
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Technical Report
NREL/TP-2C00-90910
September 2024

Low Precision and Efficient
Programming Languages for
Sustainable AI: Final Report for the
Summer Project of 2024

João Vitor de Oliveira Silva,1,3 Tokey Tahmid,2,3 and
Weslley da Silva Pereira3

1 University of Colorado Denver
2 University of Tennessee Knoxville
3 National Renewable Energy Laboratory

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Technical Report
NREL/TP-2C00-90910
September 2024

Low Precision and Efficient
Programming Languages for
Sustainable AI: Final Report for the
Summer Project of 2024

João Vitor de Oliveira Silva,1,3 Tokey Tahmid,2,3 and
Weslley da Silva Pereira3

1 University of Colorado Denver
2 University of Tennessee Knoxville
3 National Renewable Energy Laboratory

Suggested Citation
de Oliveira Silva, João Vitor, Tokey Tahmid, and Weslley da Silva Pereira. 2024. Low
Precision and Efficient Programming Languages for Sustainable AI: Final Report for the
Summer Project of 2024. Golden, CO: National Renewable Energy Laboratory. NREL/TP-
2C00-90910. https://www.nrel.gov/docs/fy24osti/90910.pdf.

https://www.nrel.gov/docs/fy24osti/90910.pdf

NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by the National Renewable Energy Laboratory. The views expressed herein do not necessarily represent
the views of the DOE or the U.S. Government.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

Low Precision and Efficient Programming Languages for

Sustainable AI

Final report for the summer project of 2024

João Vitor de Oliveira Silva1,2 Tokey Tahmid1,3

Mentor: Weslley da Silva Pereira1

1Computational Science Center, National Renewable Energy Laboratory
2Department of Mathematical and Statistical Sciences, University of Colorado Denver

3Electrical Engineering and Computer Science, University of Tennessee Knoxville

1 Introduction

This document contains all relevant material generated during the authors’ summer internship at NREL in
2024. This report shows how to improve the energy efficiency of a few code samples by using low-precision
data types combined with mixed-precision algorithms. The main applications considered here are (i) linear
system solvers using mixed precision, and (ii) neural networks using mixed precision. This report also
discusses how programming languages affect the energy consumption of algorithms, energy metrics for a
code and energy measurement tools, and the currently available software and hardware infrastructure that
support low- and mixed-precision computation.

The remainder of this report is organized as follows. Section 2 defines low and mixed precision. Section
3 defines energy metrics and tools to measure energy, and discusses the effects of programming languages
in the energy consumption of code. Section 4 presents strategies, experiments, results, and analyses of
mixed-precision training of neural networks. Section 5 discusses and presents experiments of mixed-precision
strategies to solve symmetric positive definite linear systems, as well as its use in Gaussian Process Regression.
Section 6 presents the final discussion and suggestions for future work.

2 Mixed and Low precision

Due to finite memory, all computer software run at finite precision. The most well-known numeric types
are the integers and the IEEE 754 single-precision (FP32) and double-precision floating-point (FP64) types.
Integers are represented with 32 or 64 bits in modern 64-bit architectures, while FP32 and FP64 always have
32 and 64 bits, respectively. Based on this usual scenario, we consider low-precision types to be the ones
whose size varies between 1 bit and 31 bits. Some examples of low-precision floating-point types are: TF32
(19 bits) 1, FP16, BF16 2, E4M3 (8 bits) and E5M2 (8 bits) [10].

Two of the most used floating-point low-precision types are the BF16 and the FP16. Those are 16-bit
data types where the mantissa has 7 bits in the former and 10 bits in the latter. They both use 1 bit to
control the sign in front of the number. One attractive aspect of the BF16 type is that it can be easily
converted to the FP32 data type since they both have the same number of bits in the exponent. Here is an
example of a C++ class that emulates a BF16 and the cast operations to and from FP32. The cast operations
use bit rotation, which is a common instruction implemented in hardware.

1 struct bfloat16

2 {

1https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
2https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/

1

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/

3 uint16_t data;

4

5 public:

6 bfloat16()

7 {

8 data = 0;

9 }

10 // cast to float

11 operator float() const

12 {

13 uint32_t proc = ((uint32_t) data) << 16;

14 return *reinterpret_cast<float *>(&proc);

15 }

16 // cast to bfloat16

17 bfloat16 &operator=(float float_val)

18 {

19 data = (*reinterpret_cast<uint32_t *>(&float_val)) >> 16;

20 return *this;

21 }

22 };

Hardware operations, like moving bits and adding numbers, naturally use less bits when applied to smaller
types. Thus, hardware instructions operating on low-precision types consume less or the same energy and
time than their high-precision equivalents, and may even halve memory requirements in recent GPUs [13].
Mixed-precision operations and algorithms use two or more arithmetic precision types. In combination with
low-precision types, mixed-precision computations can achieve high efficiency with minor or no accuracy loss
for sufficiently large problems. One example is the training of neural networks using FP16 or BF16, where
mixed-precision approaches have been shown to retain high accuracy through the following techniques:
(I) maintaining a separate copy of weights in FP32 for weight and gradient updates, (II) scaling up the
loss function to prevent underflow when using FP16, and (III) performing FP16 or BF16 arithmetic for
computations while accumulating values in FP32 (see details in [13]). Another example is the solution of
linear systems, in which a common mixed-precision approach is to first solve the system in lower precision,
and then use iterative refinements to recover a highly-accurate solution [7]. Sections 4 and 5 discuss these
examples in details.

The efficiency of the two examples mentioned above, and many others, rely on hardware support for
mixed-precision matrix-matrix multiplication instructions. In this work, we considered the Intel AMX 3

technology available on Intel CPUs with the Sapphire Rapids architecture, and the Nvidia Tensor Cores [14]
available since the Volta architecture on Nvidia GPUs.

2.1 Intel CPUs (Intel AMX) Overview

Intel Advanced Matrix Extensions (AMX) is a processing unit designed to accelerate matrix-matrix multi-
plications using low-precision data types on input, while converting outputs to higher precision for improved
accuracy. Intel AMX accelerators feature:

1. Tiles: New, expandable 2D register files, each 1kB in size.

2. TMUL (Tile Matrix Multiply): Instructions operating on these tiles to perform matrix-multiply com-
putations in mixed precision.

Note that one may easily check if the AMX technology is available on an Intel CPU by using the command
‘lscpu | grep amx’ on Unix. If enabled, the output should include the flags: amx bf16, amx tile, and
amx int8 4.

3https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html
4We performed several experiments with linear algebra operations on Kestrel with Intel AMX, reported on https://github.

nrel.gov/wdasilv/test_lowprecision

2

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html
https://github.nrel.gov/wdasilv/test_lowprecision
https://github.nrel.gov/wdasilv/test_lowprecision

2.2 Nvidia GPUs (Tensor Cores) Overview

Nvidia’s Tensor Cores are specialized for accelerating mixed-precision neural network training by performing
matrix-matrix multiplications in lower precision and accumulations in low or high precision [14]. They
operate on four 4x4 matrices concurrently, enhancing throughput significantly as follows:

• 16-bit multiplication: Multiplies two 16-bit 4-by-4 matrices to produce a 16-bit 4-by-4 matrix.

• 32-bit Accumulation: Accumulates the resulting 16-bit 4-by-4 matrix into an 32-bit 4-by-4 matrix.

The Tensor Cores can perform up to 64 floating-point operations per clock cycle, providing substantial
throughput benefits over FP32 computations (up to 8x more) [14]. The main mathematical operation in the
Tensor Cores is the matrix-matrix multiplication with accumulation, i.e., D = A × B + C where A and B
are half-precision 4-by-4 matrices C and D can be half or single precision 4-by-4 matrices. Tensor Cores are
significantly faster than double precision (FP64) and single precision (FP32). For instance, the theoretical
peak performance of V100 Tensor Cores is approximately 120 TFLOPS which is 10x faster than double
precision (FP64) and 4x faster than single precision (FP32) [14].

In order to maximize performance for 16-bit floating-point types, there are recommendations:

• matrix multiplication: dimensions (M, N, K) multiples of 8.

• convolution: input and output channels multiples of 8.

