

Catching Rays: How bifacial_radiance Sheds Light on the Future of Solar PV

Silvana Ovaitt, Chris Deline Radiance Workhshop 2024, SLC

1 Photovoltaics Growth – bifacial PV

- **2 Modeling PV – the rear irradiance challenge**
- **3 Why Raytrace?**
- **4 bifacial_radiance**
- **5 Cumulative Sky by Tracker Angle**
- **6 Spectral Simulations**

7 Irradiance & Albedo data

>90% Clean Electricity by 2035 US Decarbonization Goals

Solar Deployment 2020-2050

1IRENA, IEA, Feldman et al 2023, Wood Mackenzie

Modules Continuously Evolve

Pre-2015 module, 20-25 year life

2024 module, 35 year life

Ovaitt & Mirletz et al, 2022. "PV in the Circular Economy, A Dynamic Framework Analyzing Technology Evolution and Reliability Impacts." *ISCIENCE* [https://doi.org/10.1016/j.isci.2021.103488.](https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1016%2Fj.isci.2021.103488&data=05%7C01%7CSilvana.Ovaitt%40nrel.gov%7Cca7030f89c7947c3008208da644387a0%7Ca0f29d7e28cd4f5484427885aee7c080%7C0%7C0%7C637932538455797511%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=OTlyiDd%2FmgQlgRS5gPGU4Qj6TgcGvBXUJtPl5X6%2BRPs%3D&reserved=0)

Emerging Products – flexible, non-CdTe thin film, hybrid tandems, Etc.

Why 50% of modules are bifacial now and growing? Big Lever on Energy Yield

Annual Energy Comparison – Multiple Deployment Options

Modeling PV

Wind, Temperature, Albedo

Modeling Rear Irradiance

$$
G_{\text{rear}} = G_{\text{diffuse},r} + G_{\text{reflected},r} + G_{\text{beam},r}
$$

Parameters that affect rear Irradiance

Image courtesy of Opsun trackers, via Francois Gilles-Gagnon

8

Modeling Rear Irradiance

Less complexity

View Factor Models

View Factor Models

Due-diligence Software (PVSyst, NREL's System Advisor Model)

NREL's bifacialVF gitub.com/NREL/bifacialvf

Marion, B., MacAlpine, S., Deline, C., Asgharzadeh, A., Toor, F., Riley, D., ... & Hansen, C. (2017). A Practical Irradiance Model for Bifacial PV Modules: Preprint (No. NREL/CP-5J00-67847). National Renewable Energy Laboratory (NREL), Golden, CO (United States).

More complexity

Commercial: PVLighthouse, PVCase, etc..

Open-source: NREL Bifacial Radiance github.com/NREL/bifacial_radiance

View Factor

EXAMPLE 5-3 Consider an infinitely long wedge-shaped groove as shown in cross section in Fig. 5-4. Determine the configuration factor between the differential strips dx and $d\xi$ in terms of x, ξ , and α .

FIGURE 5-4 Configuration factor between two strips on sides of wedge groove. (a) Wedge-shaped groove geometry; (b) auxiliary construction.

From Example 5-2, the configuration factor is

$$
dF_{dx-dt} = \frac{1}{2}d(\sin \beta) = \frac{1}{2}\cos \beta d\beta
$$

From the construction in Fig. 5-4b, $\cos \beta = (\xi \sin \alpha)/L$. The $d\beta$ is the angle subtended by the projection of $d\xi$ normal to L , that is,

$$
d\beta = \frac{d\xi \cos(\alpha + \beta)}{L} = \frac{d\xi x \sin \alpha}{L}
$$

From the law of cosines, $L^2 = x^2 + \xi^2 - 2x\xi \cos \alpha$. Then

$$
dF_{dx-d\xi} = \frac{1}{2}\cos\beta d\beta = \frac{1}{2}\frac{x\xi\sin^2\alpha}{L^3}d\xi = \frac{1}{2}\frac{x\xi\sin^2\alpha}{(x^2 + \xi^2 - 2x\xi\cos\alpha)^{3/2}}d\xi
$$

Book Thermal Radiation Heat Transfer– Robert Siegel & John Howell

Grear is summed over 180° field-of-view:

$$
G_{\text{rear}} = G_{DNI, rear} + \sum_{i=1}^{180^{\circ}} VF_i \cdot F_i \cdot G_i ;
$$

$$
VF_i = \frac{1}{2} \cdot [\cos(i-1) - \cos(i)];
$$

 $F_i = Incidence angle modifier(\Theta)$

 $G_i = Irradiance\left[G_{skv}, G_{hor}, \rho \cdot G_{around}\right]$;

