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Abstract: Optimal planning and design of microgrids are priorities in the electrification of off-
grid areas. Indeed, in one of the Sustainable Development Goals (SDG 7), the UN recommends
universal access to electricity for all at the lowest cost. Several optimization methods with different
strategies have been proposed in the literature as ways to achieve this goal. This paper proposes
a microgrid installation and planning model based on a combination of several techniques. The
programming language Python 3.10 was used in conjunction with machine learning techniques such
as unsupervised learning based on K-means clustering and deterministic optimization methods
based on mixed linear programming. These methods were complemented by the open-source spatial
method for optimal electrification planning: onsset. Four levels of study were carried out. The
first level consisted of simulating the model obtained with a cluster, which is considered based on
the elbow and k-means clustering method as a case study. The second level involved sizing the
microgrid with a capacity of 40 kW and optimizing all the resources available on site. The example
of the different resources in the Togo case was considered. At the third level, the work consisted of
proposing an optimal connection model for the microgrid based on voltage stability constraints and
considering, above all, the capacity limit of the source substation. Finally, the fourth level involved
a planning study of electrification strategies based mainly on microgrids according to the study
scenario. The results of the first level of study enabled us to obtain an optimal location for the
centroid of the cluster under consideration, according to the different load positions of this cluster.
Then, the results of the second level of study were used to highlight the optimal resources obtained
and proposed by the optimization model formulated based on the various technology costs, such
as investment, maintenance, and operating costs, which were based on the technical limits of the
various technologies. In these results, solar systems account for 80% of the maximum load considered,
compared to 7.5% for wind systems and 12.5% for battery systems. Next, an optimal microgrid
connection model was proposed based on the constraints of a voltage stability limit estimated to be
10% of the maximum voltage drop. The results obtained for the third level of study enabled us to
present selective results for load nodes in relation to the source station node. Finally, the last results
made it possible to plan electrification using different network technologies and systems in the short
and long term. The case study of Togo was taken into account. The various results obtained from the
different techniques provide the necessary leads for a feasibility study for optimal electrification of
off-grid areas using microgrid systems.
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1. Introduction

Controlling today’s global warming is, on the one hand, a subject of common interest
worldwide and one in which all sectors are involved. On the other hand, the need to supply
people with electricity off-grid necessitates the development of small-scale technologies for
supplying renewable electrical energy. Fernando Antonanzas-Torres et al. [1] recommend
mini-grid systems for the electrification of countries where the electrification rate has
not yet reached 100%, in line with the United Nations Sustainable Development Goal
7 (SDG7): access to electricity for all [2,3]. Such systems should be implemented with
the consideration of environmental constraints [4,5]. Furthermore, according to Sedzro
et al. [6], microgrids, or mini-grids, are a potential solution to macro-grids for restoring
electricity networks after disasters. In short, microgrids make it possible to reduce losses
on supply lines and improve local power supply reliability and energy efficiency while
offering a sustainable and efficient system [7]. They can also be utilized to avoid blackouts
of the entire power grid (macro-grid) when it is split into mini-grids. The classification of
microgrids, therefore, depends on their configuration and applicability [8,9].

However, microgrids present challenges related to stochastic variation in demand
and fluctuations in voltage and frequency [7] and intermittent weather conditions that
sometimes affect reliability and economic behavior. Among these challenges, the mod-
eling of microgrids is an important factor. The optimization of microgrids is one of the
most important research objectives. These methods are often limited to a single objective:
optimizing the various systems to exploit various resources such as solar systems, wind
systems, hydro systems, battery systems, and biodiesel systems. The aim of these studies
is to find the best compromise in the optimal choice of these different technologies, using
a number of different problem-solving methods. Among these challenges, the modeling
of microgrids is an important factor. Indeed, according to Fahad Saleh Al-Ismail [10],
to overcome these challenges, microgrids need to be studied and modeled before being
implemented and applied.

According to the U.S. Department of Energy’s Microgrid Exchange Group [11], mi-
crogrids are electrical energy systems composed of one or more energy resources with a
group of loads interconnected within clearly defined electrical boundaries and are able
to act as single controllable entities. Referring to the definition of microgrids and their
classifications [8,11], this paper proposes an optimal microgrid model that first consid-
ers microgrid clustering and the minimization of the centroid distance from the loads.
Secondly, this work proposes the optimal management of energy resources as a function
of the average levelized cost according to the different technologies [7]. Then, in a third
step, this paper presents an optimal model based on optimal load connections, following
the definition proposed in [11] by the US Department of Energy. Finally, in a fourth step,
optimal microgrid planning using the onsset method is proposed for the particular case
of Togo. This study is an optimization study of the installation of a microgrid that would
reduce losses and costs as much as possible, in technical and economic terms, for power
grid operators.

