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Addressing bias in bagging 
and boosting regression models
Juliette Ugirumurera 1*, Erik A. Bensen 2, Joseph Severino 1 & Jibonananda Sanyal 1

As artificial intelligence (AI) becomes widespread, there is increasing attention on investigating bias 
in machine learning (ML) models. Previous research concentrated on classification problems, with 
little emphasis on regression models. This paper presents an easy-to-apply and effective methodology 
for mitigating bias in bagging and boosting regression models, that is also applicable to any model 
trained through minimizing a differentiable loss function. Our methodology measures bias rigorously 
and extends the ML model’s loss function with a regularization term to penalize high correlations 
between model errors and protected attributes. We applied our approach to three popular tree-based 
ensemble models: a random forest model (RF), a gradient-boosted model (GBT), and an extreme 
gradient boosting model (XGBoost). We implemented our methodology on a case study for predicting 
road-level traffic volume, where RF, GBT, and XGBoost models were shown to have high accuracy. 
Despite high accuracy, the ML models were shown to perform poorly on roads in minority-populated 
areas. Our bias mitigation approach reduced minority-related bias by over 50%.

Keywords  Artificial intelligence, Fair machine learning, Bias in machine learning, XGBoost, Random forest, 
Gradient-boosted trees

Artificial intelligence (AI) models have become ubiquitous in many areas of society, including banking, human 
resource management, health care, criminal justice, law enforcement, and transportation. Though AI models 
have enabled innovative progress in many sectors, they have also been shown to introduce and perpetuate biases 
that can exacerbate existing inequities. For instance, Angwin et al. found that the COMPAS system for predicting 
the risk of re-offending predicted higher risks for black defendants than their actual risk and higher than the risk 
for white defendants1. Google’s advertisement AI algorithm was found to show fewer ads for high-paying jobs 
to women than men2. Object-detection AI models used in autonomous vehicles were also shown to have poor 
performance when detecting pedestrians with dark skin tones3.

In spite of growing interest in researching methods for enforcing fairness in AI algorithms, to the best of 
our knowledge, most works have focused on classification, neglecting regression4. In this paper, we present a 
methodology for addressing bias in tree-based bagging and boosting regression methods, that is also applicable 
to any machine learning (ML) model trained through minimizing a differentiable loss function. Tree-based 
methods are some of the most broadly used ML algorithms. They are nonlinear, but still easy to use. Tree-based 
ensemble methods, such as random forests (RFs)5 and gradient boosting6 are efficient and effective for many tasks 
across domains. RFs, with no hyperparameter tuning, were the best-performing method in a study of over one 
hundred data sets7. A scalable form of gradient boosting, XGBoost8, dominates in many Kaggle competitions9.

Related works
Research on AI bias has grown significantly in recent years. AI bias mitigation methods are generally grouped in 
three categories: pre-processing, in-processing, and post-processing methods. Pre-processing techniques focus 
on data wrangling to remove discrimination10; examples include resampling, and reweighing techniques11. Post-
processing methods, such as empirical distribution matching approaches12, adjust the output predictions after 
model training13,14. Though pre-processing and post-processing techniques are straightforward and can be easy 
to implement, they cannot address bias from ML models themselves15. In contrast, in-processing methods tackle 
bias by integrating fairness considerations directly into the model design process16,17, thus producing inherently 
fair models. Our methodology falls in the in-processing method by adding a differentiable regularization term 
to the objective function of the learning algorithm.

Existing research in in-processing bias mitigation approaches, including for tree-based ensemble 
methods14,24,25, have predominantly focused on classification problems16,17,26–32. A recent survey on fair classifiers 
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presents over 200 publications on in-processing fairness approaches for classification33. In contrast, in-processing 
techniques have not been studied adequately for regression tasks. Table 1 compares our methodology with exist-
ing work in in-processing techniques for fair regression in terms of approach used (constrained optimization 
vs regularization), the training scheme used, the type of regression task addressed, and the bias metric used. As 
outlined, our work most closely relates to methods that use regularization, which are easier to apply compared to 
the constrained optimization approaches. Regularization approaches only require a modification to the objective 
loss function, while employing fairness constraints typically requires altering the training process by introduc-
ing an additional step to address the problem through constrained optimization methods. Previous research in 
regularization-based fair regression have only focused on linear regression, logistic regression22 and decision 
trees15,23. In contrast, our approach is suitable for any regression ML model that is trained by minimizing a dif-
ferentiable loss function.