• mixed-precision training: mini-batch size, linear layer dimensions, convolution layer channel counts,
vocabulary size, and sequence length multiples of 8.

Moreover, it is recommended to decrease non-Tensor Core Work by optimizing it. Further details on Nvidia’s
Mixed Precision Tenchnology using the Nvidia Tensor Cores can be found in their user’s guide, “Train with
Mixed Precision” [14].

2.3 Hardware specification

For the experiments that follow, we used the HPC infrastructure here at NREL, which features CPU and
GPU nodes and supports mixed-precision computations, allowing us to handle large-scale problems. Below,
we list the configurations used on the two machines, Kestrel and ALIS Server.

1. Kestrel:

• OS: Red Hat Enterprise Linux version 8.8 (Ootpa, Kernel Linux 4.18.0-477.10.1.el8 8.x86 64)

• CPU allocation:

– Intel® Xeon® Platinum 8470QL (104 Cores).

– No GPUs.

– RAM: 256 GB

• GPU allocation:

– 1x AMD™ EPYC 9554 (64 Cores, up to 3.75 GHz).

– 1x NVIDIA H100 HBM3 (80GB, 528 Tensor Cores with a theoretical peak performance of
approximately 1000 TFLOPS 5.)

– RAM: 80 GB

2. ALIS Server:

• OS: Rocky Linux 9.4 (Blue Onyx, Kernel Linux 5.14.0-
427.22.1.el9 4.x86 64)

• RAM: 1.0TB

• CPU runs: 1× AMD EPYC™ 7443 (24 cores, up to 4 GHz)

3

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

• GPU runs: 1× NVIDIA A100-SXM4 (40GB, 432 Tensor Cores with a peak performance of up to
312 TFLOPS 5)

The detailed specification for the Kestrel HPC machine is in https://www.nrel.gov/hpc/kestrel-computing-system.

html.
Running some experiments on this machine provided insights into how architectural differences can impact

overall energy consumption and processing time, as well as reveal memory limitations when handling very
large problems.

3 Energy measurements

Computer components all spend energy. The specification of how much energy is spent is usually the range
of power (W) the component operates. To measure energy, one must record all the history of power during
the time of execution, and then compute the area behind the curve. This is most accurate (and ideal) way of
measuring the energy, which is approximated by software like Intel RAPL (Running Average Power Limit) 6

and NVML (NVIDIA Management Library) 7. In another extreme, one may rely on the formula below for
total energy consumption (E):

E =
∑
e∈E

∑
d∈D

Pavg,d,eTe (1)

where E represents different components, D denotes different time intervals, Pavg,d,e is the average power
consumed by component e during interval d, and Te is the total time for which component e is active. Most
tools listed in the following section use both approaches.

Besides the energy measured in kWh, we may also want to consider additional information to evaluate
how green (environment friendly) a deployed application is. The Power Usage Effectiveness (PUE) is a
common metric that reflects how efficiently a computer data center uses energy. Specifically, it is the ratio
between the total energy spent in the infrastructure over the energy used by the computer itself. A lower
PUE indicates a more efficient data center. Additionally, considering the carbon dioxide equivalent (CO2)
emissions is crucial for evaluating the carbon footprint of the energy consumed. Incorporating these metrics
ensures a comprehensive assessment of both the energy efficiency and the environmental friendliness of a
deployed application.

Other relevant metrics include the Energy-Delay Product (EDP) [11], which is the product of the to-
tal energy consumed times the execution time of an application. EDP is particularly useful in balancing
performance and energy efficiency, as it helps identify solutions that minimize energy consumption without
significantly compromising performance.

3.1 Available Energy Measurement Tools and Their Comparison

In the review paper [2], the authors describe several energy measurement tools used to estimate the energy
consumption and carbon footprint of training deep learning models. These tools provide various levels of
detail and accuracy in estimating the energy consumption and carbon emissions of training deep learning
models. Based on that reference and our evaluation, we opted to use the tool CodeCarbon. Regardless, we
provide a summary of the characteristics of each of the considered tools because we understand that each
application may have its appropriate corresponding tool. The tools described in the paper are:

1. Green-Algorithms (GA)

• Type: Online calculator and server-side tool.

• Methodology: Uses the model of CPU/GPU to pull the corresponding TDP from a database or
allows manual input. Memory consumption is estimated based on available memory.

5https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
6https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/

advisory-guidance/running-average-power-limit-energy-reporting.html
7https://developer.nvidia.com/management-library-nvml

4

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://www.nrel.gov/hpc/kestrel-computing-system.html
https://www.nrel.gov/hpc/kestrel-computing-system.html
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://developer.nvidia.com/management-library-nvml

• Strengths: Provides detailed breakdowns by CPU, GPU, and memory.

• Limitations: Default usage factor is 100% if not provided by the user, which may overestimate
consumption.

• Hardware Compatibility: Compatible with various CPUs and GPUs.

• Real-time Carbon Intensity: Not supported.

• Overhead and Accuracy: Lower overhead due to not using real-time data.

2. CodeCarbon (CC)

• Type: Embedded package.

• Methodology: Uses RAPL files or Power Gadget for CPU energy consumption (Intel CPUs) and
pynvml for GPU (NVIDIA GPUs). Also supports manual TDP input.

• Strengths: Good accuracy when using direct measurements.

• Limitations: Requires root access for RAPL files, and does not measure memory consumption by
default.

• Usage Factor: Automatically tracked through sensors.

• Hardware Compatibility: Limited to Intel CPUs and NVIDIA GPUs.

• Real-time Carbon Intensity: Not supported.

• Overhead and Accuracy: Moderate overhead with accurate measurements when sensors are avail-
able.

3. Eco2AI (E2)

• Type: Embedded package.

• Methodology: Uses the model of CPU/GPU to pull TDP values from a list. For memory, it uses
psutil to measure usage.

• Strengths: Flexible with process-specific tracking.

• Limitations: May have higher overhead compared to other tools.

• Usage Factor: Uses os and psutil python modules.

• Hardware Compatibility: Compatible with various CPUs and GPUs.

• Real-time Carbon Intensity: Not supported.

• Overhead and Accuracy: Higher overhead due to extensive querying of system resources.

4. CarbonTracker (CT)

• Type: Embedded package.

• Methodology: Uses RAPL files for CPU energy consumption (Intel CPUs) and pynvml for GPU
(NVIDIA GPUs).

• Strengths: Supports real-time fetching of carbon intensity for specific regions.

• Limitations: Limited to Intel CPUs and NVIDIA GPUs.

• Usage Factor: Automatically tracked through sensors.

• Hardware Compatibility: Limited to Intel CPUs and NVIDIA GPUs.

5

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

• Real-time Carbon Intensity: Supported for specific regions.

• Overhead and Accuracy: Moderate overhead with accurate real-time data.

5. Experiment-Impact-Tracker (EIT)

• Type: Embedded package.

• Methodology: Uses RAPL files for CPU energy consumption and nvidia-smi for GPU (NVIDIA
GPUs).

• Strengths: Provides detailed usage factors.

• Limitations: Limited to Intel CPUs and NVIDIA GPUs, and requires root access.

• Usage Factor: Uses psutil python module.

• Hardware Compatibility: Limited to Intel CPUs and NVIDIA GPUs.

• Real-time Carbon Intensity: Supported for specific regions.

• Overhead and Accuracy: Higher overhead due to detailed usage tracking.

6. MLCO2

• Type: Online calculator.

• Methodology: Uses the model of CPU/GPU to pull TDP values from a list. Assumes maximum
load for GPU.

• Strengths: Simplified approach, easy to use.

• Limitations: May overestimate energy consumption due to assuming maximum load.

• Usage Factor: Assumes 100% usage.

• Hardware Compatibility: Compatible with various CPUs and GPUs.

• Real-time Carbon Intensity: Not supported.

• Overhead and Accuracy: Lower overhead with potential overestimation.

7. Cumulator (CMLTRs)

• Type: Embedded package.

• Methodology: Uses the model of CPU/GPU to pull TDP values from a list. Only measures CPU
or GPU at a time.

• Strengths: Simple setup.

• Limitations: Does not measure memory consumption and assumes maximum load for GPUs.

• Usage Factor: Assumes 100% usage.

