

electroninks

Screen-printed complex Ag inks for Si HJT metallization

Thien Truong^{1,*}, Matthew Page¹, Markus Kaupa¹, William Nemeth¹, San Thiengi¹, Jennifer Selvidge¹, Paul Stradins¹, Sneh Sinha², Mitchell Smith², Brett Walker², Melbs LeMieux², David Young¹

¹National Renewable Energy Laboratory | ²ElectronInks, Inc.

*Email: Thien.Truong@nrel.gov

Introduction

- Screen printing is currently the dominant technology for Si PV metallization.
- · Heterojunction solar cells (HJT) require low-
- temperature metal pastes with a higher amount of Ag.

 Complex Ag inks may be an alternative to the current nanoparticle-based pastes.
- This work presents the first demonstration of screenprinted complex Ag inks on Si HJT solar cells.

Screen Printing

print direction

Schematic representation of screen-printing

Low Temperature Nanoparticle Pastes

.....

Schematic representation of nanoparticle ink (left) and SEM image of resulting inkjet printed trace (right)

- · Silver form: nanometer scale silver flakes
- Peak temperature: 200°C
- Benefit: well-controlled rheology → fine line resolution
- Drawback: low metal density → lower conductivity

Complex Ag Inks

Schematic representation of complex Ag ink (left) and SEM image of resulting printed trace (right)

- · Silver form: metal-ion organic complex
- Peak Temperature: 200°C
- · Benefit: high density metal → high conductivity
- Drawback: low viscosity ink → resolution challenges

Printing quality

- A screen was designed with finger openings of 80 μm.
- The size of the fingers was measured, and the spreading of metal inks was quantified.
- A double print is expected to produce better continuity in the fingers without increasing their size.

Optical images of screen-printed fingers and their size using an 80 µm designed finger opening screen with single print (left) and double print (right).

Finger size for wafers screen-printed with an 80 µm screen.

Photoluminescence imaging

 PL images before and after metallization with complex Ag ink show similar intensity, indicating that the inks make soft contact with the Si.

PL images of a G1 HJT cell before (left) and after (right) complex Ag ink screen-printing and curing at 185°C for 30 minutes.

Electroluminescence imaging

 A double print shows brighter EL intensity than a single print, indicating improved conductivity of the front-side metal grid with double printing.

EL images of Si HJT devices with single-print (left) and double-print (right) front side Ag grid.

Device performance

- Full-area G1 (158.75 x 158.75 mm²) Si HJT cell precursors were used ("blue cells" before metallization).
- Double printing results in better-performing devices with a maximum cell efficiency of ~20.3%.

Efficiency (top) and Fill Factor (bottom) of the screen-printed Si HJT solar cells using the 80 μm screen.

Conclusions

- · Successful demonstration of screen printing complex Ag inks on HJT solar cells.
- Devices with efficiency > 20% can be achieved while reducing Ag consumption by > 80%.
- More work is needed to develop industry-compatible solar cells with efficiency > 24%.