This work is not limited to a single objective, as previously mentioned, but is the
result of a combination of several objectives. The paper, therefore, proposes to define
the electrification strategy in four steps: step 1, physical allocation of microgrid centers to
obtain the coordinates of the centroid; step 2, definition of the optimal choice of technologies
depending on the availability of resources; step 3, definition of optimal load connections
points to the electrical microgrid available in the study area; and in step 4, planning
electrification strategies.

The remainder of the paper is structured into four sections: the state of the art in
Section 2; materials and methods in Section 3; results and discussion in Section 4; and,
finally, conclusions in Section 5.
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2. Theoretical Background

This section describes the theoretical background of the various technologies that
can constitute the microgrid and the different scientific methods applied for its optimal
installation.

2.1. Scientific Models of Microgrid Technologies

Models of the various components of microgrids, such as solar photovoltaic systems,
wind systems, hydroelectric systems, battery systems, biodiesel systems, and load modeling
are expressed:

The maximum power produced by a photovoltaic solar panel can be directly calculated
as a function of irradiation using the following formula [12,13]:

Ps(t) = η × ε × S × I(t)× (1 − k∆t)× Ns (1)

With direct measurement of wind speed, we can express the wind power of the site
under consideration using the following equation [12,14]:

Pe(t) =
1
2
× ρe × Sw × v3(t)× ηe × Ne (2)

Hydroelectricity production, which depends on the average water flow (m3/s) over
a period of time t, the difference in height between the entry and exit points (h) in m, the
acceleration due to gravity (g) in m/s2 and the density of the water and the yield [13,15,16],
is expressed by

Ph(t) = ρh × g × Q × h × ηh × Xd
h (3)

Battery state of charge and power [17–20] at each simulation time are formulated
as follows:

soct(t + 1) = soct(t) +
pbat(t)× ∆t

Nbat × Cbat × Vbat
ηbat (4)

Storage at a given time t is formulated as follows:

soct(t) =
Ebat(t)
Enom

bat
(5)

E(t) = Si × t (6)

Cbat(t) =
E(t)

V
(7)

Nbat =
Cbat(t)
Cnom

bat
(8)

The bi-directional converter is given by

Pconv ≥ αu × Ps (9)

Aside from the technological models of microgrids, the electrical load models of the
microgrid are formulated as follows [21–23]:

f (Pch) =
1

σ
√

2π
e−

(Pch−µ)2

2σ2 (10)

In this work, the deployment of microgrid technologies required a number of measures,
such as methods using machine learning techniques based on unsupervised learning, the
method for determining the number of clusters (elbow method), the calculation of distance
between the centroid and the various loads, the haversine method and the onsset method for
optimal national planning of the various technologies. These methods are described below.
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2.2. Scientific Methods for Microgrid Deployment

The various techniques applied, such as the k-means clustering technique, the elbow
method, and the haversine method, are presented.

2.2.1. Clustering Techniques
k-Means Clustering Model

The clustering technique refers to the notion of measuring similarity between two
vectors. This method makes it possible to recognize and group sets called clusters. The
clustering technique is presented in [24,25]. The most commonly used measures of simi-
larity are distance measures. The k-means clustering technique first groups the different
variables xi in a certain set (cluster formation) and then, in a second step, minimizes the
distance between the centroid and the clusters formed.

Assume the following space of n vector points of dimension p with j ⊂ p :

V =


v1

1
. . .
v1

i

. . .

. . .

. . .
. . .
v1

n

. . .

. . .

vj
1

. . .
vj

i
. . .
vj

n

. . .

. . .

. . .

. . .

. . .

vp
1

. . .
vp

i
. . .
vp

n

 (11)

These n points can be grouped into c- clusters such that c < n with the vectors.
For

1 ≤ k ≤ c (12)

minimizing the distance between centroids and their respective clusters consists of assign-
ing each nearest centroid to clusters such that

min
n

∑
i=0

∥vi − µk∥2 (13)

Elbow Method

The elbow method is used to determine the number of clusters in a given data set.
It allows us to plot the variation explained as a function of the number of clusters and to
choose the elbow of the curve as the number of clusters to exploit. It is formulated and
simulated using 100 data points and normalized to [0; 1] in [25,26].

2.2.2. Haversine Method

The haversine method [26,27] is used to calculate distances (in km) between two nodes
with different geographical coordinates (latitude; longitude) [28].

D = R × c (14)

c = 2 arctan
( √

a√
1 − a

)
(15)

a = sin2
(

φB − φA
2

)
+ cosφA.cosφB × sin2

(
λB − λA

2

)
(16)

R = 6371 Km (17)

φA, φB: latitudes; λA, λB: longitudes (in degrees).

2.2.3. Open-Source Spatial Planning for Electrification Method: Onsset

The Open-Source Spatial Planning Model (onsset) is a free programming algorithm
that uses spatial information data to propose a particular model for a given case study. It
is, therefore, a model that enables the selection of different technologies according to four
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different scenarios, taking into account the costs and availability of these resources not far
from localities. The electrification planning model, therefore, considers the minimization of
system costs (operating costs, investment costs, and maintenance costs), the evolution and
level of the population, and the different technology configurations according to resource
availability. The mathematical formulation of the model is given by [29], and a global study
for all of the four scenarios for the case of Togo was conducted in [30]. In effect, this model
informs the general planning of a country’s overall electrification.