• Hardware Compatibility: Compatible with various CPUs and GPUs.

• Real-time Carbon Intensity: Not supported.

• Overhead and Accuracy: Lower overhead with potential overestimation.

6

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

3.2 Energy consumption and programming languages

In software development, the choice of a programming language is often influenced by factors such as ease of
use, the availability of libraries, and compatibility with other technologies. For the scientific community, ease
of use is especially motivating as it enables researchers to quickly prototype and test complex algorithms
without having difficulties with complicated syntax or steep learning curves. While the convenience of
a language may accelerate certain scientific discoveries, overlooking energy efficiency can lead to missed
opportunities for optimizing performance and reducing the environmental impact of computational research.

The energy efficiency of distinct programming languages is outlined in a comparison along a set of
problems [15]. This set of problems is available at a Github repository 8 originally known as Computer
Language Benchmark Game (CLBG). The authors show that the choice of compiled languages usually
consume less energy and require less computation time compared to using interpreted languages such as
Python or Lua. Moreover, the relationship between energy and RAM memory storage is discussed, although,
unlike the relationship between energy and time consumption which are more related, it has more to do with
how it is represented and used during the application compared to the amount of memory used. The
applications we will detail in the next sections are written in Python, and use packages like Pytorch and
TensorFlow. The backends for those packages are usually libraries written in C and C++. Therefore, one
should expect high energy efficiency even by only relying on scripts using those high-level Python packages.

Compiled pointer-based languages, such as C and C++, offer a high degree of control over system
memory and execution, which often results in faster performance and lower energy consumption compared
to memory-safe languages. This efficiency is due to the ability to perform direct memory access and manage
resources with minimal overhead. However, this fine-grained control comes with significant security risks.
Unlike memory-safe languages like Python or Java, which automatically handle memory management and
enforce strict bounds checking, pointer-based languages allow direct manipulation of memory addresses.
As addressed in a 2024 White House report 9, this may lead to vulnerabilities such as buffer overflows,
where data written beyond the allocated memory buffer can corrupt adjacent memory or execute arbitrary
code. Thus, while pointer-based languages provide powerful capabilities and are more energy efficient, they
also require careful management and thorough testing to avoid security failures. The discussion about the
qualities of different programming languages is always ongoing, and the scenario changes as the languages
evolve and new languages appear.

4 Application on neural networks

4.1 Examples of mixed precision results on neural networks

4.1.1 Experimental Setup

We tested mixed precision (mixed bfloat16) for training and inference on multiple AI applications at NREL.
We did these tests on both CPUs and GPUs in the Kestrel HPC Cluster. For the CPU runs, we utilized the
Intel AMX technology in the Intel® Xeon® Sapphire Rapids CPUs. And for the GPU runs, we utilized
Nvidia’s Tensor Cores in the Nvidia H100 GPUs. Detailed hardware specifications for Kestrel CPU and
GPU nodes is given in section 2.3. The mixed-precision technology was tested for both TensorFlow and
PyTorch backends. All tests use the BF16 type described in Section 2.

In our methodology, we run each test multiple times with a set seed for reproducible accuracy results
across all runs. Then we take the mean and standard deviation of the different performance metrics of these
runs. We used the CodeCarbon [3] tool to measure the different energy efficiency metrics such as total energy
consumption, carbon emission, and EDP which is computed based on energy consumption and execution
time. Finally, we compared the results between mixed precision and single precision for all our test runs.

For TensorFlow models, we tested the TF-MELT (v0.4.1) 10 application using Python (v3.11.9) and Ten-
sorFlow (v2.15.1), and compared between mixed precision (mixed bfloat16) and single precision (float32).
For PyTorch, we tested the PT-MELT (v0.1.1) 11 application with Python (v3.11.9) and PyTorch (v2.3.1+cpu)

8https://github.com/greensoftwarelab/Energy-Languages
9https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

10https://github.com/NREL/tf-melt
11https://github.com/nrel/pt-melt

7

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://github.com/NREL/tf-melt
https://github.com/nrel/pt-melt

for CPU and PyTorch (v2.4.0) for GPUs for mixed-precision tests. The python scripts, notebooks, result
outputs, job scripts, and modules configuration scripts for all these tests can be found in the mixed-precision-
tests 12 repository. In the notebooks, we particularly tested the mixed-precision training of Artificial Neural
Network (ANN), Residual Neural Network (ResNET), and Bayesian Neural Network (BNN) models for TF-
MELT repository and ANN, and ResNET models for PT-MELT repository. We only tested inference for
the BNN models in TF-MELT as of now. These trained models from our experiments can be found in the
mixed-precision-models 13 repository at the NREL organization on Hugging Face.

We also ran tests with PINNs 14 and MMBO 15 (BNNs in Pytorch), although we did not develop too
much in those directions. The few examples we ran with PINNs showed a moderate advantage of using mixed
precision in the training process (1 ∼ 1.4X speedup) and a proportional reduction in energy consumption.
The tests with MMBO were inconclusive and need due to the lack of time to dedicate to them during the
internship.

4.2 Experimental results

We tested each model with multiple mixed-precision training runs on both TensorFlow and PyTorch on
CPUs and GPUs to compare the speedup performance and energy efficiency. The tables (1 to 8) below
show a side by side comparison of mixed-precision vs single-precision on both CPU and GPUs for both
TensorFlow and PyTorch runs. We give hints about the model architectures in the sequence.

Table 1: ResNet-50 Training Summary (TensorFlow)

Metric
CPU GPU

FP32 BF16 FP32 BF16
Training Time (s) 437.48 243.16 93.26 53.50
Loss 1.9178 1.9149 1.8958 1.9124
Consumed Energy (kWh) 0.03391 0.01903 0.01438 0.00799
Emissions (kgCO2) 0.03391 0.01903 0.00528 0.00294
EDP (kWh*s) 27.487 8.614 1.243 0.388
Speedup (1.80 ± 0.01)X (1.74 ± 0.11)X
Emission Reduction (43.82 ± 0.22)% (44.30 ± 2.62)%
EDP Reduction (68.78 ± 0.24)% (67.80 ± 3.30)%
Accuracy Loss -0.01% -0.01%

Table 2: ANN Training Summary (TensorFlow)

Metric
CPU GPU

FP32 BF16 FP32 BF16
Training Time (s) 4245.92 2686.40 571.69 245.62
Loss 1.0520 1.0569 1.0470 1.0469
Consumed Energy (kWh) 0.92489 0.58251 0.13171 0.04412
Emissions (kgCO2) 0.34046 0.21442 0.04848 0.01624
EDP (kWh*s) 3927.169 1565.666 75.297 10.960
Speedup (1.58 ± 0.04)X (2.37 ± 0.30)X
Emission Reduction (37.01 ± 1.83)% (66.52 ± 2.89)%
EDP Reduction (60.11 ± 2.32)% (85.46 ± 3.04)%
Accuracy Loss -0.01% 0.00%

12https://github.nrel.gov/AI/mixed-precision-tests
13https://huggingface.co/NREL/mixed-precision-models
14https://github.com/NREL/PINNSTRIPES
15https://github.nrel.gov/itaylor/mmbo

8

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://github.nrel.gov/AI/mixed-precision-tests
https://huggingface.co/NREL/mixed-precision-models
https://github.com/NREL/PINNSTRIPES
https://github.nrel.gov/itaylor/mmbo

Table 3: ResNet Training Summary (TensorFlow)

Metric
CPU GPU

FP32 BF16 FP32 BF16
Training Time (s) 4290.91 2725.49 571.83 245.03
Loss 0.6399 0.7515 0.6030 1.0930
Consumed Energy (kWh) 0.93432 0.58256 0.13444 0.04406
Emissions (kgCO2) 0.34392 0.21444 0.04949 0.01622
EDP (kWh*s) 4012.340 1590.043 76.881 10.911
Speedup (1.58 ± 0.02)X (2.37 ± 0.29)X
Emission Reduction (37.66 ± 0.59)% (67.23 ± 2.78)%
EDP Reduction (60.41 ± 0.75)% (85.81 ± 2.91)%
Accuracy Loss -0.26% -0.81%

Table 4: BNN Training Summary (TensorFlow)

Metric
CPU

FP32 BF16
Training Time (s) 1032.293 763.965
Loss 3397.716 3404.362
Consumed Energy (kWh) 0.22603 0.16657
Emissions (kgCO2) 0.08320 0.06132
EDP (kWh*s) 233.327 127.254
Speedup (1.48 ± 0.20)X
Emission Reduction (25.85 ± 2.11)%
EDP Reduction (46.63 ± 2.25)%
Accuracy Loss -0.00%

Table 5: BNN Inference Summary (TensorFlow)

Metric
CPU

FP32 BF16
Inference Time (s) 43.542 27.094
Consumed Energy (kWh) 0.00892 0.00528
Emissions (kgCO2) 0.003 0.002
EDP (kWh*s) 0.388 0.143
Speedup (1.83 ± 0.16)X
Emission Reduction (45.40 ± 4.25)%
EDP Reduction (63.83 ± 0.00)%

In Table 9, we show the difference in training times of the ANN model training in TensorFlow to observe
the overhead of the CodeCarbon tool. We can see that in CPUs, the overhead is up to 2.74% which is not
that significant. However, on the GPUs, the overhead is up to 43.77% which is a significant increase in
training time due to overhead by the CodeCarbon tool.