Table 1 also highlights the variety in bias metrics used in research. Our work uses the overall group accuracy 
metric, which ensures that the model performs equally well across demographic groups34. This is implemented 
by adding a regularization term that penalizes high correlation between the model’s error and a protected attrib-
ute of interest. While the appropriateness of a bias metric often depends on the specific use case, overall group 
accuracy offers distinct advantages: it is straightforward to understand and implement, and emphasizes fairness 
in model accuracy across different groups. This is unlike other metrics, such statistical parity4,19,23 or correla-
tion between protected attribute and predictions20, which only ensure the model predictions are independent 
of protected attributes with no guarantee on accuracy. Other bias measures, such as equal mean predictions18, 
equal treatment22, or disparate impact15, also focus on ensuring ML models treats similar individuals or groups 
equally, yet do not assure a specific level of accuracy.

Another novel area of work within AI bias which has gained traction in recent years is information theoretic 
bias mitigation techniques35–38. These methods focus on removing the information content of protected attributes 
from the training data so that ML models cannot predict the responses from protected attributes. The inability 
to predict the response from protected attributes is an important fairness metric for individual level decision 
making, such as ensuring that hiring decisions are not affected by a protected attribute like race or gender. In our 
work, we focus on a different notion of fairness where our model is defined as fair if the errors of the model pre-
dictions are independent of a demographic attribute. Since information-theoretic approaches focus on adjusting 
the training data to address bias, they can be classified as pre-processing fairness methods. As previously men-
tioned, such methods lack the capability to address biases inherent in the machine learning models themselves.

Our work investigated three correlation terms as regularization terms that capture different types of correla-
tions: Pearson’s coefficient, which measures linear correlation between two data sets; Kendall’s tau, which can 
determine if two random variables are statistically dependent without assumptions on their underlying distribu-
tions and measures non-parametric, ordinal relations between random variables; and distance correlation, which 
measures both linear and non-linear associations between two random variables. This is because the baseline 
distribution of ML models’ data sets is usually unknown. We then added the correction terms to the loss func-
tion of three popular tree-based ensemble regression algorithms: an RF model, a gradient boosted-tree model 
(GBT) and an extreme gradient boosting (XGBoost) model, and conducted a detailed analysis on the correlation 
terms’ impact on the models’ biases. We also present a statistical test for demographic bias using the residuals of 
an ML model and bootstrap resampling.

To implement our methodology, we extended the highly flexible XGBoost library39, which can be configured 
to behave like RF and GBT models. Unlike other popular ML libraries, such as Scikit-Learn, that include tree-
based ML models, the XGBoost framework allows the inclusion of custom loss functions. The code implementa-
tion of this extension to XGBoost framework, along with implementation of the correlation terms, is publicly 
available on github40.

Hence, our work extend the state of the art as in fair AI as follows:

Table 1.   Comparison of our work with existing research in in-processing methods for fair regression.

In-processing approach Training scheme Regression task Bias metric

Constrained optimization

Controlling attribute effect18 Linear regression Equal mean predictions and residuals across 
groups

Supervised learning oracles19 Regression with Lipschitz continuous loss 
functions Statistical parity and bounded group loss

Non-convex optimization20 Least squares regression and non-linear least 
square regression

Correlation between protected attributes and 
predictions

Counterfactual fairness21 Logistic regression or neural network Counterfactual fairness

Quadrature approaches4 Kernel regression Statistical parity

Regularization

Convex fair regression22 Linear and logistic regression Equal treatment across individuals and groups

Fair induction algorithm23 Decision trees Statistical parity

Mixed integer optimization15 Decision trees Disparate impact

Penalize correlation between model error and 
protected attribute [this work] Regression with differentiable loss functions Overall group accuracy
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•	 An easy-to-apply in-processing regularization bias mitigation method for tree-based regression methods, 
that is usable for any ML model trained through minimizing a differentiable loss function.

•	 Application of three correlation terms, Pearson’s coefficient, Kendall’s tau, and distance correlation, as regu-
larization terms for bias correction in three popular tree-based ML models: RF, GBT, and XGBoost.

•	 A detailed analysis of the effectiveness of the correlations terms to reduce the bias of the tree-based ML 
models.

•	 An open-source code extension to the XGBoost library to enable bias correction and custom loss function 
for RF, GBT, and XGBoost models.