In this study, the developed microgrid model made it possible to specifically define the
technologies to be implemented according to their cost and annual availability for a given
site. Then, with onsset, a general configuration of the implementation of these technologies
was obtained according to the locality for the whole country.

2.3. Bibliographical Reviews

Optimizing microgrids is one of the most important and challenging objectives in
this field of research [31]. Several studies have been carried out in the literature using
different methods.

Li Bei et al. [32] exploited evolutionary algorithm methods and mixed integer linear
programming for the optimal sizing of microgrids. Alessandra Parisio et al. [33] pre-
sented a study on the application of a model predictive control approach to the problem
of efficiently optimizing microgrid operations while satisfying time-varying demand and
operating constraints; the overall problem was formulated using integer linear program-
ming with MATLAB as the solution tool. Li Guo et al. [34] presented a two-stage optimal
planning and design method for a combined cooling, heat, and power microgrid system to
simultaneously minimize total net present cost and carbon dioxide emission. In [35], the
authors proposed microgrid optimization based on a hybridization system of renewable
energy resources. Mah AXY et al. presented the optimized design and operation of an
autonomous microgrid with electric and hydrogen loads, showing a significant reduction
in load costs [36]. Moreover, a strategy for controlling and managing the energy supply of
a microgrid in order to achieve higher efficiency, reliability, and economy was proposed
in [37,38]. Aiswariya L. et al. [39] proposed optimal battery sizing using the simulated
annealing method based on the probabilistic method [39,40], and stochastic methods for
the planning, operation, and economic control of microgrids were presented in [41].

Various microgrid optimization techniques can be used, including probabilistic [41,42],
artificial intelligence [43,44], iterative [45,46], and deterministic techniques [47–49]. Luigi
Rubino et al. [50] use linear programming method-based power management for a multi-
feeder ultra-fast DC charging station.

Among all these different methods are linear programming [51,52] and the mixed
integer linear (PLNEM) solver (PLNEM) [32,33], which provide a suitable framework for
obtaining high-quality solutions [53] with acceptable computational effort and good con-
vergence properties. The mixed integer linear programming solution method is, therefore,
widely employed for HRESs (Hybrid Renewable Energy Systems) and is characterized by
good convergence [54,55].

In this work, the mixed integer linear programming method was extensively utilized.

3. Materials and Methods

The material used and the methodology are described in the following sections.

3.1. Materials

Python programming language version 3.10 was used. The optimization problem was
formulated as a mixed integer linear instance.

3.2. Methods

The model of the microgrid with the different optimized parts is presented. The
mathematical formulations of the different optimization problems are also presented.
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3.2.1. Microgrid System Model

The proposal for a microgrid model, inspired by existing models [56–59], is presented.
Different technologies such as PV, wind, hydraulic, storage and others (biodiesel, etc.) are
shown first. Secondly, the positions of the unit central and the loads (Figure 1) are presented.
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Three different methods were used. The first is an optimization formulation, which
initially consists of minimizing the distance between the centroid, considered as the sub-
station, and the various nodes representing the different electrical loads. The second is an
optimal microgrid sizing method based on technology selection, minimization of overall
cost, and availability of energy resources. In this method, a function is performed, which
minimizes not only the microgrid connection distance but also the load shedding or supply
of the loads to be connected (Step 3). In the second method formulated using mixed integer
programming, two objective functions are presented. One function minimizes the invest-
ment cost for technology selection, and the other optimizes connections. Finally, the third
method, based on onsset (described in Section 2.2.3), enables us to model the planning
of national electrification spatially and optimally by implementing different technologies
according to their cost and availability in each locality. Two scenarios are considered: short
and long term.

3.2.2. Optimizations Problem Formulation

Three objective functions with constraints are clearly identified. First, a formulation of
the optimization problem of minimizing the distance between the centroid and the various
vectors that constitute the loads; then, a formulation of the optimization problem of selecting
technologies as a function not only of the annual availability of natural resources but also of
the various related costs, is presented; and finally, the minimization of the distance between
the centroid considered as the substation and its various loads is formulated.

The various formulations described are presented.
In step 1: minimization of deviation between centroid and loads (k-means clustering

method)
Objective function

min
n

∑
i=0

∥vi − µk∥2
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This is subject to the following:

µk > vmin
i (18)

µk < vmax
i (19)

In fact, the distance of each vector point from the centroid is evaluated in such a way
that the minimization of this distance is total. The coordinates of the centroid of the cluster
obtained will allow an optimal physical localization of the centroid. After this step, the
formulation of the technology selection is necessary.

