exists a retraction    where                            and                 [6]. The 
notion of a vector transport is a generalization of parallel transport 
[6,11]. A vector transport allows us to move vectors from one tangent 
space to another tangent space.
    A generic (first-order) Riemannian optimization algorithm iterates 
the following three steps:

1. Determine search direction    . This often uses a vector 
transport.

2. Determine step size     . Since                                  is a function 
from the reals to the reals, standard line search techniques are 
directly applicable.

3. Set                             . The retraction           guarantees that the 
new iterate is on the manifold.

This generic procedure is depicted in Figure 1.
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To handle the inequality constraints, we use the Riemannian 
augmented Lagrangian (RAL) method and the Riemannian exact 
penalty (REP) method [13]. To solve the unconstrained subproblems, 
we test out several algorithms: Riemannian gradient descent (RGD), 
Riemannian conjugate gradient descent (RCG), and Riemannian 
quasi-Newton method (RQN). All subsolvers use the default line-
search and implementations from Manopt.jl version v0.4.41 [9].
    We briefly discuss some references on the algorithms used here 
(see the Manopt documentation for a more thorough discussion). The 
generalization of gradient descent to the Riemannian case is 
discussed in [6]. For RCG, we used the conjugate descent (CD) 
coefficient update generalized to the Riemannian setting as 
described in [14]. The RQN algorithm is a Riemannian generalization 
of the BFGS method as proposed and analyzed in [15].
    The AC optimal power flow model is constructed by version 
v0.19.9 of PowerModels.jl [8]. The detailed formulation of the problem 
is given in the PowerModels documentation. All equality constraints 
imposed by this model form our manifold. Our test problems are 
drawn from version 23.07 of the pglib-opf repository [16]. We chose 
cases from the repository with fewer than 300 buses so that the 
optimization completed in a reasonable amount of time.
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