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Microgrid GFM IBR Evolution \ o=

Grid-Forming (GFM) Inverter-Based Resources (IBRs)
are replacing fossil-fueled synchronous generators

Main grid

How to dispatch 5
100% GFM IBRs? E‘V E"




Nodal Violtage Measurements

Update Duals

= Proj {2 + B (¥ - Fe — ek )}

Aeyy = Projppnf{a; + B(Pe —F — €d,)}
Convert to Node-Specific PQ Directions
hppyy = “‘Ir'{ilnl _}nl]

hgess = Ag(Aeiy —iru)

IBR PQ) Set Points

PCC active power, kW
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Microgrid Operation States o
State-Dependent Objectives for GFM IBRs

Steady-State (S1) \ {P )
ushn power

e Voltage Support

* Virtual Power Plant import/export to

zero

Min. IBR Operation CostT

[Transition (T10) ]

PQ mode

Grid-Connected

Islanded

Vf mode

Push voltage L [Transition (TO1) ]
magnitude,

frequency, and angle \
to match main grid Steady-State (SO)

-’

{ Power sharing among IBRs




Nodal Violtage Measurements

Update Duals
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Grid-Connected Operation

Microgrid supports the main grid as a VPP

Optimal Dispatch Problem

Steady-State (S1)

[ Transition (T10) ]

min
ch(ﬁn,én) < 2.9 |BR Operational Cost

neg

True cost

Reduced cost to
transition faster

Py < Py(p, @) < P,

. <L Virtual Power Plant
Qo = Qo(p.q) =0Q,

Bounds set by
main grid operator

Bounds set to zero

Vv, <V,(p,q) <V,: Yn € N «—— Voltage Support

(B, 0,) €Sy VREG < IBR Action Space




' ' \ (apes
Grid-Connected Operation e
Primal-Dual Feedback Control of IBRs

Nodal Voltage Measurements

Update Duals
_Power Import/Export Measurements A¢ i1 = Proj_ {lt +B (y — 9, - elt)}
A v 4 y £

Appr = PFOjRIJZ\fI{it +B(¥: — ¥ — €d)}

Convert to Node-Specific PQ Directions
hp i1 = A{D@tﬂ = )'t+1)

hqot1 = AIQ(AHl = it+1)

IBR Action Spaces

Update PQ Set Points

5 5 s B IBR PQ Set Points
~t+1’n] = Projs_ {[~t’n] —a (Vcn(ﬁn, (?n) — [hP’Hl’n] — € [~t’n]>}: Vneg
Qt+1,n Qt,n Qt+1,n Qt,n




Islanded Operation — Steady-State \ S

IBR power sharing by balancing collective effort

Effort = Reference — Nodal Value Average Discounted Effort
~ 1 ~ -~
Discounted Active Power Effort: b, (f, — f,.(p, q) @Z bin (fn ~ fn(D, q)) =:e(f,p. q)

-

Discounted Reactive Power Effort: by, (V;, — V,,(p, q) Gl z an Vn h.q)=ev(V.p.q)

Optimal Dispatch Problem: Equalize effort differences from the average

min z (bfn fa— fn(®, q)) —ei(f.p, 61)) +5 az (bV,n (Vn A q)) —ey(V,p, CI))Z

neg

S <V SV o< <f, Vneg




Islanded Operation — Steady-State \ S
Gradient-Descent Feedback Control of IBRs

_IBR Voltage Magnitude and
Frequency Measurements Calculate Average Efforts

1 ~ "
éf,t o |g_|z bf,n(fn — fn)

neg

1 ~ ~
évV,t = _z bV,n(Vn = Vn)
|G )

Update Vf Reference Points

F . Dra Fo_ o lg1=1 F_Ff &)l
ftyin = Pro][{njn] {ft,n N¢ Gl bf,n(ft,n fen ef,t)}- vneg IBR Vf Reference Points

>
7 : = 1G1-1 ~ s ~
Vit1n == Proj Vi V] {Vt,n — UVW aby (Vt,n —Vin — eV,t)}: vn e g
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Islanded Operation — Transition -

Push voltage magnitude, frequency, and angle to

match the main grid.
Optimal Dispatch Problem

0o 1 min 5 (A, @) = fo) + 36:(P. @) = 60)) + a5 (Vilp @) —Vo)?

S V<V SV fn<f<fVneg

Gradient-Descent Feedback Control of IBRs

Main gird and microgrid
2 2 Update Vf Reference Points

voltage magnitude,
frequenCY; angle ft+1,n — Proj[fnrfn] {ﬁ,n — Pf ((ft;l — ft,O) —+ C(ét,l — ét,O))}: Vn € g IBR Vf Reference Points

measurements

>

Vis1,n = Proj [Zn,vn]{vt,n —pya(Ve1 = Veo)}: VREG




Nodal Violtage Measurements

Update Duals
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Numerical Demonstration

Evaluate the proposed EMS under a cycle of operation
states for a 100% renewable microgrid.

Distribution

Feeder 2 from the
benchmark Banshee
model

Dynamical simulations in MATLAB
Simscape Electrical

e 2 BESS GFM IBRs

e 3PV GLFIBRs

* Prioritized loads

* 50 ps time resolution




Numerical Demonstration

EMS controls microgrid power for islanding and VPP
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Numerical Demonstration =

Current through microgrid PCC remains stable
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Numerical Demonstration

Nodal voltages are stable, especially during transitions
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Voltage magnitude, p.u.
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Real-time feedback-based

) Seamlessly dispatch
control that achieves both y disp

multiple GFM and GFL
IBRs

microgrid and main grid
objectives
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