4.2.1 Model Architectures Used in Experiments

In our multiple test runs we see some speedup and efficiency gain across all the models. For multiple runs
of a particular model, we present the (mean ± standard deviation) of the speedup, emission reduction, and
EDP reduction. For example, the speedup for the BNN models in Table 4, were (1.48 ± 0.20)X faster with
mixed-precision using BF16 than single precision on CPUs. In this case, mixed-precision reduced carbon
emissions by (25.85 ± 2.11)% and EDP by (46.63 ± 2.25)%.

These speedup results are due to the use of a relatively wider network for these models with a similarly

9

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

Table 6: ResNet-50 Training Summary (PyTorch)

Metric
CPU GPU

FP32 BF16 FP32 BF16
Training Time (s) 502.29 290.81 96.50 88.06
Loss 2.1860 2.1549 2.1719 2.1574
Consumed Energy (kWh) 0.10384 0.06049 0.01490 0.01296
Emissions (kgCO2) 0.03823 0.02227 0.00549 0.00477
EDP (kWh*s) 52.160 17.591 1.438 1.141
Speedup (1.73 ± 0.02)X (1.10 ± 0.01)X
Emission Reduction (41.74 ± 0.09)% (13.01 ± 0.62)%
EDP Reduction (66.27 ± 0.41)% (20.61 ± 1.10)%
Accuracy Loss 0.01% 0.01%

Table 7: ANN Training Summary (PyTorch)

Metric
CPU GPU

FP32 BF16 FP32 BF16
Training Time (s) 2892.84 1290.42 437.93 102.49
Loss 1.0039 1.0126 1.0039 1.0039
Consumed Energy (kWh) 0.63355 0.27331 0.08913 0.01809
Emissions (kgCO2) 0.23321 0.10060 0.03281 0.00665
EDP (kWh*s) 1832.751 352.711 39.034 1.853
Speedup (2.25 ± 0.02)X (4.27 ± 0.02)X
Emission Reduction (56.86 ± 0.40)% (79.70 ± 0.05)%
EDP Reduction (80.75 ± 0.41)% (95.25 ± 0.04)%
Accuracy Loss -0.01% -0.00%

Table 8: ResNet Training Summary (PyTorch)

Metric
CPU GPU

FP32 BF16 FP32 BF16
Training Time (s) 4965.53 3036.30 560.16 200.27
Loss 0.6199 0.6563 0.7290 0.7471
Consumed Energy (kWh) 1.07446 0.63315 0.13514 0.04113
Emissions (kgCO2) 0.39551 0.23306 0.04974 0.01514
EDP (kWh*s) 5335.283 1925.091 75.698 8.238
Speedup (1.64 ± 0.06)X (2.79 ± 0.02)X
Emission Reduction (41.06 ± 2.29)% (69.56 ± 0.03)%
EDP Reduction (63.91 ± 2.88)% (89.12 ± 0.07)%
Accuracy Loss -0.06% -0.02%

Table 9: ANN Training Time with and without Tracker (TensorFlow)

Metric
CPU GPU

FP32 BF16 FP32 BF16
Training Time with Tracker (s) 4273.236 2625.727 571.717 276.399
Training Time without Tracker (s) 4324.790 2555.590 537.939 192.262
Extra Time Taken by Tracker (%) -1.19% 2.74% 6.28% 43.77%

wide number of features in the dataset. For example, for the ANN and ResNET models we are using 4000
for width (Neurons) with 50 for depth (layers) and for the BNN models we are using 4000 for width and
6 for depth. For the synthetic dataset we are using 4000 features and 4000 for batch size. One must use

10

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

expensive matrix-matrix multiplications to be able to obtain speedup up out of Intel AMX mixed-precision
technology.

4.2.2 Benefits in terms of Energy and Performance

With the use of mixed precision in Neural Network training, we observed mean speedup 2.05X with a
standard deviation of 0.79 compared to single precision. With this speedup we see a reduced total energy
consumption which leads to a significant amount of energy efficiency in comparison. For example, for a
1.35X speedup in training we see 25.40% carbon emission reduction and 44.66% EDP reduction. For a 1.81X
speedup in training we see 44.04% carbon emission reduction and 69.02% EDP reduction. The gain in energy
efficiency and speedup do not compromise accuracy in most cases. Across all our tests, we observed a mean
accuracy loss of -0.19% with a standard deviation of 0.29. The results are shown in details in section 4.2.8.

4.2.3 Predictions After Training

We also tested inference/predictions after training the models in TF-MELT. For mixed-precision inference,
we set the same flags and options as training in both TensorFlow and Pytorch. In mixed-precision inference
on Intel CPUs, we see slightly better speedup performance and efficiency. For example, the speedup for
training one of the BNN models was 1.35X, compared to 1.65X speedup for inference on the trained BNN
model. You can find the rest of the inference results at 16.

4.3 Configurations to Use

To attain this kind energy efficiency and performance, mixed precision needs to be used with care because
it depends on a couple of factors. These are:

(I) First, the mixed-precision technology needs to be enabled appropriately with the correct flags/options
for the correct hardware and software backend. For example, when training the model on an Intel CPU
with Intel AMX, the following environment variable must be set to enable mixed precision with the AMX
technology:

1 os.environ["ONEDNN_MAX_CPU_ISA"] = "AVX512_CORE_AMX"

For the TensorFlow backend, mixed-precision (mixed bfloat16) can be used using the following code:

1 tf.config.optimizer.set_experimental_options({

2 'auto_mixed_precision_onednn_bfloat16':True

3 })

There are five different approaches for enabling mixed precision with TensorFlow that can be found in
detail at 17.

For PyTorch, similar instruction can be found at this tutorial by Intel 18. So, for PyTorch we use:

1 ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)

2 # Inside training loop

3 with torch.cpu.amp.autocast():

For Nvidia GPUs, mixed precision is automatically enabled when the code utilizes tensor cores. In the
software backend, with TensorFlow, mixed-precision is enabled by setting:

1 tf.keras.mixed_precision.set_global_policy('mixed_bfloat16')

16https://github.nrel.gov/AI/mixed-precision-tests
17https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-automixedprecisionmkl.

html
18https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-with-intel-extension-for-pytorch.

html

11

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://github.nrel.gov/AI/mixed-precision-tests
https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-automixedprecisionmkl.html
https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-automixedprecisionmkl.html
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-with-intel-extension-for-pytorch.html
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-with-intel-extension-for-pytorch.html

For PyTorch, one must use:

1 with torch.cpu.amp.autocast():

(II) Then, the neural network configurations need to set/adjusted appropriately to get the performance.
For example, with the Intel AMX technology, relevant speedup is usually observed with big matrices, e.g.,
4000-by-4000 and above. So, ideally the neural network width and training batch size need to be equivalently
large to get the speedup with neural network training.

Detailed configuration options for both CPU and GPU for TensorFlow and PyTorch are described in
section 4.2.7.