Step 2: technologies selection (microgrid sizing)
Objective function:

min : CT
inv =

{
Ci

inv +
n−1

∑
t=1

Co∝M + Cr

(1 + r)t

}
(20)

Ci
inv =

5

∑
i=1

∑ ∑ αiciPi (21)

Co∝M =
5

∑
i=1

∑ ∑ αic∝Pi (22)

sj =
5

∑
j=1

∑ αjPj = α6Pbat + ∑
i

pi (23)

αj =

{
1 i f the resource is available

0 i f not

}
(24)

j =


1, solar (s)
2, wind (e)

3, hydraulic (h)
4, biomass (bio)/biodiesel

5, batteries (bat)

(25)



Pmin
s

Pmin
e

Pmin
h

Pmin
bio

Pmin
bat

soctmin

 ≤



ps
pe

ph
pbio
pbat
soct

 ≤



Pmax
s

Pmax
e

Pmax
h

Pmax
bio

Pmax
bat

soctmax

 (26)

Ps(t) = η × ε × S × I(t)× (1 − k∆t)× Ns

Pe(t) =
1
2
× ρe × Sw × v3(t)× ηe × Ne

Ph(t) = ρh × g × Q × h × ηh × Xd
h

soct(t) =
Ebat(t)
Enom

bat

E(t) = Si × t

Cbat(t) =
E(t)

V

Nbat =
Cbat(t)
Cnom

bat

soct(t + 1) = soct(t) +
pbat(t)× ∆t

Nbat × Cbat × Vbat
ηbat
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Pconv ≥ αu × Ps

cos∅× ∑
i

si = ∑
i

pch,i

Si =

∑
i

pi

cos∅
The problem formulated is an optimization problem, which consists of minimizing

the various technology costs as a function of the annual availability of existing resources. If
the resource exists, the coefficient j is equal to 1; otherwise, it is zero. The formulation of the
problem is, therefore, seen under different constraints linked to the different production
and storage limits.

Once the optimal technologies have been selected, a further step in solving the opti-
mization problem is carried out, linked to the optimal load connections.

Step 3: Optimal load selection based on distances and substation capacity
Objective function:

min : ∑
i

xijdij

For a fixed j
(27)

This is subject to the following:

xij =

{
1 i f i is connected at j

0 i f not

}
(28)

∑
i

xijsi ≤ climit × sj (29)

τ × 100 < τlimit (30)

τ =
√

3
Ii
n

Un
xij × dij

(
r cosθ + z

√
1 − (cosθ)2

)
× 1000 (31)

∑
i

Ii
n ≤ In (32)

si =
√

3Un × Ii
n (33)

d = 6371 × c

c = 2 arctan
( √

a√
1 − a

)
a = sin2

(
φB − φA

2

)
+ cosφA.cosφB × sin2

(
λB − λA

2

)
d > 0, c > 0, Un > 0

τlimit = 10

climit = 0.8

i ϵ I = {loads} (34)

ϵ J = {substations/j, f ixed} (35)

Knowing that the optimal connection of loads to the source substation is a function
not only of their distance but also of the substation’s available capacity, objective function 3
should minimize this distance. For a fixed j corresponding to the substation, the various
loads i will be optimally selected under the various constraints mentioned above.

The various detailed flowcharts for implementing the resolutions of the different
optimization problem formulations are presented.

The clustering algorithm is presented (step 1):
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• Enter data for each vector

V =


v1

1
. . .
v1

i

. . .

. . .

. . .
. . .
v1

n

. . .

. . .

vj
1

. . .
vj

i
. . .
vj

n

. . .

. . .

. . .

. . .

. . .

vp
1

. . .
vp

i
. . .
vp

n


• Initialize the position of the centers:

µk =
[
µ1

k , µ2
k , .., µ

j
k, . . . , µ

p
k

]
, 1 ≤ k ≤ c

• Calculate mk averages of vectors in cluster k

- Until there are no more changes in the mk
- Assign each Vi point to the nearest cluster
- Calculate new mk
- End As long as

The flowchart for the formulation of objective function 2, resource optimization, is
shown in Figure 2 below (step 2):
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T is set to 12 for the twelve months of the year.
Figure 3 shows the flowchart for the formulation of objective function 3: connection

optimization (step 3).
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3.2.3. Data

Only average and annual variations in the various energy resources of South Togo are
presented. In fact, this area contains all the country’s available resources.

Statistical analyses of the data presented are based on the minimum value of the data
used, the maximum value (36), the mean (37) and the standard deviation (38):

min = min(xi); max = max(xi) : i = 1, . . . .N (36)

X =
1
N

N

∑
i=1

xi (37)

σ =

√√√√ 1
N

N

∑
i=1

(
xi − X

)2 (38)

The statistical data on energy resources in South Togo are shown in Table 1.
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Table 1. Statistical data on energy resources in South Togo.