Irradiance sources: sky, ground (shaded or unshaded)

B. Marion et al., A Practical Irradiance Model for Bifacial PV Modules, 2017 B. Marion, Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules, 2017

View Factor: Step by Step

shaded)

Get Back Surface Irradiances (Direct reflected, + dx contribution based on VF)

Measured vs Modeled Irradiance July to November 21st

Measured vs Modeled Irradiance July to November 21st

Measured vs Modeled Irradiance July to November 21st

Modeled vs Measured kW_{DC} Power

*SAM v2018.11 using 15-minute measured DNI, DHI, albedo from SRRL BMS. Andreas, A.; Stoffel, T.; (1981). NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data); NREL Report No. DA-5500-56488. Bifacial systems assume 5% shading loss, 5% mismatch loss, 0% transmission factor

View Factor Model for Rear Irradiance

So Why Do Raytrace?

175

w

RECORD

 $\overline{\mathbf{v}}$

F

For narrowing bifacial gain uncertainty

Initially (~2017), industry was unclear on what bifacial gain to expect, which affected projects bankability. Some articles were unclear on system size and comparison points when reporting their gain. This is better established now

Bifacial Plus Tracking Boosts Solar Energy Yield by 27 Percent

Recent testing shows bifacial PERC modules can significantly increase energy yields. **GTM CREATIVE STRATEGIES | APRIL 18, 2018**

Technology and innovation drive the next generation of PV solutions hoto Credit: LONG

* Only data from May to August were used to eliminate snowing effects.

** Average bifacial gain of multiple test modules was used.

*** The east-west-facing vertical modules measurement in [16] shows great discrepancy between two modules; therefor, it is not included here.

**** Bifacial measurement (12/2016 to 08/2017) performed by the National Renewable Energy Laboratory.

Table Source: Sun, Xingshu, Khan, Mohammad Ryyan, Deline, Chris, and Alam, Muhammad Ashraful. Optimization and performance of bifacial solar modules: A global perspective. United States: N. p., 2018. Web. doi:10.1016/j.apenergy.2017.12.041.

$$
bifacial gain energy = \frac{Energy \; bifacial}{Energy \; monofacial} - 1 \; [%)
$$

Bifacial gain at NREL's 75kW site

 $\frac{Energy\ bifacial}{Energy\ monofacial} - 1 \quad [\%]$

NREL | 19

For small-scale system accuracy

C. Deline et al., "Assessment of bifacial photovoltaic module power rating methodologies – Inside and out," *J. Photovoltaics* **7** (2017).

For evaluating Edge-Effects on an array

June 21^{st} row shading and BG_E modeling by hour

For evaluating Edge-Effects on an array

Initial concern with edge effects; if edge modules produce more power than center modules there is potential power not taken advantage off and/or potential electrical mismatch losses. For our 75kW test-site at NREL (10 rows, 20 modules) Increase in bifacial gain of 0.28% yearly. Most commercial and utility sites now are now >> bigger, so effect not very important anymore.

For evaluating racking shading

Initial concern from tracker companies from torquetube shading, leading to research on optimal separation to reduce non-uniformity, or 2-up configuration with spacing A decade after: no main changes for monofacial racking. However module design now mostly have junction boxes (dead absorption area) in the center.

(Proxy for irradiance) non-uniformity 1.000 ഥ 0.95 0.97

For evaluating sensor positioning

Gostein, Ovaitt et al PVSC 2021

Measured data for Clear-sky days October 2019-2021

% Difference from Reference Cell Mean

For evaluating sensor positioning

For evaluating sensor positioning

Rear POA

25%

25%

Deline, Ovaitt, et al "**Irradiance Monitoring for Bifacial PV Systems' Performance & Capacity Testing**" Jul 2024 [10.1109/JPHOTOV.2024.3430551](https://doi.org/10.1109/JPHOTOV.2024.3430551) **Reference Modules**

Photo: EDF

For evaluating novel configurations and applications

Other novel applications: Floating PV, Building-Integrated PV, etc

Vertical PV:

- Useful for production at higher times-of-use (early morning, late afternoon) and for load-shaping
- For agriPV: higher pitches to reduce self-shading which allow tractors to go through
- For high latitudes: lower AOI for sun, faster snow sheding, good use of snow albedo
- Also used as sound-barriers on highways

For evaluating novel configurations and applications

NREL | 28

PV in the South Pole? Yes!