Results
Numerical case study
In this paper, we measure and address bias in tree-based ensemble regression models used to predict network-
level traffic volume at the road-link level41. Though scarce, quality network-wide traffic volume data at the road 
level is necessary to measure and understand the state of transportation systems. Traffic volume data also enables 
the user to accurately model and simulate traffic, to design traffic management policies, to quantify vehicle miles 
traveled, to calculate mobility-related fuel consumption and greenhouse emissions, and to inform transporta-
tion electrification and decarbonization efforts. Researchers at the National Renewable Energy Laboratory have 
developed an ML-based method that uses tree-based ensemble regression models, an RF, a GBT, and a XGBoost, 
to predict hourly network-level traffic volume estimates41. The ML models take as input TomTom probe count, 
which is the number of GPS devices recorded42, weather conditions, road characteristics (speed and road class), 
and temporal information such as time of day and day of week. The ground truth training data comprise hourly 
traffic volume data from volume stations, which are traffic count sites to track the usage of roadways. All three 
models were shown to have high accuracy, with the XGBoost having the highest accuracy.

This ML-based method was applied to estimate the traffic volume in many regions. In this work, we sought 
to determine if these volume estimation ML models had bias in their performance for particular areas or popu-
lation groups in spite of having a high overall accuracy. To do this, we considered a case study in which these 
ML models were used to estimate traffic volume in Hamilton County, in Chattanooga, Tennessee43. The overall 
performance of the models for this county was an R2 of 0.873 for the XGBoost, 0.868 for the GBT, and 0.833 for 
the RF. The Hamilton County region was the area of study for the Regional Mobility project44, which was funded 
by the Vehicle Technology Office of the U.S. Department of Energy, conducted by the National Renewable Energy 
Laboratory in conjunction with Oak Ridge National Laboratory, and aimed to improve mobility energy efficiency 
by deploying adaptive traffic signal control algorithms. The volume prediction ML models were used to identify 
areas of high traffic congestion to target them for traffic signal operation optimization.

In Table 2, we show descriptive statistics of some of the traffic and weather columns of the case study dataset. 
The training data consisted of 8,992 entries and the test dataset was 2,250 entries with various attributes related 
to weather, location, and traffic conditions. The traffic volume column contains the target values. Overall, the 
traffic data indicated significant variability in volume and probe count statistics, with some entries showing 
minimal traffic and zero probe counts, while others reported volumes as high as 2,816 vehicles per hour and 
probe counts up to 294 per hour. The average speed was 38.79 miles per hour, but this ranged widely from 2.29 
mph to 78.6 mph. The probe penetration rate, which is the percentage of vehicles equipped with probe devices 
that actively transmit data to traffic monitoring systems, had an averages of 0.0515% and a maximum of 100%. 
This suggests that in certain areas, all vehicles were equipped with probes, potentially indicating bias in the probe 
data collection process.

Temporal aspects showed that the average hour recorded was close to noon (11.70), with data evenly distrib-
uted across all hours. the most frequent day of the week recorded was Wednesday, accounting for 30% of the data, 
indicating a potential weekday bias. The dataset spans the first six months of year 2019. The average temperature 
was around 58.74◦F , with a standard deviation of 14.84◦F , indicating a significant variation in temperature. Wind 
speeds averaged 6.68 mph, with a range from 0.1 mph to 20.4 mph. Precipitation levels were generally low, with 
a mean of 0.004 inches, and a maximum of 0.27 inches. Notably, the dataset did not record any snow.

Social vulnerability dataset
The Centers for Disease Control and Prevention (CDC) in United States (U.S.) provides social vulnerability data 
that identifies demographic characteristics that may increase the vulnerability of U.S. communities to natural or 

Table 2.   Descriptive statistics of traffic volume dataset.

Traffic volume (vph) Probe count (vph) Average speed (mph)
Probe count last week 
(vph) Temperature ( ◦F)

Wind speed 
(mph)

Mean 205.54 15.01 38.79 14.37 58.74 6.68

Std 308.8 28.47 12.94 27.56 14.84 3.24

Min 0.5 0 2.29 0 25.4 0.1

25th percentile 21.5 0 30 0 47 4.4

50th percentile 81 3 37.68 3 59.7 6.1

75th percentile 261 15 47 15 68.4 9

Max 2816.00 294 78.6 338 92.2 20.4
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human-made disasters45. This data is collected for all U.S. census tracts, which are counties’ subdivisions used for 
census purposes, and include social attributes such as racial and ethnic minority, unemployment level, high pov-
erty, and disability. Table 3 provides a complete list of the tracked demographic information. This data includes 
the raw values, percentages, and percentile estimates for each demographic attribute. Because our case study’s 
data points are spatially distributed in the state of Tennessee and do not inherently include demographic data, 
we mapped our case study’s data points to the appropriate CDC census tracts in Tennessee and associated them 
with corresponding demographic features. We then used the CDC’s demographic data as protected attributes to 
measure the bias of the tree-based ensemble ML models.