Months
Solar Radiation (W/m2) Temperature (Degrees) Relative Humidity (%) Wind Speed (m/s)

Min Max X σ Min Max X σ Min Max X σ Min Max X σ

Jan 85.46 115.71 99.01 5.87 26.12 28.41 27.59 0.59 60.56 85.62 75.25 6.92 2.04 4.45 3.27 0.68
Fev 85.98 113.63 103.63 6.95 27.58 28.57 28.05 0.23 69.75 85.19 80.92 2.97 2.21 5.17 3.94 0.76
Mar 84.98 122.43 108.85 9.69 27.83 28.96 28.38 0.23 78.44 86.31 81.99 1.89 3.99 6.11 4.78 0.57
Apr 109.64 137.14 127.32 7.0 26.95 28.38 27.67 0.46 78.31 88.31 83.72 2.35 1.86 5.49 3.7 0.91
May 108.89 132.91 126.36 4.72 26.49 28.11 27.41 0.41 76.19 88.62 85.21 2.59 1.91 4.47 3.41 0.56
June 112.42 128.5 121.95 3.63 25.09 27.42 26.25 0.73 79.0 92.88 87.34 3.28 1.9 5.6 3.69 0.85
Jul 117.48 129.11 123.56 2.93 24.44 25.9 25.10 0.36 82.19 90.81 87.35 2.33 3.42 6.55 5.06 0.66

Aug 117.97 134.07 127.02 3.74 23.64 25.35 24.34 0.46 82.62 92.31 87.89 2.0 2.4 7.82 5.29 1.36
Sep 125.77 140.23 134.24 3.19 24.95 25.87 25.45 0.24 82.88 91.5 87.28 2.18 3.26 6.55 4.85 0.88
Oct 113.06 133.61 125.49 4.72 25.17 27.4 26.32 0.63 84.62 90.69 87.60 1.55 2.16 5.55 3.19 0.89
Nov 106.05 122.58 114.64 4.22 26.64 27.83 27.24 0.3 79.44 87.0 83.24 1.78 1.65 4.77 3.03 0.71
Dec 90.72 111.33 103.36 4.46 25.9 27.8 27.01 0.35 61.62 86.62 78.24 6.64 1.62 4.3 2.94 0.61

Table 1 presents data linking the various renewable resources. The table shows
monthly solar irradiation, temperature, relative humidity, and wind data. These data are,
in effect, inputs for the power extraction of different technologies, such as solar panels
(solar irradiation and temperature), hydro-generators (dependent on relative humidity),
and wind turbines (dependent on wind speed).

Tables 2 and 3 below show the random statistical data for the load positions considered
in the simulations and the parameters used in the simulations, respectively.

Table 2. Random statistical data.

Indicators xi Min Max X σ

Data 100 0.028 0.9 0.455 0.25

Table 3. Parameters [13,60].

Costs/Systems PV
(USD/kW)

Batteries/6 V
(USD/Unit)

Wind
(USD/kW)

Hydraulic
(USD/kW)

Biodiesel
(USD/kW)

Installation cost 800–2000 900–1300 1800 2000 650
Maintenance and
operating costs 8–200 9–14 700–1000 100/year 20/year

Replacement cost 700 1300 - - -

The different results obtained following the formulation of the various optimization
problems are presented.

4. Results and Discussion
4.1. Optimization Results
4.1.1. Results for Cluster Formation: Physical Allocation of Microgrid Centers

The results of the elbow method applied to the xi data to determine the number of
clusters are shown in Figure 4.

The number of clusters obtained, as shown in Figure 4, is 3. The graphical representa-
tion of these clusters is shown in Figure 5a,b using the k-means clustering technique.

This clustering technique was used to determine the coordinates of the various cen-
troids (3). Table 4 shows the coordinates obtained.
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Table 4. Summary of cluster centroid values.

Centroid/Axis x y

Centroid 1 0.92463054 0.11527094
Centroid 2 0.75952381 0.74047619
Centroid 3 0.29246429 0.48892857

Subsequently, a special study was carried out on cluster 3. Table 3 shows a centroid
for this cluster with the coordinates (x; y): (0.29246429; 0.48892857).

Figure 6 shows the corresponding cluster 3. Two nodes of centroid 1 are also shown
for reference (connection).
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Figure 6. Cluster 3 considered.

The number of load nodes defined for this centroid 3 is 40. The total capacity defined
for study for these load nodes is assumed to be 40,000 W or 40 kW.

The results of the optimal simulations are presented.

4.1.2. Renewable Energy Resource Availability Results

To define energy potential, the case of Togo is taken into account. A previous study of
the availability and mapping of the country’s renewable resources is presented by Kabe
et al. [30]. The various intermittent energy potentials are presented for a capacity of around
1 kW. Only solar, wind, and hydraulic potentials are shown. According to Rafat Al Afif
et al. [61], specific impacts from extreme events would not affect biomass power generation;
it follows that biomass power generation is possible at any desired period and is therefore
not taken into account in the simulation.

Figure 7 below shows these potentialities.
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This figure shows the unequal annual distribution of Togo’s potential energy mix.
This unequal distribution requires an optimal combination of these resources. Optimal
management of these resources is only possible with optimal management optimization
models, hence this study.

Data from different variations of these resources are considered for the study.