[Babinec, et al… , S. Ovaitt](https://doi.org/10.1016/j.rser.2023.114274) <https://doi.org/10.1016/j.rser.2023.114274>

For agrivoltaics

Spatial and spectral characteristics of importance

Novel configurations:

- **More separated panels**
- **Panels with different transmissivity factors (wider space between cells, or thin-film cells with higher transmission)**
- **Higher racking**

Test-sites are often smaller or a subsection near a field's edge – edge effects not evaluated by view factors

For evaluating materials more accurately

NREL | 30

Albedo Optimization Study <http://doi.org/10.1002/pip.3811> Irradiance, Energy, and system economics for varying sizes & positions

For evaluating materials more accurately

Image: Solaires Entreprises, from article:

https://www.pv-magazine.com/2024/01/29/canadian-startupoffers-35-efficient-indoor-perovskite-pv-modules/

Reversible Multicolor Chromism PVSK, Wheeler

For developing simplified models

For evaluating accuracy of other models

bifacial_radiance has become the leading model comparison tool in the industry, backed by numerous peerreviewed publications tailored to PV applications and due to its open-source nature.

bifiPV 2019, Amsterdam

T. Scalcup A comparison of bifacial PV system modelling tools

bifacial_radiance

bifacial_radiance is a python wrapper developed in 2017 for calling and using Radiance, with specific functions to generate geometry (text files) related to bifacial pv systems

Steps

1. Make Radiance Object

Module Object

Scene Object

```
sceneDict = {'tilt':30, 'pitch':6, 'clearance_height': 2.35, 
           'azimuth': 180, 'nMods': 5, 'nRows: 3}
    makeScene(moduletype='Panel1', sceneDict=sceneDict)
```


Multiple Scene Objects **sceneDict1** = {'tilt':30, 'pitch':6,

Multiple Scene Objects

Analysis Object

analysis.moduleAnalysis(scene=scene, modWanted=1, rowWanted=1, sensorsy=9, sensorsx=6)

How an example might look like

```
metdata = demo.readWeatherFile(epwfile, coerce_year=2024) #, starttime='2024-08-27_0900')
timeindex = metdata.datetime.index(pd.to datetime('2024-08-27 09:00:0 -7'))
demo.gendaylit(timeindex=timeindex)
module = demo.makeModule(name='PVModule', x=1, y=2)sceneDict = \{ 'tilt';30,'pitch':6,'cleanance height':2.35,'azimuth':180,'nMods': 5,'nRows': 3\}scene = demo.makeScene(module,sceneDict)
octfile = demo.makeOct()analysis = br.AnalysisObj()frontscan, backscan = analysis.moduleAnalysis(scene=scene, modWanted=1, rowWanted=1, sensorsy=6)
results = analysis.analysis(octfile, name='demo_results', frontscan=frontscan, backscan=backscan)
```
How results might look like

How to interact with bifacial radiance

Training @ Youtube | Documentation @ readthedocs Jupyter tutorials

Tracking, Cumulative Sky Yearly

Tracking, Hourly for a Day

Tracking, Hourly with Start/End times

Tracking, Hourly for the Whole Year

üп

lab

4820

494

¹⁷ False

False

C Square

35

 C Her C Oct

StartDate (MM (DD (HH))

Enddate (MM | DD | HH)

Timestamp Start:

Timestamp End

Tracking Parameters

Barittack:

Limit Angle (deg): 60

Ample delta (deg)

TorqueTube:

Charneter: Tube type: E -Trun

80

Ant of Relation: 67 Tempe Tube C. Panels

True

G. Round

TorqueTube Parameters

in 1

TorqueTube Material: ⁽² Metal_Grey: ⁽²⁾ Black

FUESTO ang ht

Scene Parameters

Analysis Parameters

44

Demo

[] import bifacial_radiance as br

 \equiv

https://tinyurl.com/bifrad24

Cumulative Sky by Tracker Angle

Cumulative Skies

Simulate Hourly ~4380 simulations Simulate Daily ~365 simulations Simulate Monthly ~12 simulations

*Robinson & Stone, 2024

Simulate Yearly ~1 simulations

Cumulative Sky by Tracker Angle

-45 to 45: ~19 simulations

Spectral Simulations

Why model spectrally?