Bias testing
To measure the fairness of the tree-based ensemble regression models for traffic volume prediction, we used the 
overall accuracy equality fairness metric, which states that the overall prediction accuracy for the protected and 
not protected groups must be equal34. In our case, we wanted to determine if the volume estimation ML models 
were as accurate in areas with high vulnerability scores as in regions with low vulnerability scores. The CDC 
defines an area as highly vulnerable with respect to a particular demographic, d, if that demographic’s percentile 
is greater than 0.9. We extended this definition of vulnerability to four cutoff percentiles 0.6, 0.7, 0.8 and 0.9 in 
order to understand how the model bias changed for different vulnerability levels. The highly vulnerable areas 
were then considered to be part of the protected group. To determine the accuracy of the ML models for the 
protected and non-protected groups, we used the coefficient of determination or R2 , which is a value between 
0 and 1 and measures how well the observed outcomes are reproduced by a model based on the proportion of 
the variation in the output-dependent variable that is predictable from the input. We then measured bias as the 
difference in R2 accuracy between the protected group (highly vulnerable areas) and non-protected group (low 
vulnerability areas), in which a positive R2 difference of value v means that the model’s R2 was v higher for non-
protected compared to the protected group. We combined this metric with a bootstrap based significance test 
to determine model bias, as described in section “Bias testing”.

Figure 1 presents the results of our bias testing method and illustrates the measured bias for the different 
demographic features collected by the CDC, as described in Table 3. The brown color bars show the models’ 
R2 differences between areas with a percentile less than 0.6 for a particular demographic feature and areas with 
percentiles greater or equal to 0.6. The green-yellow color bars identifies the measured R2 difference between 
regions with a demographic characteristic percentile that is ≥ 0.7% and regions where the percentile is ≤ 0.7% . 
The green color bars are for the R2 difference when areas with 0.8 percentile or higher are considered as part of 
the protected group, while the blue bars represent the R2 difference when locations with 0.9 or higher percentiles 
for demographics are considered part of the protected group. The star, triangle and circle symbols at the bottom 
of the bars indicate if the R2 difference was statistically significant at the 0.001, 0.01 or 0.05 α-level respectively. 
From Fig. 1, we observed that the disability (DISABL) and minority (MINRTY) features showed the highest 
bias between the protected and non-protected group for all three tree-based models, while the no high school 
diploma (NOHSDP) and unemployed (UNEMP) attributes had the lowest.

In Table 4, we present a statistical summary of the four demographic groups from the CDC dataset that 
demonstrate the highest bias across all thresholds. The data for individuals with disabilities (DISABL) is the 
most centrally distributed, with a mean value of 0.48. Conversely, the data for mobility-impaired (MOBILE) 
and single-parent households (SNGPNT) exhibit a skew towards lower values. The minority group (MINRTY), 
on the other hand, shows a higher concentration at the upper end of the distribution, indicating that the dataset 
contains more areas with high minority percentiles. In contrast, it contains fewer areas with high concentra-
tions of mobility-impaired and single-parent households, while the distribution of individuals with disabilities 
remains relatively even.

Table 3.   Descriptions for the 15 demographic variables provided by the CDC.

CDC Variable Name Description

AGE17 Persons aged 17 and younger

AGE65 Persons aged 65 and older

CROWD At household level (occupied housing units), more people than rooms

DISABL Civilian non-institutionalized population with a disability

GROUPQ Persons in group quarters

LIMENG Persons (age 5+) who speak English “less than well”

MINRTY​ Minority (all persons except white, non-Hispanic)

MOBILE Mobile homes

MUNIT Housing in structures with 10 or more units estimate

NOHSDP Persons (age 25+) with no high school diploma

NOVEH Households with no vehicle available

PCI Per capita income

POV Persons below poverty

SNGPNT Single parent household with children under 18

UNEMP Civilian (age 16+) unemployed
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(a) Bias testing for XGBoost model

(b) Bias testing for GBT model

(c) Bias testing for RF model

Figure 1.   Bar graph of the demographic bias tests for the 15 CDC demographic variables for the XGB model 
(a), GBT model (b), and RF model (c). The height of each bar represents the difference between R2 for areas 
where a specific demographic d’s percentile is greater than p and areas where the percentile is less than p, 
with p ∈ 0.6, 0.7, 0.8, 0.9 . The symbol at the bottom of the bar represents the alpha-level for which the model 
showed significant bias in that demographic variable and percentile cutoff: the star symbol indicates the 
highest statistical significance, the triangle represents medium significance, and the circle denotes the lowest 
significance.