4.1.3. Optimization Results for Technology Selection

The results of the optimum selection of renewable resources and the optimum power
ratings obtained are shown in Figure 8 and Figure 10, respectively.
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Figure 8. Optimal profile of renewable resources.

Figure 8 shows the optimal annual variation in renewable energy resource profiles for
the microgrid under consideration. It can be seen from this figure that only photovoltaic,
storage, and wind power systems are considered and, therefore, recommended. The
hydraulic resource is neglected. In addition, the most available resource is the solar resource,
the annual variation of which would allow optimal choices of technologies depending on
the period. The wind resource is not neglected either. Figure 9 shows the energy storage.
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This optimization of resources makes it possible to define the appropriate technologies
for each month when installing the microgrid.
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Now, the maximum capacity of the storage system is estimated to be 135 kWh. Details
of the power of the various resources, which may be low or high depending on the period,
are shown in Figure 10.
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Figure 10. Optimum performance of renewable resources.

The solar capacity considered ranges from 30 to 42 kW, while the maximum wind
capacity is estimated to be 3 kW. Solar capacity represents 80% of the total load of the
microgrid under consideration against 7.5% for wind power. Solar is the most favored
resource, but wind can also be considered for its exploitation. The battery system capacity
is 5 kW (12.5% of the total load capacity).

The total annual optimal value of the objective function is USD 1,389,578.75999646.
The maximum optimal value is obtained in August and is equal to USD 177,942.34. The
various power and energy values are shown in Table 5.

Table 5. Optimal values per month for different resources.

Month/Resources

Objective
Function

Batteries (Injec-
tion/Consumption) Storage Solar Wind Hydro

Cost (USD) P (kW) E (kWh) P (kW) P (kW) P (kW)

January 86,993.372 −5.9521873 125 32.78232 1.2654927 5.05 × 10−11

February 107,862.57 −4.3408207 119.04781 33.91956 1.7396193 5.05 × 10−11

March 137,518.88 −2.1732186 114.70699 35.40348 2.4233014 5.05 × 10−11

April 113,170.6 2.9308321 112.53377 41.62752 1.3033121 5.05 × 10−11

May 102,321.29 2.0975483 115.46461 41.04108 1.0564683 5.05 × 10−11

Jun 106,827.33 1.7328749 117.56215 40.5162 1.2166749 5.05 × 10−11

Jully 162,312.84 3.5950199 119.29503 40.9212 2.6738199 5.05 × 10−11

August 177,942.34 5.0149667 122.89005 42.00336 3.0116067 5.05 × 10−11

September 154,083.06 4.4502273 127.90502 42.08436 2.3658673 5.05 × 10−11

October 91,055.383 0.5818162 132.35524 39.72888 0.8529362 5.05 × 10−11

November 79,623.893 −2.4906887 132.93706 36.73836 0.7709513 5.05 × 10−11

December 69,867.2 −5.44637 130.44637 33.8256 0.72803 5.05 × 10−11
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Table 5 shows monthly data for a year of optimization of renewable energy systems
with battery energy storage. According to the results, the battery systems were first injected
into the mini-grid in January, February, and March, then in November and December, in
order to compensate for electrical loads. The maximum injection is 5.95 kW. From April to
October, the battery system acts as a load, consuming electrical energy for storage. Total
storage energy is estimated to be 133 kWh. These injection and storage periods for the
battery system depend on the availability of renewable resources: solar and wind power.
Hydro resources are neglected. Maximum solar power is estimated to be 42 kW, and
maximum wind power is estimated to be 3 kW. The maximum cost of all technologies is
estimated to be USD 177,942.34.

It should also be noted that in Togo [30], the main resource is solar power. How-
ever, other renewable energy resources, such as wind power in the south of the country,
hydropower, and biomass, depending on the study area, are not neglected.

The transformer capacity of the microgrid under consideration is estimated to be
around 50 kVA.

4.1.4. Capacity and Connection Optimization Results

To evaluate the optimization results of the microgrid study, two scenarios were con-
sidered. The first scenario was based on the influence of the distance of the load node
connection, and the second scenario was based on the influence of the variation in the
capacity of the load nodes.

(a) Scenario 1: results for voltage rate profile/distance

Simulation results for the influence of load distance from the substation (centroid) and
for the influence of the satisfaction rate are shown in Figure 11. The following equation
translates the satisfaction rate equation:

Pstation
Pload

× 100 = τs
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This equation expresses, in percentage terms, the satisfaction rate due to the availability
of substation capacity in relation to load capacity. It expresses energy satisfaction due either
to a balance between supply and demand or to a lack of energy at the substation due to an
imbalance between supply and demand.
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This figure shows the variation in voltage ratio as a function of load node location.
This figure shows a perfect correlation between the satisfaction rates. Indeed, in this figure,
the location of the loads in relation to the substation demonstrates the non-homogeneous
trend of the voltage ratio. As the admissible limit value is 0.1, nodes 41 and 42 are outside
the voltage ratio limit, as their distance influences the defined limits.

