

An Innovative Energy Management System for Microgrids with Multiple Grid-Forming Inverters

Joshua Comden and Jing Wang National Renewable Energy Laboratory

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office Award Number DE-EE0009336. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paidup, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

2024 IEEE PES GM July 21-24, 2024 NREL/PR-5D00-90805

Microgrid GFM IBR Evolution

Grid-Forming (GFM) Inverter-Based Resources (IBRs) are replacing fossil-fueled synchronous generators

Problem: There are no microgrid energy management systems (EMSs) dispatching **multiple** GFM IBRs.

Approach: Design a generic microgrid EMS to dispatch multiple GFM IBRs under different operation states.

Optimal Control Algorithms

Numerical Demonstration

Microgrid Operation States

State-Dependent Objectives for GFM IBRs

Problem: There are no microgrid EMSs dispatching **multiple** GFM IBRs.

Approach: Design a generic microgrid EMS to dispatch multiple GFM IBRs under different operation states.

Optimal Control Algorithms

Numerical Demonstration

Grid-Connected Operation

Microgrid supports the main grid as a VPP

Grid-Connected Operation

Primal-Dual Feedback Control of IBRs

Power & Energy Society*

Islanded Operation – Steady-State

IBR power sharing by balancing collective effort

Effort = Reference – Nodal Value

Discounted Active Power Effort: $b_{f,n}(\tilde{f}_n - f_n(\boldsymbol{p}, \boldsymbol{q}))$

Discounted Reactive Power Effort: $b_{V,n}(\tilde{V}_n - V_n(\boldsymbol{p}, \boldsymbol{q}))$

Average Discounted Effort

$$\frac{1}{|\mathcal{G}|} \sum_{n \in \mathcal{G}} b_{\mathbf{f},n} \left(\tilde{f}_n - f_n(\boldsymbol{p}, \boldsymbol{q}) \right) =: e_{\mathbf{f}} \left(\tilde{\boldsymbol{f}}, \boldsymbol{p}, \boldsymbol{q} \right)$$
$$\frac{1}{|\mathcal{G}|} \sum_{n \in \mathcal{G}} b_{\mathbf{V},n} \left(\tilde{V}_n - V_n(\boldsymbol{p}, \boldsymbol{q}) \right) =: e_{\mathbf{V}} \left(\tilde{\boldsymbol{V}}, \boldsymbol{p}, \boldsymbol{q} \right)$$

Optimal Dispatch Problem: Equalize effort differences from the average

$$\min_{\tilde{\boldsymbol{V}},\tilde{\boldsymbol{f}}} \frac{1}{2} \sum_{n \in \mathcal{G}} \left(b_{\mathrm{f},n} \left(\tilde{f}_n - f_n(\boldsymbol{p}, \boldsymbol{q}) \right) - e_{\mathrm{f}} \left(\tilde{\boldsymbol{f}}, \boldsymbol{p}, \boldsymbol{q} \right) \right)^2 + \frac{1}{2} a \sum_{n \in \mathcal{G}} \left(b_{\mathrm{V},n} \left(\tilde{\boldsymbol{V}}_n - \boldsymbol{V}_n(\boldsymbol{p}, \boldsymbol{q}) \right) - e_{\mathrm{V}} \left(\tilde{\boldsymbol{V}}, \boldsymbol{p}, \boldsymbol{q} \right) \right)^2$$

s.t. $\underline{V}_n \leq \tilde{V}_n \leq \overline{V}_n, \underline{f}_n \leq \tilde{f}_n \leq \overline{f}_n$: $\forall n \in \mathcal{G}$

Islanded Operation – Steady-State

Gradient-Descent Feedback Control of IBRs

Islanded Operation – Transition

Push voltage magnitude, frequency, and angle to match the main grid.

Optimal Dispatch Problem $\min_{\tilde{V},\tilde{f}} \frac{1}{2} \left((f_1(\boldsymbol{p}, \boldsymbol{q}) - f_0) + \zeta(\theta_1(\boldsymbol{p}, \boldsymbol{q}) - \theta_0) \right)^2 + a \frac{1}{2} (V_1(\boldsymbol{p}, \boldsymbol{q}) - V_0)^2$ s.t. $\underline{V}_n \leq \tilde{V}_n \leq \overline{V}_n, \underline{f}_n \leq \tilde{f}_n \leq \overline{f}_n: \forall n \in \mathcal{G}$ IEEE

Gradient-Descent Feedback Control of IBRs

Main gird and microgrid voltage magnitude, frequency, angle measurements

$$\begin{split} & \underbrace{\mathsf{Update}\;\mathsf{Vf}\;\mathsf{Reference}\;\mathsf{Points}}_{\tilde{f}_{t+1,n}} \coloneqq \operatorname{Proj}_{\left[\underline{f}_{n},\overline{f}_{n}\right]} \left\{ \tilde{f}_{t,n} - \rho_{\mathrm{f}}\left(\left(\hat{f}_{t,1} - \hat{f}_{t,0}\right) + \zeta(\hat{\theta}_{t,1} - \hat{\theta}_{t,0}) \right) \right\}: \; \forall n \in \mathcal{G} \\ & \underbrace{\mathsf{IBR}\;\mathsf{Vf}\;\mathsf{Reference}\;\mathsf{Points}}_{\tilde{V}_{t+1,n}} \coloneqq \operatorname{Proj}_{\left[\underline{V}_{n},\overline{V}_{n}\right]} \left\{ \tilde{V}_{t,n} - \rho_{\mathrm{V}}a\left(\hat{V}_{t,1} - \hat{V}_{t,0}\right) \right\}: \; \forall n \in \mathcal{G} \end{split}$$

Problem: There are no microgrid EMSs dispatching **multiple** GFM IBRs.

Approach: Design a generic microgrid EMS to dispatch multiple GFM IBRs under different operation states.

Optimal Control Algorithms

Numerical Demonstration

Evaluate the proposed EMS under a cycle of operation states for a 100% renewable microgrid.

EMS controls microgrid power for islanding and VPP

Current through microgrid PCC remains stable

Nodal voltages are stable, especially during transitions

Problem: There are no microgrid EMSs dispatching **multiple** GFM IBRs.

Approach: Design a generic microgrid EMS to dispatch multiple GFM IBRs under different operation states.

Optimal Control Algorithms

Real-time feedback-based control that achieves both microgrid and main grid objectives

Numerical Demonstration

Seamlessly dispatch multiple GFM and GFL IBRs

Joshua Comden and Jing Wang National Renewable Energy Laboratory

> 2024 IEEE PES GM July 21-24, 2024 NREL/PR-5D00-90805

Acknowledgement and Disclaimer

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number DE-EE0009336.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.