Table 4.   Demographic descriptive statistics.

DISABL MINRTY​ MOBILE SNGPNT

Mean 0.48 0.58 0.30 0.37

Std 0.24 0.26 0.28 0.28

Min 0.04 0.02 0.00 0.04

25th percentile 0.30 0.37 0.00 0.12

50th percentile 0.48 0.61 0.31 0.30

75th percentile 0.65 0.77 0.46 0.56

Max 0.96 0.95 0.97 0.97
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When testing for bias and selecting a demographic attribute for focused analysis, we considered both the 
magnitude of the bias and its statistical significance. Although the disability (DISABL) attribute displayed the 
highest values for bias, the statistical significance, shown in Fig. 1 using a star, triangle or circle at the bottom of 
each bar, of the DISABL attribute was reduced for the 0.6 percentile for all three models. In contrast, the minority 
feature presented the second highest bias values, which were also shown to have the highest statistical significance 
in most cases across all three models, except for the RF model at the 0.6 percentile. Thus, our numerical case study 
concentrated on addressing the models’ bias in relation to the minority attribute. For simplicity of presentation, 
our results also concentrated on areas with minority population percentile ≥ 0.8 and those with minority percent-
age ≥ 0.9 , because, as shown in Fig. 1, they exhibited the highest bias as measured by R2 difference. However, the 
methodology we developed can be applied to address bias for any other demographic feature or percentile cutoff.

Bias mitigation
To make the models’ performances fair, we modified their loss function by adding a regularization term that 
correlates the model’s error to the minority attributes. We considered three correlations terms: Pearson correla-
tion coefficient, Kendal’s Tau, and distance correlation. We also included a parameter, γ , with values between 0 
and 1 as the coefficient in front of the regularization expression to indicate the significance given to addressing 
bias during training. That is, when γ = 0 , the regularization term was ignored and the models were trained to 
maximize accuracy, and when γ = 1 , the models’ training focused on just minimizing the bias in the model. 
Section “Bias mitigation” describes the bias mitigation approach in detail.

Figure 2 shows the impact of the three correlation terms, Pearson’s coefficient, Kendall’s tau and distance 
correlation, on the bias of the RF, GBT, and XGBoost models as γ increases from 0 to 1, and for 0.8 and 0.9 
minority attribute percentile cutoffs. Of all the three models, the RF showed the highest bias per percentile limit 
(Fig. 2a,b), followed by the XGB (Fig. 2c,d), while the GBT models had the lowest R2 difference (Fig. 2e,f). In 
addition, Kendall’s tau correction term had a higher impact on the RF model compared to the other models, and 
started reducing RF’s bias at γ ≥ 0.5 . The Pearson’s coefficient and distance correlation had similar performance 
across models and significantly reduced the R2 difference when γ ≥ 0.9.

Figure 3 shows a zoomed-in version of Fig. 2, where we focus on the results for 0.9 ≤ γ ≤ 1 . As depicted, 
for the RF model, the Kendall’s tau correction was able to reduce the bias from 0.5 to about 0.25 for areas with a 
minority percentile of 0.9 or higher (Fig. 3b) and from 0.3 to about 0.1 for the 0.8 minority percentile or higher 
(Fig. 3a). For the GBT and XGB models, Pearson’s coefficient and distance correlation performed better than 
Kendall’s tau for γ > 0.99 . As shown in Fig. 3c–f, Pearson’s coefficient and distance correlation reduced GBT 
and XGB bias from 0.22 to a little over 0.1 for the percentile limit of 0.8, and from 0.42 to a little over 0.2 for a 
percentile cutoff of 0.9.