Figure 12 shows the total connection of centroid three load nodes when substation
and load capacities are in balance. These nodes are unlike the load nodes of centroid 1,
which are switched off.
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However, the variation in the satisfaction rate does not influence the voltage rate but
influences the connection. Figure 13a,b show the results obtained.
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Figure 13. Load shedding. (a) τs = 75%; (b) τs = 25%.

Depending on the satisfaction rate, certain load nodes are not connected (in reality,
these loads are switched off). This satisfaction rate reflects the energy insufficiency of
the substation and would lead to optimal load shedding according to load capacity. The
greater the energy shortfall, the fewer loads are connected (as shown in Figure b, where
load shedding is higher).
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However, if energy is injected into the microgrids, the loads will be connected back
initially (as in the previous figure, where τs = 100%), and loads that are too far away will
not be connected, regardless of the substation’s capacity (as in the case of the two load
nodes of centroid 1).

(b) Scenario 2: influence of load capacity

Variations in load capacity have a significant influence on the voltage ratio profile. The
results are shown in Figure 14.
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If the 40 load nodes in the initial study satisfied the voltage ratio condition, it is
obvious that their load variations would cause them to malfunction. Figure 14 illustrates
the influence of load capacity on voltage ratio. In fact, as loads increase in capacity, the
voltage drop rate also increases and surpasses the admissible limit.

In response to this fault, loads are disconnected regardless of their proximity to the
substation. Figure 15 illustrates optimal load shedding.
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Although some load nodes are closer than others, and because they are more heavily
loaded, they will be less connected than less heavily loaded load nodes located at a reason-
able distance but further away. In Figure 15, some closer load nodes are unloaded, while
some more distant, less-loaded load nodes are supplied (while still complying with the
voltage drop rate condition).

A comparison of the variation in load capacity is shown in Figure 16.
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The comparison of the initial state, where load capacities are lower than in the variable
state, shows the impact of load capacity on the microgrid.

The optimal national planning of microgrid systems and stand-alone photovoltaic
systems in the short and long term is presented.

4.1.5. Results of Microgrid Formation Evaluation Studies in Togo

The results of the open-source spatial planning tool onsset were used to optimize the
planning of general electrification in Togo based on various technologies, such as stand-
alone photovoltaic systems and microgrids. Figure 17a,b illustrate the planning process.

The results in Figure 16a for the short term suggest microgrid systems with an elec-
trification rate of 70%, compared with an electrification rate of 100% for the long term
(Figure 17b). For the long term, in addition to the microgrid systems considered, stand-
alone photovoltaic systems are also recommended if electrification is to be achieved through-
out the country.

Table 6 presents the results of the different costs according to the scenario.
Table 5 shows the results of two different scenarios. For the short term, i.e., scenario

2, stand-alone photovoltaic systems with a capacity of 20 MW are recommended and are
estimated to cost USD 184 million. Scenario 2 also opts for hybrid PV mini-grids with
a capacity of 320 MW at a cost of USD 564 million versus hydraulic mini-grids with an
estimated cost of USD 1.12 million. On the other hand, for the long term (scenario 4), PV
systems are proposed with a capacity of 62 MW and an investment of 280 million. Mini-
grids are also recommended at an estimated total cost of USD 1374 million for a capacity of
721 MW. However, scenario 4 shows the possibility of achieving total electrification of the
country by estimating a global capacity of 1.06 GW for an investment of USD 2.6 billion.
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Table 6 presents the results of the different costs according to the scenario. 
  

Figure 17. (a) Onsset: short term. (b) Onsset: long term.
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Table 6. Summary of results for short- and long-term scenarios.

Horizon/Years 2024–2030 2030–2050

Population 8,095,498 >12,000,000

Scenarios Scenario 2 Scenario 4

Technologies/costs Capacity
(MW)

Investment
(In million USD)

Capacity
(MW)

Investment
(In million USD)

