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Our Mission: Clean Energy Generation & Storage
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Composition @ Atomic 

Spurgeon et al. Microsc. Microanal. 23, 513 (2017)

Zhou et al. Phys. Rev. Lett. 109, 206803 (2012)

Imaging @ 0.39 Å

Jiang et al. Nature 559, 343 (2018)

Bonding @ near Atomic Resolution

Grain/Strain Mapping @ 2 nm

Ophus et al. Microsc. Microanal. 25, 563 (2019) Londoño-Calderon et al. Nanoscale. 13, 9606 (2021)

Why electron microscopy?
Local, direct analysis down to the atomic scale
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Multimodal Microscopy for 3D Understanding of Systems/Materials

Finegan et al., ACS Energy Lett. 7 (12), 4368 (2022)
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Operando Electrochemical 
Freezing Cryo EM Unique Value

• Freeze-in ‘active’ biased 
states for interfacial 
analysis

• Cryogenic state enables 
high-resolution 
structural and chemical 
mapping of beam 
sensitive interfaces

• First demonstration from 
system-level materials, 
of an entire coin cell

Cryo EM of Battery Electrodes

Cryo EM of Tandem Solar Cell

100 nm
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Tescan Solaris Ga-FIB
10’s µm cross-sectional milling

Unique Value

• Precision milling with ion 
beam for site-specific 
cross-sectional imaging 
and mapping

• Cryogenic state enables 
sample preparation of 
beam sensitive interfaces

• Cryogenic preparation of 
samples for scanning 
transmission electron 
microscopy

X-ray Mapping of 
Degradation on 

Solar Cells
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316 µm

Unique Value

• Large-area milling with 
various ion beams for site-
specific cross-sectional 
imaging and mapping

• Cryogenic state enables 
sample preparation of 
beam sensitive interfaces 
for scanning transmission 
electron microscopy

• Slice-n-view allows 3D 
reconstruction over large-
areas of composites R. Gannon et al., (2024) In Preparation

Helios Plasma FIB
100’s µm cross-sectional milling

Harrison et al., ACS Appl. Mater. Interfaces 13, 31668 (2021)

Li Metal Morphology for Batteries
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Helios Laser Plasma FIB
10 – 4,000 um cross-sectional milling
fs laser mills 15,000x faster than Ga-

ion FIB

Unique Value
• System-level milling fs-

laser and ion beams for 
site-specific cross-
sectional imaging, 
compositional mapping, 
and 3D reconstructions

• Cryogenic state enables 
sample preparation of 
beam sensitive materials
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Thermo Fisher Spectra 200
Atomic-scale imaging, 

compositional, and strain analysis

Savitzky et al. Microscopy and Microanalysis, 27, 4 (2021)

ADF

2 nm

Ba In Sn

Sn Doped BaIn2O4

4D – Scanning Diffraction Analysis

Nanoscale Strain Map Across a Grain Boundary



NREL    |    12

JEOL GrandARM 2
Atomic-scale Imaging and 
In-situ Reaction Monitoring

detectors

• High-speed imaging and 
in-situ spectroscopy 
(valence states & bonding)

• Dose control for beam sensitive 
materials & light-induced reactions
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New Capabilities for Multiscale 
Electron Microscopy

Toward Artificial Intelligence
Guided Interface Science
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Understanding synthesis products requires direct local probes of structure and chemistry.

Functional Thin Films

S P U R G E O N  E T  A L .  C H E M  M A T E R ,  2 8 . 1 1 .  3 8 1 4 – 3 8 2 2 .  ( 2 0 1 6 ) .

~1 cm

5 µm

Site Specific
Metrology

Focused Ion Beam

STEM
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1 x 1 Reconstruction 1 x 1 “Twisted” Reconstruction 2 x 1 Reconstruction

Antiphase Boundary
SrTiO3 [100]

Ge [110]

We can directly resolve interfaces in epitaxially integrated oxides and semiconductors.

D U  E T  A L .  P H Y S  R E V  M A T E R .  2 .  0 9 4 6 0 2 .  ( 2 0 1 8 ) .



NREL    |    16D U  E T  A L .  P H Y S  R E V  M A T E R .  2 .  0 9 4 6 0 2 .  ( 2 0 1 8 ) .

Increasing crystal thickness

SrTiO3 [100]

Ge [110]

We can interpret such interfaces through image simulations based on atomistic models.
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1 x 1 Reconstruction 2 x 1 Reconstruction

SrTiO3 [100]

Ge [110]

D U  E T  A L .  P H Y S  R E V  M A T E R .  2 .  0 9 4 6 0 2 .  ( 2 0 1 8 ) .