Figure 4 represents the models’ R2 test performances when their loss functions were modified with correlation 
terms and as γ varied from 0 to 1. From this figure’s sub-graphs (a), (b), and (c), we observed that the R2 scores 
of the XGB and GBT models were higher than the RF’s performance for all correction terms and for all γ’s, and 

Figure 2.   Bias mitigation with Pearson’s coefficient, Kendall’s tau, and distance correlation for RF, GBT, and 
XGBoost models for the minority attribute at different percentile levels.
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that R2 scores for all models remained relatively constant up until γ was close to 1. The RF’s R2 accuracy started 
reducing at γ ≥ 0.8 , while for the XGBoost and GBT models, the R2 score decreased when γ ≥ 0.9 . Figure 4d–f 
shows the zoomed-in behavior of the R2 for all models and all correction terms when 0.9 ≤ γ ≤ 1 . As depicted, 
the R2 score for all models decreased to about 0.3 (30%) as γ approached 1 when their loss functions were com-
bined with Pearson’s coefficient and distance correlation correction terms, while Kendall’s tau maintained the 
models’ performances greater than 0.55 (55%).

Figure 3.   Zoomed-in bias mitigation with Pearson’s coefficient, Kendall’s tau, and distance correlation for RF, 
GBT, and XGBoost models for the minority attribute at different percentile levels.

Figure 4.   Test R2 performance for Pearson’s coefficient, Kendall’s tau, and distance correlation for RF, GBT, and 
XGBoost models for the minority attribute at different percentile levels.
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From Fig. 4, we see that there is a trade-off between the models’ accuracy in terms of test R2 score, reduction 
in performance bias, and model type. That is, as the γ parameter put more weight on reducing bias, the overall 
accuracy reduced at different rates depending on the model and on the correction term. Hence, depending on 
the application, an end user will need to decide how much model accuracy they are willing to lose to achieve a 
desired bias reduction. This in turn would dictate which model to pick, what correlation term to select, and what 
γ value to use. As an example, for our case study, we found that for percentile cutoff of 0.8: for the RF model, 
Kendall’s tau correction achieved the minimum bias that equaled 0.11, which matched a model accuracy of 
R2 = 0.767 ; the Pearson’s coefficient reduced bias the most for XGB model, with the smallest bias equaled 0.137, 
and an R2 = 0.824 ; and for the GBT model, the distance correction term performed the best, with a minimum 
bias of 0.127 and a R2 = 0.826 . If a user wanted to minimize the bias the most, they would choose the RF model 
with the Kendall’s tau correction and γ = 0.967 . However, if they wanted to reduce bias while maintaining an 
accuracy of R2 ≥ 0.8 , they could choose the XGB with γ = 0.989 or the GBT with γ = 0.996.

Discussion
The previous section shows that our approach is effective at considerably reducing the performance bias for 
tree-based ensemble regression models while maintaining high model accuracy. For the RF model, the R2 bias 
was halved for all minority percentage cutoffs at γ ≥ 0.96 . For the XGBoost and GBT models, the difference in 
R2 reduced by 50% at γ ≥ 0.98 . XGBoost and GBT models were less sensitive to the correction terms than the 
RF model, but also exhibited higher accuracy and lower bias compared to RF.

To understand why the tuning parameter γ had to be high to influence the models’ bias (at least ≥ 0.5 for RF 
and ≥ 0.9 for GBT and XGBoost), we did an analysis where we tracked the mean squared error (MSE) and cor-
rection term values for each training round for all the models. We found that the correction term values were 
much smaller (generally less than 1) in magnitude compared to the MSE values (generally in the thousands), 
and thus require more weight from γ to impact the bias in the model. However, we also note that the tuning of γ 
is dependent on the a model’s dataset. If the training data has very low MSE values, then low γ values will likely 
start reducing the model’s bias.

We also note our method, which only involves modifying the loss function, is applicable to any models, such 
as neural networks and Gaussian processes, that are trained by minimizing a differentiable loss function. This 
makes our method easy to incorporate into many existing ML models that are currently in use.

Methods
Problem formulation
We considered a standard regression problem, in which, given n input instances xi ∈ R

d with d features, and n 
target variables yi ∈ R , we sought to learn a function to predict the target variables. This was done by minimizing 
a loss function L(yi , ŷi) , where ŷi ∈ R was the predicted variable. The MSE is typically used as the loss function 
and is defined as:

To account for possible bias in the model, we also considered a set of protected demographic attributes zi , where 
zi is the demographic attribute for input xi and is a continuous random variable. We modified the loss function 
by adding a regularization term that measured how the model’s error correlated to the protected attribute:

In Eq. (2), z is the variable for the value of the demographic of interest, γ ∈ [0, 1] is a tunable regularization 
parameter, and c is correlation measurement function. Finally, e is some measure of the prediction error, such 
as: e = ŷi − yi , e = |ŷi − yi| or e = (ŷi − yi)

2.