Mini-grid
PV hybrid 320 564 720 1371

Mini-grid
hydraulic <1 1.12 1 4.42

Mini-grid
wind, biodiesel 0 0 0 0

Extension - - 274 964

Stand-alone
PV systems - - 62 280

4.2. Discussion

Microgrid installation requires not only optimization methods to minimize investment
costs but also automated voltage stability methods to ensure stability and resilience in
accordance with connections. In this study, the elbow and k-means clustering methods were
used to determine the number of clusters required for autonomous microgrid management
and to determine the coordinates of the corresponding centroid, respectively; this strategy
is necessary for the initial steps of a microgrid installation. Secondly, the intermittency of
renewable resources led us to optimize the complementary management of these resources
in order to contribute to the total energy satisfaction of electrical loads estimated to be
40 kW. This resulted in the solar resource being the most favored for satisfying these
electrical loads, with a rate of 80% compared with 7.5% for the wind resource and 12.5% for
battery capacity. In areas with very low wind and water resources, solar power and battery
systems may be the preferred option. Nevertheless, a careful study is needed before a
microgrid can be installed in a given locality; hence, the results that enabled us to evaluate
the formation of microgrids using an open-source spatial optimal electrification planning
system: onsset. In this study for Togo, two types of isolated or hybrid mini-grid systems
were recommended: solar mini-grid systems and hydraulic mini-grid systems. Stand-alone
photovoltaic systems were also proposed. The optimal investment costs for the short and
long term are estimated to be around USD 567 million for an energy production capacity of
around 321 MW, compared with USD 2.6 billion for a capacity of around 1 GW. However,
it should be pointed out that wind systems based on mini-aerogenerators and biodiesel are
not negligible, as their feasibility studies are essential for any microgrid installation project.
In this study, the case of the wind mini-grid is proposed and is therefore not neglected.

In addition, a technical proposal for one of the options for installing a microgrid based
on photovoltaic systems would be to exploit either the roofs of houses or to consider other
methods, such as agri-photovoltaics (photovoltaics combined with agriculture).

Finally, this study enabled us to limit load connections according either to their capacity
or their position relative to the microgrid substation, crucially ensuring the stability of
the microgrid. On the one hand, it was found that high load capacity leads to network
instability and, therefore, to the shedding of higher loads in favor of lower ones in order
to keep the microgrid more stable. On the other hand, the fact that the loads are located
far from the substation has an impact on the voltage stability of the network, which also
results in load shedding. The variation in load capacity in a microgrid and its positioning
in relation to its connection can have a significant impact on grid performance, resulting in
voltage instability, hence the need for pre-feasibility studies when installing a microgrid.
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The study also showed that a substation’s energy deficiency would optimally lead to the
shedding of certain loads.

5. Conclusions

The study of the installation of microgrids is important because it allows us to opti-
mally manage the implementation of all the components of a system and to ensure the
system’s stability. As a first step, we, therefore, carried out feasibility studies on the avail-
ability of the country’s annual renewable energy resources. Secondly, optimal management
of these resources is proposed for the optimal sizing of the microgrid energy systems to
be installed, taking into account their costs and availability according to their intermit-
tency. In the optimum results obtained, solar systems account for 80% of the maximum
load considered, compared with 7.5% for wind systems and 12.5% for battery systems.
Finally, a study of optimal load selectivity according to its effect on the voltage stability
(connections or load shedding) of the mini-grid was carried out. The results of this study
were conclusive and enabled us to obtain the optimal model required for the installation
of the microgrid being considered. In addition, a specific study of the overall planning of
Togo’s electrification using the spatial optimal planning tool generated solar, hydraulic, and
hybrid mini-grid systems. The estimated overall cost for the short and long term during
the planning phase is in the order of USD 567 million for a capacity of 321 MW in the short
term and USD 1374 million for a capacity of 721 MW in the long term.

However, in this sizing study, the application of wind mini-systems was demonstrated
as the feasibility study showed that wind-based hybrid systems were not neglected in
the case of South Togo. However, the biodiesel system was not taken into account in
this simulation. In summary, the results obtained are satisfactory and highly conclusive,
indicating that we optimally simulated the dimensioning of a microgrid through the
optimal management of energy resources, the optimal connection or load shedding of its
loads, and the optimal planning of electrification. This study is an optimization study of
the installation of a microgrid that would reduce losses and costs as much as possible, in
technical and economic terms, for power grid operators.
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Nomenclature

Ps(t) solar power variable
τ, τ′ charging (80%) and discharging (20%) rates
η performance
ε performance rate
S area
∆t temperature differential
Xd

s decision variable
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Tc,re f standard temperature
soct(t + 1) battery storage at t + 1
soct(t) battery storage at t
pbat(t) battery power
Nbat number of batteries
Cbat battery capacity
Vbat battery volatge
ηbat battery efficiency
Pe(t) wind power
ρe air density
Sw area swept by the turbine
ηe wind power efficiency
Xd

e wind decision variable
f (v) probability density
c scale factor
v wind speed
k shape factor
σ standard deviation
v average speed
P average power
Γ gamma function
Ph(t) hydroelectric power
ρh density of water
g acceleration
Q water flow rate
h waterfall height
ηh hydroelectric efficiency
µ average solar irradiance
σ variance of solar irradiance
Pch load power
f (Pch) load modeling function
Si power of loads i
i index
Pconv converter power
αu utilization factor
Ps solar power
V load vector matrix
vi vector i
µk clusters
D distance
R Earth radius
c constant
φA, φB latitudes
λA, λB longitudes
CT

inv total investment cost
Ci

inv investment cost
Co∝M maintenance and operating costs
r discount rate
t year
Pi load i power
Pj substation j power
αj coefficient
j substation index
Cr replacement cost
xij binary variable load − substation {0; 1}
Sj substation j power
τ voltage drop rate
dij distance load − substation
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In nominal current
Ii
n nominal currentof load i

Un nominal voltage
r linearr esistance
z reactance
X average
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