4.4 Mixed-Precision Under the Hood

The underlying mechanisms of mixed-precision computing can be elucidated through two main perspectives:
hardware and software. The hardware perspective is already explained in sections 2.1 and 2.2. Here, we
explain the software side of how mixed precision works under the hood based on the literature [13].

I. Maintaining a Separate Copy of Weights in FP32
During mixed-precision training, weights, activations, and gradients are stored in FP16, but a separate

copy of the weights is maintained in FP32. This FP32 copy is updated during the optimizer step, while an
FP16 copy is used for forward and backward passes. This approach prevents the loss of small updates and
maintains accuracy.

II. Scaling of the Loss Function to Prevent Underflow (FP16 only)
Loss scaling is employed to prevent small gradient values from becoming zeros due to the limited range

of FP16. By scaling up the loss before backpropagation, gradient values are shifted to a representable range
for FP16. Gradients are then unscaled before the weight update to maintain correct update magnitudes,
preserving relevant gradient values and preventing training divergence.

III. Performing 16-bit Arithmetic with FP32 Accumulation
During training, matrix multiplications and large reductions (e.g., in batch normalization and softmax

layers) are accumulated into FP32 values before conversion back to 16-bit format. This ensures numerical
stability and accuracy, as low precision is used for point-wise operations that are typically less sensitive to
arithmetic precision and are memory-bandwidth limited.

Figure 1: Neural network training loop in mixed precision. [Source: https://www.youtube.com/watch?v=

i1fIBtdhjIg]

12

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://www.youtube.com/watch?v=i1fIBtdhjIg
https://www.youtube.com/watch?v=i1fIBtdhjIg

Figure 1 shows the under-the-hood pipeline of automatic mixed precision from Nvidia 19 that utilize these
three techniques discussed above to maintain accuracy while optimizing performance. Yellow boxes are not
necessary when using the BF16 data type.

4.5 What package should I use? PyTorch vs TensorFlow

Though both PyTorch and TensorFlow have mixed-precision support in their backend, the implementation
is vastly different and, in some cases, it is not just the difference in syntax of code for implementation but
also how it is implemented under the hood. In terms of the difficulty in the implementation, TensorFlow
seems to have more ways to do mixed-precision and it is difficult to figure out which approach would be
appropriate for the use case other than testing out all the approaches. They have five different approaches
as mentioned in section 4.2.3.

These approaches also depend on the hardware (CPU/GPU) for both TensorFlow and PyTorch. For
TensorFlow the difference in CPU and GPU implementation are completely two different approaches (under
the hood) and for PyTorch this difference is one line of code between the CPU and GPU implementation.

Below are the differences of CPU and GPU implementation for both TensorFlow and PyTorch:
TensorFlow CPU:

1 os.environ["ONEDNN_MAX_CPU_ISA"] = "AVX512_CORE_AMX"

2 if dataType == "bf16":

3 tf.config.optimizer.set_experimental_options({

4 'auto_mixed_precision_onednn_bfloat16':True

5 })

6 else:

7 tf.config.optimizer.set_experimental_options({

8 'auto_mixed_precision_onednn_bfloat16':False

9 })

10 tf.keras.mixed_precision.set_global_policy('float32')

TensorFlow GPU:

1 if dataType == "bf16":

2

3 tf.keras.mixed_precision.set_global_policy('mixed_bfloat16')

4 else:

5

6 tf.keras.mixed_precision.set_global_policy('float32')

PyTorch CPU:

1 # Set environment at the start

2 os.environ["ONEDNN_MAX_CPU_ISA"] = "AVX512_CORE_AMX"

3 import intel_extension_for_pytorch as ipex

4 if "bf16" == dataType:

5 model, optimizer = ipex.optimize(

6 model, optimizer=optimizer, dtype=torch.bfloat16

7)

8 else:

9 model, optimizer = ipex.optimize(model, optimizer=optimizer)

10

11 scaler = torch.amp.GradScaler(device.type, enabled=True)

12

13 # Inside main training loop

14 if "bf16" == dataType:

15 with torch.autocast(

19https://www.youtube.com/watch?v=i1fIBtdhjIg

13

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://www.youtube.com/watch?v=i1fIBtdhjIg

16 device_type=device.type, dtype=torch.bfloat16, enabled=True

17):

18 output = model(data)

19 loss = criterion(output, target)

20 scaler.scale(loss).backward()

21 scaler.step(optimizer)

22 scaler.update()

23 else:

24 output = model(data)

25 loss = criterion(output, target)

26 loss.backward()

27 optimizer.step()

PyTorch GPU:

1 scaler = torch.amp.GradScaler(device.type, enabled=True)

2 if "bf16" == dataType:

3 with torch.autocast(

4 device_type=device.type, dtype=torch.bfloat16, enabled=True

5):

6 output = model(data)

7 loss = criterion(output, target)

8 scaler.scale(loss).backward()

9 scaler.step(optimizer)

10 scaler.update()

11 else:

12 output = model(data)

13 loss = criterion(output, target)

14 loss.backward()

15 optimizer.step()

The TensorFlow’s mixed-precision GPU implementation does not work with the TensorFlow-probability
library 20, so we could not test TF-MELT BNNs on GPUs.

4.5.1 PyTorch Vs. TensorFlow, Which is Greener?

In this section, we compare our results from the tables presented in section 4.2. We compare the results
between PyTorch and TensorFlow for each of the models (ResNET50, ANN, and ResNet).

ResNET-50 Model: If we compare the energy efficiency of TensorFlow and PyTorch for training the
ResNET-50 model in Table 1 and 6, TensorFlow shows a clear advantage in most metrics. On CPUs, Ten-
sorFlow demonstrates lower energy consumption and better EDP values. For instance, in FP32 precision,
TensorFlow consumes 0.03391 kWh compared to PyTorch’s 0.10384 kWh, and, in BF16 precision, Ten-
sorFlow consumes 0.01903 kWh compared to PyTorch’s 0.06049 kWh. The EDP for TensorFlow in FP32
precision is 27.487 kWh*s, whereas PyTorch’s is 52.160 kWh*s, and, in BF16 precision, TensorFlow’s EDP is
8.614 kWh*s compared to PyTorch’s 17.591 kWh*s. When training on GPUs, TensorFlow continues to out-
perform PyTorch in energy consumption and EDP. For FP32 precision, TensorFlow consumes 0.01438 kWh
compared to PyTorch’s 0.01490 kWh, and, in BF16 precision, TensorFlow consumes 0.00799 kWh compared
to PyTorch’s 0.01296 kWh. Similarly, TensorFlow’s EDP in FP32 precision is 1.243 kWh*s, significantly
lower than PyTorch’s 1.438 kWh*s, and, in BF16 precision, TensorFlow’s EDP is 0.388 kWh*s compared
to PyTorch’s 1.141 kWh*s. Additionally, TensorFlow achieves greater emission reductions and EDP reduc-
tions across both CPU and GPU settings. Also, TensorFlow achieves an EDP reduction of 68.78% in FP32
precision and 67.80% in BF16 precision on GPUs, compared to PyTorch’s 20.61% and 11.10% respectively.
Overall, TensorFlow demonstrates a clear advantage over PyTorch in terms of energy efficiency for ResNet-50
model training, making it the greener choice in this comparison.

20https://github.com/TensorFlow/probability/issues/1315

14

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://github.com/TensorFlow/probability/issues/1315

ANN Model: If we compare the energy efficiency for training the ANN model in Table 2 and 7, and now the
clear choice is PyTorch which demonstrates superior performance in terms of energy efficiency. Specifically,
when training on CPUs, PyTorch consumes significantly less energy than TensorFlow. For example, in
FP32 precision, PyTorch’s energy consumption is 0.63355 kWh compared to TensorFlow’s 0.92489 kWh,
and, in BF16 precision, it is 0.27331 kWh for PyTorch compared to 0.58251 kWh for TensorFlow. This
trend is consistent when using GPUs as well, where PyTorch again outperforms TensorFlow. In FP32
precision, PyTorch consumes 0.08913 kWh compared to TensorFlow’s 0.13171 kWh, and, in BF16 precision,
PyTorch consumes 0.01809 kWh compared to TensorFlow’s 0.04412 kWh. Furthermore, PyTorch also shows
a significant advantage in terms of EDP, which combines both energy consumption and training time. On
CPUs, PyTorch’s EDP in FP32 precision is 1832.751 kWh*s, much lower than TensorFlow’s 3927.169 kWh*s.
In BF16 precision, PyTorch’s EDP is 352.711 kWh*s, compared to TensorFlow’s 1565.666 kWh*s. On GPUs,
the EDP for PyTorch in FP32 precision is 39.034 kWh*s, significantly lower than TensorFlow’s 75.297 kWh*s,
and, in BF16 precision, PyTorch’s EDP is 1.853 kWh*s, while TensorFlow’s is 10.960 kWh*s. Additionally,
PyTorch achieves greater emission reductions and EDP reductions across both CPU and GPU settings.
Overall, PyTorch demonstrates a clear advantage over TensorFlow in terms of both energy efficiency and
EDP, making it the greener choice for ANN model training.

