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Topic Due to finite memory, all computer software run at finite precision. The most well-known
numeric types are integers, the IEEE 754 single-precision (FP32) and double-precision floating-
point (FP64) types. Integers are represented with 32 or 64 bits in modern 64-bit architectures,
while FP32 and FP64 always have 32 or 64 bits, respectively. Based on this usual scenario, we
consider low-precision types to be the ones whose size varies between 1 bit and 31 bits. Some
examples of low-precision floating-point types are: TF32 (19 bits) 1, FP16, BF16 2, E4M3 (8 bits)
and E5M2 (8 bits) [6].

Hardware operations like moving bits and adding numbers use less bits when applied to low-
precision types. Thus, hardware instructions operating on low-precision types consume less energy
and are faster [5], and may even halve memory requirements in recent GPUs [7]. Mixed-precision
operations and algorithms use two or more arithmetic precision types. In combination with low-
precision types, mixed-precision can achieve high efficiency with minor or no accuracy loss for
sufficiently large problems. One example is the training of Neural Networks, where mixed precision
approaches have shown to retain high accuracy through the following techniques: (I) maintaining a
separate copy of weights in FP32 for weight and gradient updates, (II) scaling of the loss function
to prevent underflow, and (III) performing FP16 arithmetic for computations with accumulating
values in FP32 (See details in [7]). Another example is the solution of linear systems, in which
a common mixed-precision approach is to first solve the system in lower precision, and then use
iterative refinement to recover a highly accurate solution [5].

Several energy management tools have been developed to measure energy consumption of soft-
ware applications [3]. These tools may utilize hardware-specific features such as Intel RAPL (Run-
ning Average Power Limit) for obtaining CPU and memory energy consumption, and use NVIDIA
Management Library (NVML) for GPU energy consumption. The total energy consumption of a
program can be calculated by multiplying the Power Usage Efficiency (PUE) of the machine with
the average power and time for each device. Another useful metric is the Energy Delay Product
(EDP), obtained by multiplying the total consumed energy by the overall time, providing a measure
of energy efficiency considering both energy usage and performance.

Challenge Mixed precision algorithms have been historically used to solve scientific problems,
dating back from linear system solvers from 1941 [5]. Since the introduction of the IEEE 754
standard and popularity of 64-bit architectures, most algorithms were designed to use 32-bit and

1https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
2https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/
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64-bit numeric types. Recently, mainly motivated by the acceleration of Machine Learning, mixed
precision instructions and new low-precision types have emerged. Adapting existing algorithms to
these types is crucial for maintaining accuracy, such as in the case of the QR decomposition, which
relies on numerically accurate orthogonal bases [5]. Yet, the ongoing standardization and study of
new types such as E4M3 and E5M2 present challenges for algorithm developers seeking to propose
mixed-precision solutions [6].

Despite hardware and algorithm support for low-precision types, gaps in software persist. For
example, TensorFlow’s Probability module lacks mixed-precision support, although the main library
supports it 3, and PyTorch does not provide wrappers for the mixed-precision symmetric linear
system solver from MAGMA [1]. Those gaps add a layer of difficulty for applications to use
state-of-the-art mixed-precision implementations. Additionally, there is a shortage of performance
benchmarks, particularly in energy measurement. Recent benchmarks show up to a 1.9X speedup
using mixed precision for training and inference of a U-Net with 64 filters across CPU, GPU, and
TPU, but lack energy efficiency metrics, e.g., [4].

Opportunity Based on the challenges described above, it is important to systematically ver-
ify that existing mixed-precision algorithms work on new architectures and low-precision types.
Moreover, there is a need for software that can fill current gaps in the application stack, enabling
the use of state-of-the-art mixed-precision implementations. Lastly, current and new performance
benchmarks should include energy measurements to enhance understanding of mixed-precision al-
gorithms, including the scenarios and configurations where they are most beneficial.

Maturity Due to the favorable use of low precision in Machine Learning algorithms, mixed-
precision instructions have been integrated into many modern hardware architectures. Examples
include Nvidia Tensor Cores (2017), Intel AMX (2023), and Apple Metal mixed precision (2023)
technologies, and the recent hardware support for E4M3 and E5M2 (2022) [6]. Additionally, the
rapid advancements in Artificial Intelligence (AI) are making it increasingly costly due to rising
energy consumption. For instance, GPT-3 has 175 billion parameters and was estimated to consume
1287 MWh for training and deploying. Other estimates suggest that in the near future Nvidia’s
new AI servers will consume more energy than Argentina and Sweden annually [2].
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