Bias testing
The CDC defines a community to have a high level of vulnerability vis-a-vis a particular demographic if the 
community’s percentile for that demographic is greater or equal to 0.946. We use “group fairness” to measure 
the fairness of our models’ predictions. We define unbiased predictions based on the model accuracy of predic-
tions within the high-vulnerability group and the non-vulnerable group. Following this definition, we define an 
unbiased model based on the model accuracy above and below a demographic percentile cutoff.

Definition: Unbiased Model 1
Let R2

0 be the model R2 on observations with demographic percentage < c for some cutoff percentile c and 
R2
1 be the same with demographic percentage ≥ c . Then a model is defined to be unbiased at cutoff c if and only 

if R2
0 = R2

1.
Using this definition, we now define a test statistic, s, shown in Eq. (3).

We define s to be piece-wise so that it can by used for a one-sided hypothesis test, because, according to our 
definition of an unbiased model, we can now define a model as unbiased if and only if s = 1 . Thus, the natural 
hypothesis test for bias becomes Eq. (4).

(1)MSE(yi , ŷi) =
1

2

∑

i

(yi − ŷi)
2

(2)Lc(yi , ŷi) = (1− γ )Lθ (yi , ŷi)+ nγ c(e, z)2

(3)s =

{
R2
1/R

2
0 R2

1 > R2
0

R2
0/R

2
1 R2

1 ≤ R2
0
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Because we do not know the sampling distribution of s, we look at a second definition of an unbiased model.
Definition: Unbiased Model 2
Let e be errors in model predictions and let d be the demographic percentile variable. Then we define a model 

to be unbiased if and only if e ⊥⊥ d.
Using the second definition, we reformulate the Hypothesis test as a Bayesian hypothesis test. To do this, let 

sd be the s statistic calculated using the demographic cutoff and define p according to Eq. (5). Then we reject 
H0 : e ⊥⊥ d if p < α for some chosen level alpha.

To compute this probability, we use Bootstrap resampling to approximate the sampling distribution of s. To do 
this, let n0 be the number of low-vulnerability points, let n1 be the number of high-vulnerability points, and let 
nB be the number of Bootstrap iterations. 

1.	 Sample n0 prediction/ target pairs with replacement from the entire dataset and calculate R2
0,i.

2.	 Sample n1 prediction/ target pairs with replacement from the entire dataset and calculate R2
1,i.

3.	 Calculate si from R2
0,i and R2

1,i.
4.	 Repeat nB times.

Because we are sampling from the entire dataset independent of the demographic variable, this will result in a 
set S of si values from bootstrapping that approximates the sampling distribution of s under the null hypothesis. 
Then we calculate p according to Eq. (6).

Finally, because we are testing bias in 15 demographics at 4 cutoff levels, we correct the p-values using the Ben-
jamini and Hochberg FDR correction for multiple testing47.

Bias mitigation
In order to mitigate the bias present, we augment the loss function with a correlation penalty term according 
to Eq. (2).

In this work, we only consider the MSE initial loss function; however, this method can be extended to any 
arbitrary initial loss function. For the correlation function, we investigate three measures of correlation: Pearson’s 
r, Kendall’s τ , and distance correlation.

Pearson’s r measures linear correlation and is defined by Eq. (9).

Kendall’s τ measures rank correlation and is defined by Eq. (10), where sgn is the sign function. Because the sign 
function is not differential at 0 and trivially differentiable elsewhere, we use a sigmoid approximation, τ̃  , for our 
augmented loss function defined in Eq. (11) where σ(x) is the sigmoid function.

Distance correlation, dCor, measures the statistical dependence of two variables and is defined according to 
Eq. (12).

(4)H0 : s = 1 H1 : s > 1

(5)p = P(s ≥ sd |e ⊥⊥ d)

(6)p =
#{si|si ∈ S , si ≥ sd}

nB

(7)sx =

√√√√ 1

n− 1

n∑

i=1

(x − x)2

(8)sy =

√√√√ 1

n− 1

n∑

i=1

(y − y)2

(9)r(x, y) =
1

n− 1

n∑

i=1

(
xi − x

sx

)(
yi − y

sy

)

(10)τ =
2

n(n− 1)

n∑

i=1

n∑

j=i

sgn(xi − xj)sgn(yi − yj)

(11)τ̃ (e, d) =
2

n(n− 1)

n∑

i=1

n∑

j=i

σ(ei − ej)sgn(di − dj)
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Bias mitigation framework implementation
To implement our approach, we selected the XGBoost library39, as it offers a highly flexible tree-based model 
that can be restricted to behave similarly to traditional RF and GBT models. Additionally, unlike other popular 
ML libraries like Scikit-Learn48, XGBoost allows the user to input custom loss functions so that we could test 
our bias correction regularization terms.