ResNet Model: Finally, we compare the energy efficiency for the ResNet model in Table 3 and Table 8.
PyTorch again shows a significant advantage in both energy efficiency and EDP. On CPUs, PyTorch demon-
strates lower energy consumption and better EDP values. For instance, in FP32 precision, PyTorch consumes
1.07446 kWh compared to TensorFlow’s 0.93432 kWh, and, in BF16 precision, it consumes 0.63315 kWh com-
pared to TensorFlow’s 0.58256 kWh. The EDP for PyTorch in FP32 precision is 5335.283 kWh*s, whereas
TensorFlow’s is 4012.340 kWh*s, and, in BF16 precision, PyTorch’s EDP is 1925.091 kWh*s compared to
TensorFlow’s 1590.043 kWh*s. When training on GPUs, PyTorch continues to outperform TensorFlow in
energy consumption and EDP. For FP32 precision, PyTorch consumes 0.13514 kWh compared to Tensor-
Flow’s 0.13444 kWh, and, in BF16 precision, it consumes 0.04113 kWh compared to TensorFlow’s 0.04406
kWh. PyTorch’s EDP in FP32 precision is 75.698 kWh*s, compared to TensorFlow’s 76.881 kWh*s, and,
in BF16 precision, PyTorch’s EDP is 8.238 kWh*s compared to TensorFlow’s 10.911 kWh*s. Furthermore,
PyTorch achieves greater emission reductions and EDP reductions across both CPU and GPU settings.
Specifically, PyTorch achieves an EDP reduction of 63.91% in FP32 precision and 89.12% in BF16 precision
on GPUs, compared to TensorFlow’s 60.41% and 85.81% respectively. Overall, PyTorch demonstrates a
clear advantage over TensorFlow in terms of energy efficiency and EDP for ResNet model training, making
it the greener choice in this case.

Thus, out of the three models we compared, PyTorch was the more greener application in the case of two
of those three models.

5 Application on linear system solvers

5.1 SPD linear system solvers

The solution of linear systems Ax = b, where A is a symmetric positive definite (SPD) matrix, is crucial for
numerous scientific applications. Examples include the Numerical Solution of PDEs, Quadratic Program-
ming, Image Processing, and Gaussian Process Regression (GPR) [9, 6, 17, 16]. As the size of the matrix
increases, solving such systems becomes more computationally demanding, particularly when A lacks a spe-
cial structure such as sparsity patterns. To address this challenge for large-scale problems, various methods
have been developed to achieve efficient solutions within feasible time frames. These methods often leverage
the properties of SPD matrices, such as their positive definiteness and symmetry, to optimize algorithms like
Cholesky decomposition or iterative solvers tailored for SPD matrices.

A promising approach involves a mixed-precision solver specialized for SPD dense matrices [8]. This
method operates in two distinct stages: initially solving the linear system using FP16 Cholesky decompo-
sition, and subsequently refining the solution through iterative refinement using the GMRES (Generalized
Minimal RESidual) solver, which is iterative and Krylov subspace-based, optimized for GPUs. This new
procedure is named Cholesky-based GMRES-IR. By harnessing the inherent capabilities of GPUs for FP16

15

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

computations, this algorithm demonstrates superior performance compared to conventional methods, partic-
ularly when dealing with exceptionally large matrices. This iterative refinement step is generally successful
in recovering the original problem’s accuracy, given that the initial low-precision solution is closer to the
actual solution, thereby enhancing convergence and final accuracy of the computed solution. Figures 2 and
3 outline the computations performed on this new solver, when the target precision is FP64. It is worth
mentioning that there is no accuracy loss in the final solution, since the iterative refinement step only stops
when a FP64 accurate solution is obtained.

Inputs: SPD matrix A in FP64, θ ∈ (0, 1], c > 0

Compute D = diag(a
1/2
ii),

H = D−1AD−1
Set G = H + cufp16I Set β = 1 + cufp16 Set µ = θ · xmax/β Compute Ã = fl16(µG)

Attempt Cholesky
factorization
Ã = RTR

Return R and D

Yes

Fail,
increase c← 2c

Figure 2: First stage of the SPD system mixed precision solver. It first preprocesses the matrix in order to
reduce numerical rounding issues introduced by representing the system in lower precision and then finds its
FP16 Cholesky factor.

A recent addition to the C++ MAGMA 2.7.2 library includes a SPD mixed-precision GPU solver based on
this presented approach (dshpov gmres). The difference consists on the First Stage, in which the factorization
is performed in mixed precision by performing only matrix multiplications in FP16 and saving the final result
in FP32. However, it is important to note that while MAGMA includes this advanced solver, the current
implementation lacks the iterative selection of the parameter c. As of the latest updates, this solver has not
been integrated into the PyTorch 2.5.0a0 MAGMA backend, thus limiting its availability within the PyTorch
ecosystem. It is worth noting that the usual PyTorch backend for Nvidia GPUs, cuSOLVER, has a similar
mixed-precision solver, although it is based on LU factorization (thus not specialized for SPD systems) and
it is still not integrated into its PyTorch backend as well.

After modifying PyTorch source code so as to use the aforementioned solver from the MAGMA library,
we performed experiments of solving linear systems to verify its performance gains. The code for these exper-
iments are available at https://github.nrel.gov/jdeoliv/Cholesky_magma_test. First, we performed
experiments similar to the ones performed in [1], i.e., we generated random SPD matrices with distinct spec-
trum profiles and 2-norm condition number κ(A) = 105. The experiments were executed in both ALIS (using
1x NVIDIA A100) and Kestrel (using NVIDIA H100) HPC machines. As depicted in Figure 4 benchmark,
a performance increase is noticeable for n ≥ 16384 and n ≥ 19483 on ALIS and Kestrel, respectively. The
difference in their corresponding GPU architectures relates to the matrix size threshold where the classical
routines are surpassed. Due to memory limitations, we only performed the experiments on ALIS for sizes
up to n = 32768.

We also performed the same experiments with a lower condition number on Kestrel to check its influence
over the new solver. Since the GMRES iterative solver is used in it, the lower condition number could positive
influence the computation time. Figure 5 indicate that there is not a noticeable difference compared to the
results in Figure 4, suggesting that the method is somewhat robust to changes in its condition number.

As for energy consumption, we monitored with the CodeCarbon tracker if the new solver is capable of
reducing it. Interestingly, even for matrix sizes where the mixed precision solver required more computation

16

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://github.nrel.gov/jdeoliv/Cholesky_magma_test

Input: SPD matrix A and rhs b both in FP64

Compute Cholesky factor-
ization in FP16: Ã = RTR

Compute b̃ = fl16(D−1b) Solve Ãy0 = b̃
Form x0 = µD−1y0

at precision FP64

for i = 0 to imax − 1

Compute ri = b − Axi

at precision FP64

Solve MAdi = Mri by
GMRES at precision FP64

Update
xi+1 = xi + di at precision FP64

Converged?

Return xi+1, Quit

Yes

No

Figure 3: SPD system mixed precision solver. Using the FP16 Cholesky factor, a FP16 solution is computed
and then refined up to the desired FP64 precision using iterative refinement with the GMRES method and
the lower precision Cholesky factor as a preconditioner.

time, the total energy consumed was lower than the single precision equivalent. In order to consider both
of these aspects simultaneously, we also considered how the EDP metric changes with respect to the linear
system size. These results are detailed on Figure 6. It is possible to notice that for n ≥ 19483, the new
solver outperforms the original FP64 solver.