This approach allows us to better understand interface reconstructions, defects, and 
intermixing that affect properties and performance.
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However, to build even more accurate models for synthesis and degradation
we must make sense of large, multi-modal data.

S P U R G E O N  E T  A L .  N A T U R E  M A T E R ,  2 0 ( 3 ) ,  2 7 4 – 2 7 9 .  ( 2 0 2 1 ) .
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We have developed few-shot 
machine learning models 
that allow us to rapidly build 
statistical models for atomic 
motifs and defects.

A K E R S  E T  A L .  N P J C O M P U T A T I O N A L  M A T E R I A L S ,  7 ( 1 ) ,  1 8 7 .  ( 2 0 2 1 ) .  
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H T T P S : / / G I T H U B . C O M / P N N L / P Y C H I P _ G U I

Scientists can rapidly train an ML model through simple graphical user interfaces.
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Original HAADF Image Support Sets Segmented Image Pixel Fraction

5 µm

A K E R S  E T  A L .  N P J C O M P U T A T I O N A L  M A T E R I A L S ,  7 ( 1 ) ,  1 8 7 .  ( 2 0 2 1 ) .  

We classify complex synthesis products and degradation of materials microstructures.
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Manual Analysis
10 minutes

Few-Shot
Task 1
8 seconds

MoO3 Organic Photovoltaic Precursor

Few-Shot
Task 2
8 seconds

75-100x Faster!

D O T Y  E T  A L .  C O M P U T A T I O N A L  M A T E R I A L S  S C I E N C E ,  2 0 3 ,  1 1 1 1 2 1 .  ( 2 0 2 2 ) .
A K E R S  E T  A L .  N P J C O M P U T A T I O N A L  M A T E R I A L S ,  7 ( 1 ) ,  1 8 7 .  ( 2 0 2 1 ) .  

We can quickly and reproducibly extract microstructural descriptors by task.
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T E R - P E T R O S Y A N  E T  A L .  P R O C .  T H I R T Y - S E V E N T H  C O N F .  O N  N E U R A L  I N F O R M A T I O N  P R O C E S S I N G  S Y S T E M S  

( N E U R I P S ) .  ( 2 0 2 3 ) .  D O I : 1 0 . 4 8 5 5 0 / A R X I V . 2 3 1 1 . 0 8 5 8 5

We can describe degradation signatures in an unsupervised manner using graph 
neural network models, informing more accurate statistical models.
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0 dpa 0.1 dpa 0.5 dpa

Increasing Dose

LaFeO3

SrTiO3

Pt / C

We can describe degradation signatures in an unsupervised manner using graph 
neural network models, informing more accurate statistical models.

T E R - P E T R O S Y A N  E T  A L .  P R O C .  T H I R T Y - S E V E N T H  C O N F .  O N  N E U R A L  I N F O R M A T I O N  P R O C E S S I N G  S Y S T E M S  
( N E U R I P S ) .  ( 2 0 2 3 ) .  D O I : 1 0 . 4 8 5 5 0 / A R X I V . 2 3 1 1 . 0 8 5 8 5



P A T E N T  P E N D I N G
H T T P S : / / Y O U T U . B E / X K Y J 1 U A E 6 J E

We are now integrating custom automation and ML-based decision-making into 
custom next-generation platforms for screening synthesis products and defects.



NREL    |    26

Through these approaches, 
we can curate large libraries 
of statistical defect 
information across length 
scales to inform properties 
and performance.

T E R - P E T R O S Y A N  E T  A L .  P R O C .  T H I R T Y - S E V E N T H  C O N F .  O N  N E U R A L  I N F O R M A T I O N  P R O C E S S I N G  S Y S T E M S  
( N E U R I P S ) .  ( 2 0 2 3 ) .  D O I : 1 0 . 4 8 5 5 0 / A R X I V . 2 3 1 1 . 0 8 5 8 5
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NREL is advancing PV interface science 
through new world-class instrumentation 
and the development of AI-guided 
materials science workflows.

For more information, visit:
https://tinyurl.com/z8ryk4y3

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for 
Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-
AC36-08GO28308. The views expressed in the presentation do not necessarily represent the 
views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by 
accepting the article for publication, acknowledges that the U.S. Government retains a 
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published 
form of this work, or allow others to do so, for U.S. Government purposes.
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