We provide two wrappers around the XGBoost model that restrict its flexibility to behave like an RF model 
and GBT model40. The RF model removes all explicit regularization parameters, prohibits boosting by setting 
the number of boosting rounds and learning rate to 1, and asserts that there is data subsampling and column 
sampling either by node, by level, or by tree . The GBT model removes L1 and L2 regularization, removes pruning, 
allows column sampling by tree only, and fixes the grow policy to depth-wise and sampling method to uniform. 
All remaining parameters were set to the defaults used in Scikit-Learn’s RandomForestRegressor and Gradient-
BoostingRegressor, respectively. Table 5 shows the tuning parameter ranges for each model type.

We also provide functions to create our correlation regularized loss functions40. These functions compute 
the gradient and hessian of the correction term and combine them into the augmented loss function shown in 
Eq. (2). In order to speed up the run time, particularly for the distance correlation and Kendall’s τ metrics, we 
implemented the correlation term calculations in C++ and interfaced them with Python using the ctypes library. 
The gradient and hessian calculations for each correlation metric are shown in Appendix A.

Conclusion
In summary, we present an effective and easy to apply methodology for addressing bias in tree-based bagging 
and boosting ML models for regression, that is also suitable for any ML models trained through minimization 
and differentiation. This is to fill a gap in literature, where most work in AI bias mitigation has mainly focused on 
classification problems. Our bias correction approach involves adding a regularization term to an ML model’s loss 
function that penalizes correlation between the model’s error and membership in a protected/vulnerable group.

We implemented three regularization terms: Pearson’s coefficient, Kendall’s tau, and distance correlation. We 
demonstrated our technique by applying it to three popular tree-based ensemble regression models: RF, GBT, 
and XGboost. We leveraged the XGBoost library flexibility to use custom loss function and to represent the RF 
and GBT models. To exemplify our approach, we applied it to RF, GBT, and XGboost models trained to predict 
traffic volume for roads in Hamilton County, Tennessee. Through rigorous statistical testing, we established 
that the tree-based models exhibited high performance bias in regards to the minority attribute. Our numerical 
results demonstrated that our bias mitigation methodology could reduce the models’ bias toward areas with the 
highest minority density by as much as 50%.

Most bias mitigation research focuses on ML models that make predictions based on protected characteristics. 
Our traffic volume prediction case study shows that ML models can still be biased even without direct inclusion 
of protected attributes. This emphasizes that ML models can exhibit unfairness even when protected attributes 
are not included in the training process. Therefore, our bias testing and mitigation methodology is also suitable 
for regression models where protected attributes are aggregate quantities indirectly related to regression.

Future work includes investigating the combination of pre-processing methods, such as up-sampling, with 
our methodology to further reduce bias in regression models. Another future research topic will be studying how 

(12)

ajk =
∥∥xj − xk

∥∥ bjk =
∥∥yj − yk

∥∥ ∀j, k = 1, . . . , n

Ajk = ajk − aj· − a·k + a·· Bjk = bjk − bj· − b·k + b··

dCov(x, y) =
1

n2

n∑

j=1

n∑

k=1

AjkBjk dVar(x) = dCov(x,x)

dCor2(x, y) =
dCov2(x, y)√
dVar(x)dVar(y)

Table 5.   Hyperparameter ranges for each model type.

Parameter XGB range RF range GBT range

Boost rounds 100–1000 1 100–1000

Parallel trees 1 100–1000 1

Max depth 2–10 2–10 2–10

Learning rate 0.0001–1 1 0.0001–1

Min split loss 0.001–1 0.001–1 0

Min child weight 1–10 1–10 1–10

Subsample 0.5–1 0.5–0.999 0.5–1

Colsample by tree 0.5–1 0.5–0.999 0.5–1

L2 Regularization 1 0.00001 0
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to address bias for multiple demographics simultaneously, as reducing a model’s bias for one protected group 
could increase the model’s bias toward another protected group that was not considered.

Data availability
The CDC data used to support this study is available online on the link in45. The traffic data used to train the 
machine learning models cannot be shared publicly as it belongs to the Chattanooga Department of Transporta-
tion and requires signing a data agreement to access it.
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