A downside of the implementation of this new mixed precision solver is that it is still not capable of
performing GMRES-IR step for linear systems with multiple right-hand sides, i.e, when b ∈ Rn×k with k ≥ 2.
This creates a layer of difficulty to use it at some applications such as GPR. There are plans on updating
the Cholesky-based GMRES-IR to support multiple-right sides in the future according to MAGMA library
developers. A more in deep investigation regarding the number of GMRES-IR iterations in the multiple right-
hand sides systems will be vital to determine if the capabilities of the mixed-precision approach surpass the
standard double precision solvers.

5.1.1 Application to Gaussian Process Regression

Even with the limitation of not being able to solve a SPD linear system with multiple right-hand sides, we
applied the first stage of the solver routine to obtain a mixed-precision Cholesky decomposition A = RTR
with a single precision input matrix. For that we used a routine on MAGMA that only performs the
factorization using FP32 accumulation of FP16 matrix multiplications (shpotrf), in which a modification
on PyTorch source code allowed its use on Python. We verified there was a speedup without a considerable
loss of accuracy when solving the linear system, as depicted in Figure 7. These results motivated us to use
this approach inside a Gaussian Process Regression problem.

Assuming we have n training samples, it is known from the literature that the Cholesky factorization of

17

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−2

10−1

100

Matrix size

T
im

e
(s

)

Linear spectrum, κ(A) = 105

(a) Linear Spectrum

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−2

10−1

100

Matrix size

T
im

e
(s

)

Geometric spectrum, κ(A) = 105

(b) Geometric Spectrum

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−2

10−1

100

Matrix size

T
im

e
(s

)

Clustered spectrum, κ(A) = 105

(c) Clustered Spectrum

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−2

10−1

100

Matrix size

T
im

e
(s

)

Custom Clustered spectrum, κ(A) = 105

(d) Custom Clustered Spectrum

Figure 4: Elapsed time in different spectrums with condition number κ(A) = 105 for standard double
precision and mixed precision (Cholesky based GMRES-IR) solvers on ALIS and Kestrel HPC machines.
Black curve represents ALIS with the standard double precision solver, blue curve represents ALIS with the
mixed precision solver, red curve represents Kestrel with the standard double precision solver, and green
curve represents Kestrel with the mixed precision solver.

the covariance matrix over these training samples is computed to perform model fitting (or hyperparameter
tuning), as well as obtaining predictions and their corresponding uncertainties. Computing the Cholesky
factor R and using it to solve a linear system requires 1

3n
3 and 5

2n
2 + 1

6n, respectively [16]. In particu-
lar, model fitting executes both of these operations repeatedly, and as also discussed in [16], is one if its
major bottlenecks. By reducing the cost of floating point operations on the factorizations, we aimed at an
improvement in the overall performance.

For the experiments presented here, we used the GPyTorch library [5], using the L-BFGS optimizer with
learning rate α = 0.15, 50 iterations and 3 restarts, as well as the Anisotropic Matern 3/2 kernel. The source
code is available at https://github.nrel.gov/jdeoliv/gpytorch_solver_comparisons. We used the Pol
dataset from the UCI Datasets [4] and first used PyTorch profiler tool to verify what were the functions
that were more computational demanding during the model fitting. Table 10 indicates that the Cholesky
factorization is indeed among these functions, which is in accordance with the literature on GPR. When
the same is done using the mixed-precision factorization, a speedup of approximately 1.75 is noticed in the
training time, as described on Table 11. We also compared if there was a difference in the training and
testing error between the two approaches. Table 12 indicates there is a slightly lower error using only the
single precision factorization and solver.

18

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://github.nrel.gov/jdeoliv/gpytorch_solver_comparisons

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−2

10−1

100

Matrix size

T
im

e
(s

)

Linear spectrum, κ(A) = 5

(a) Linear Spectrum

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−2

10−1

100

Matrix size

T
im

e
(s

)

Geometric spectrum, κ(A) = 5

(b) Geometric Spectrum

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−2

10−1

100

Matrix size

T
im

e
(s

)

Clustered spectrum, κ(A) = 5

(c) Clustered Spectrum

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−2

10−1

100

Matrix size

T
im

e
(s

)

Custom Clustered spectrum, κ(A) = 5

(d) Custom Clustered Spectrum

Figure 5: Elapsed time in different spectrums with condition number κ(A) = 5 for standard double precision
and mixed precision (Cholesky based GMRES-IR) solvers on Kestrel HPC machines. Red curve represents
Kestrel with the standard double precision solver and green curve represents Kestrel with the mixed precision
solver.

It is worth noting that results presented in [12] suggest a lower MSE training error is obtained through
GPR compared to the ones depicted in Table 12 for both single and mixed precision approaches. By
fixing a value for the noise hyperparameter σ = 0.06321 instead of including it with the other kernel function
hyperparameters, similar results were obtained (see Table 13). Since there is no longer an iterative refinement
step, errors associated with the mixed-precision implementation were slightly larger than the ones obtained
with single precision. As for energy efficiency, Table 14 describes that there is a reduction in over 35% in
the energy consumption in both cases (including or not including the noise hyperparameter in the training
process) and the obtained EDPs are lower on both cases.

One drawback of the mixed-precision approach is that the factorization of the kernel matrix is more
susceptible to rounding errors, an effect that may be even increased depending on the support of the chosen
kernel and not optimizing the noise hyperparameter σ [12]. Our experiments with the RBF kernel with
the same fixed noise σ = 0.06321 even failed after adding jitter to the diagonal 4 times. We believe the
pre-processing discussed in [8] could alleviate the effects of rounding in the factorization, although more
experiments are needed to confirm it.

19

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−5

10−4

Matrix size

E
n

er
g
y

(k
W

h
)

Linear spectrum, κ(A) = 105

Kestrel CholFP64

Kestrel MixedCholFP16/64

(a) Energy consumed (kWh)

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−6

10−5

10−4

Matrix size

E
n

er
gy

D
el

ay
P

ro
d

u
ct

Linear spectrum, κ(A) = 105

Kestrel CholFP64

Kestrel MixedCholFP16/64

(b) EDP (kWh2)

Figure 6: Energy consumed and EDP with respect to matrix size.

Proposal for adding mixed-precision algorithms on Pytorch. In https://github.com/pytorch/

pytorch/issues/132940, we listed some advantages of having mixed-precision algorithms from MAGMA
and cuSOLVER available via Pytorch. We provided examples on how these wrappers could be introduced
via code samples. We were unable to provide a proper implementation because we lack deep understanding
of Pytorch and the linkage with its backends.

6 Key takeaways and suggestions for future work

In this document, we have presented the basics about mixed-precision algorithms and low-precision types,
and how to use those for better energy efficiency on two sets of applications. We also provided insights
about how to measure energy consumed by a program, and how programming languages influence those

20

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://github.com/pytorch/pytorch/issues/132940
https://github.com/pytorch/pytorch/issues/132940

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−2

10−1

100

Matrix size

T
im

e
(s

)
Random matrix with N diagonal shift

Kestrel CholFP32

Kestrel MixedCholFactFP16/32

(a) Time

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

10−6.5

10−6

Matrix size

L
1

er
ro

r:
∥ x

−
x
∗
∥ 1

∥x
∗
∥ 1

Random Matrix with N diagonal shift

Kestrel CholFP32

Kestrel MixedCholFactFP16/32

(b) Forward error

Figure 7: Computation time and forward error of solving linear system only using mixed precision during
Cholesky factorization step.

measurements.
We verified that the use of Automated Mixed Precision, available on packages like Pytorch and Ten-

sorFlow, can be used to reduce energy and execution time of training and inference of neural networks.
We showed examples on how to configure the neural networks so as to explore the benefits of both Intel
AMX and Tensor Cores technologies. It was crucial to use wider networks to get good results with mixed
precision, especially in the case of Intel AMX. When Pytorch and TensorFlow are put side-by-side, we notice
that Pytorch was more energy efficient in most of the cases.

