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Biomass conversion processes have varying efficiencies towards
specific products like liquid fuels; process inefficiencies result in
byproducts such as off-gases, heat, and solid residues such as char.
The efficient use of these byproducts is key towards getting the
maximum sustainability benefits from valuable biomass resources.
Colocation with other industrial facilities that can allow sharing of
utilities is important to realize the maximum utilization potential. For
example, there are various utility product options that can make use of
heat and off-gases from biomass pyrolysis processes; they include
process heat and steam, hydrogen, fuel gas, and electricity. Further,
there is potential for the use of the off-gases to supplement natural
gas feed into steam reformers for hydrogen production. This
presentation highlights results from previous analyses on tradeoffs
based on utility byproduct choices [1]; maximizing hydrogen
production from off-gases is one potential winning strategy. This
leads to the question regarding the utilization of these off-gases in
existing steam reformers and the process impacts from feeding off-
gases. Process modeling of a steam reformer system [2] quantifies
those impacts and shows how much off-gas substitution is possible
within the limits of an existing design with such an integration strategy.
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Feed & Fuel Side Process Impacts with
Increasing Fractions (0 to 1) of Pyrolysis
Off-Gas (PY) in Natural Gas (NG)
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ion of fuel side natural gas has minimal process impacts and may be a first step.
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