For the problem of solving SPD linear systems in mixed precision, we verified that the performance gain
and energy reduction gets more relevant as the matrix size increases. The turnover point also depends on
the hardware. By just replacing the single-precision factorization by the mixed-precision factorization in the
GPR, we noticed improvements in energy consumption and time with less relevant reduction in accuracy.

All software considered in this work lack essential components for the examples studied. TensorFlow’s

21

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

Function Time (s)
Optimizer.step 75.345
cudaStreamSync 48.256
aten::item 42.121
aten:: local scalar dense 42.115
aten::is nonzero 42.076
autograd::engine::eval func: LinalgCholeskyExBackward0 41.465
LinalgCholeskyExBackward0 41.463
aten::linalg cholesky ex 28.929
aten::linalg solve triangular 23.521
aten::matmul 17.363
aten::mm 17.362
cudaGetDeviceProps 15.207

Table 10: Total computation time of 12 most demanding routines using standard single precision factorization
and solvers. Each entry includes also the time elapsed in function this particular function may call, in
particular, Optimizer.step function calls all the other functions and has the total time of training. Cholesky
related routines are associated with more than 50% of the elapsed time.

Function Time (s)
Optimizer.step 43.182
cudaStreamSync 25.706
autograd::engine::eval func: LinalgCholeskyExBackward0 25.4755
LinalgCholeskyExBackward0 25.4747
aten::item 25.1471
aten:: local scalar dense 25.149
aten::is nonzero 24.8482
aten::linalg cholesky ex 14.889
aten::linalg solve triangular 14.45742
aten::matmul 10.66078
aten::mm 10.660
cudaMemcpyAsync 5.2775

Table 11: Total computation time of 12 most demanding routines using mixed precision factorization and
single precision solver. Each entry includes also the time elapsed in function this particular function may
call, in particular, Optimizer.step function calls all the other functions and has the total time of training.
Cholesky related routines are associated with more than 50% of the elapsed time.

Method MSE (Train) MSE (Test)
Single 1.0298 2.83799
Mixed 1.1166 2.90533

Table 12: Training and Testing MSE for GPR of the Pol dataset with single and mixed precision (including
noise σ in the hyperparameter tuning process).

Method MSE (Train) MSE (Test)
Single 0.0757 4.33389
Mixed 0.1527 5.09504

Table 13: Training and Testing MSE for GPR of the Pol dataset with single and mixed precision (hyperpa-
rameter tuning process not including noise σ).

22

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

Time (h) Consumed Energy (kWh) EDP (kWh2)
Single 0.014343 0.011389 0.000163

Mixed precision 0.009629 0.0075018 7.2e-05
Single (tuning noise σ) 0.020516 0.0165463 0.000339

Mixed precision (tuning noise σ) 0.010606 0.0087406 9.3e-05

Table 14: Time, Energy and EDP in the overall Gaussian Process Regression (training and prediction).
Results indicate a reduction of more than 50% and 35% including and not including the noise σ hyperpa-
rameter, respectively. Furthermore, the lower EDP values indicate that the new approach is more efficient
all around.

mixed precision does not seem to be available for BNNs on GPUs (See discussion at 4.5). Moreover, Ten-
sorFlow has more ways to enable mixed precision than explained in the official documentation, which may
complicate its usage. Pytorch does not provide access to all mixed-precision implementations available in
its backends as mentioned in Section 5. MAGMA lacks support for multiple right-hand sides on its mixed-
precision linear system solver, and this hinders its usage on applications such as GPR. Thus, there is a
need for software that can fill current gaps in the application stack, enabling the use of state-of-the-art
mixed-precision implementations.

Suggestions for future work:

• Reproduce the mixed-precision tests on Apple Metal 21 backend with macOS Sonoma and above.

• Test the diagonal scaling proposed at [8] with the GPR instead of adding the diagonal jitter.

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, National Renewable Energy
Laboratory under contract number DE-AC36-08GO28308.

References

[1] A. Abdelfattah, S. Tomov, and J. Dongarra. Investigating the benefit of fp16-enabled mixed-precision
solvers for symmetric positive definite matrices using gpus. In International Conference on Computa-
tional Science, pages 237–250. Springer, 2020.

[2] L. Bouza, A. Bugeau, and L. Lannelongue. How to estimate carbon footprint when training deep
learning models? A guide and review. Environ. Res. Commun., 5(11):115014, 2023.

[3] B. Courty, V. Schmidt, S. Luccioni, Goyal-Kamal, MarionCoutarel, B. Feld, J. Lecourt, LiamConnell,
A. Saboni, Inimaz, supatomic, M. Léval, L. Blanche, A. Cruveiller, ouminasara, F. Zhao, A. Joshi,
A. Bogroff, H. de Lavoreille, N. Laskaris, E. Abati, D. Blank, Z. Wang, A. Catovic, M. Alencon,
Micha l Stech ly, C. Bauer, L. O. N. de Araújo, JPW, and MinervaBooks. mlco2/codecarbon: v2.4.1,
May 2024.

[4] D. Dua and C. Graff. UCI machine learning repository, 2017.

[5] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. Gpytorch: Blackbox matrix-
matrix gaussian process inference with gpu acceleration. In Advances in Neural Information Processing
Systems, 2018.

[6] P. E. Gill and E. Wong. Methods for convex and general quadratic programming. Mathematical
programming computation, 7(1):71–112, 2015.

21https://developer.apple.com/metal/

23

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://developer.apple.com/metal/

[7] N. J. Higham and T. Mary. Mixed precision algorithms in numerical linear algebra. Acta Numerica,
31:347–414, 2022.

[8] N. J. Higham and S. Pranesh. Exploiting lower precision arithmetic in solving symmetric positive definite
linear systems and least squares problems. SIAM Journal on Scientific Computing, 43(1):A258–A277,
2021.

[9] H. Hoteit and A. Firoozabadi. Modeling of multicomponent diffusions and natural convection in un-
fractured and fractured media by discontinuous galerkin and mixed methods. International Journal for
Numerical Methods in Engineering, 114(5):535–556, 2018.

[10] IEEE. Working Group P3109 Interim Report. Technical report, IEEE, 2024. v0.7.0.

[11] J. H. Laros III, K. Pedretti, S. M. Kelly, W. Shu, K. Ferreira, J. Van Dyke, C. Vaughan, J. H. Laros III,
K. Pedretti, S. M. Kelly, et al. Energy delay product. Energy-Efficient High Performance Computing:
Measurement and Tuning, pages 51–55, 2013.

[12] W. J. Maddox, A. Potapcynski, and A. G. Wilson. Low-precision arithmetic for fast gaussian processes.
In Uncertainty in Artificial Intelligence, pages 1306–1316. PMLR, 2022.

[13] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston,
O. Kuchaiev, G. Venkatesh, and H. Wu. Mixed precision training. In ICLR, 2018.

[14] NVIDIA. Mixed precision training. https://docs.nvidia.com/deeplearning/performance/

mixed-precision-training/, 2024. Accessed: 2024-08-08.

[15] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, and J. Saraiva. Ranking program-
ming languages by energy efficiency. Science of Computer Programming, 205:102609, 2021.

[16] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning, volume 2. MIT press
Cambridge, MA, 2006.

[17] J. Yang, X. Liao, X. Yuan, P. Llull, D. J. Brady, G. Sapiro, and L. Carin. Compressive sensing
by learning a gaussian mixture model from measurements. IEEE Transactions on Image Processing,
24(1):106–119, 2015.

24

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/

	Introduction
	Mixed and Low precision
	Intel CPUs (Intel AMX) Overview
	Nvidia GPUs (Tensor Cores) Overview
	Hardware specification

	Energy measurements
	Available Energy Measurement Tools and Their Comparison
	Energy consumption and programming languages

	Application on neural networks
	Examples of mixed precision results on neural networks
	Experimental Setup

	Experimental results
	Model Architectures Used in Experiments
	Benefits in terms of Energy and Performance
	Predictions After Training

	Configurations to Use
	Mixed-Precision Under the Hood
	What package should I use? PyTorch vs TensorFlow
	PyTorch Vs. TensorFlow, Which is Greener?

	Application on linear system solvers
	SPD linear system solvers
	Application to Gaussian Process Regression

	Key takeaways and suggestions for future work