Material degradation and other processes are also spectrally sensitive

In order to maximize the production of electricity, the most effective portion of the incident solar spectrum should be available for PV energy conversion.

(15 kWh/m²) amounts to \sim 3 months in the field NREL | 50 UV stress test currently within PV module IEC standards

pySMARTS https://github.com/NREL/pySMARTS

Wrapper for **SMARTS** (Simple Model of the Atmospheric Radiative Transfer of Sunshine) developed by Dr. Christian Gueymard. <https://www.nrel.gov/grid/solar-resource/smarts.html>

```
DNISpectra =
pySMARTS.SMARTSTimeLocation( 
IOUT='01', YEAR='2024', 
MONTH='08', DAY='27', HOUR='14', 
LATIT='40.8', LONGIT='-111.9',
ALTIT='1.3', ZONE='-7') #
```


Finetune Spectra with Temperature, RH, Pressure, Precipitation and Aerosol data

EXAMPLE DATA SOURCE:

[https://midcdmz.nrel.gov/](https://midcdmz.nrel.gov/apps/go2url.pl?site=AODSRRL)

•[Aerosol Optical Depth \(AOD\)](https://midcdmz.nrel.gov/apps/go2url.pl?site=AODSRRL) measurements are available since 06/13, updated every 24 hours.

- •A Spectrafy [SolarSIM-D2+](https://midcdmz.nrel.gov/apps/go2url.pl?site=SSIM) is providing direct normal spectral models since 09/16, updated every 60 seconds.
- •A Spectrafy [SolarSIM-G](https://midcdmz.nrel.gov/apps/go2url.pl?site=SSIMG) is providing global horizontal spectral models since 04/21, updated every 60 seconds.
- •An [EKO MS-300LR Sky Scanner](https://midcdmz.nrel.gov/apps/ms300.pl) has mapped luminance and irradiance, from 06/2000 to 08/2002, every 15 minutes.

```
YEAR='2020'; MONTH='10'; DAY='21'; HOUR = '12.75'
LATIT='39.74'; LONGIT='-105.17'; ALTIT='1.0'; ZONE='-7'
TILT='33.0'; WAZIM='180.0'; HEIGHT='0'
material='DryGrass'
min wvl='280'; Max wvl='4000'
```

```
TAIR = '20.3'RH = '2.138'SEASON = 'WINTER'TDAY = '12.78'SPR = '810.406'RHOG = '0.2205'
```

```
WAZIMtracker = '270'TLTtracker = '23.37'tracker tetha bifrad = '-23.37'
```


Spectral Irradiance generated with SMARTS

Spectra for non-ideal weather?

June 21st, 2 PM

DHI: 111 W/m2

Spectral Simulations:

simplified method

Simplified Model

Raytrace Spectrally vs

$$
Grear_{\lambda} = Grear_{DNI_{\lambda}} + Grear_{DHI_{\lambda}} + Grear_{DHI_reflected_{\lambda}} + Grear_{DNI_reflected_{\lambda}}
$$

Simplified Model

Contributions can be calculated with 5 nonspectral simulations:

- 1) Baseline
- $2)$ DNI = 0
- $3)$ DHI = 0
- 4) DNI & alb = 0
- 5) DHI & alb = 0 .

Figure 6 Decomposition of the rear irradiance from spectral simulations using linear regression into ground reflected DNI & DHI, and DNI & DHI from other sources. The pie charts compare the decomposition method (upper) with those from modified nonspectral raytrace simulation (middle) and modified non-spectral view factor simulation (Lower).

Simplified Model & Spectral Ray-Trace **Irradiance**

Irradiance & Albedo Data

NSRDB https://nsrdb.nrel.gov/data-viewer

- We started with EPW.
	- Great availability
	- Have found with comparing with pvlib some overirradiance, or negative values \rightarrow some data cleanup and validation eneded.
- Have moved to using NREL's NSRDB (psm3) API and AWS access
- Many other options specially on satellite data. For PV, ground data is sometimes preferable

Jensen et al. Worldwide benchmark of modeled solar surface irradiance. PVPMC2022

https://github.com/pvlib

Supports for retrieving data from 12 open solar irradiance datasets.

- •NSRDB (National Solar Radiation Database)
- •Solargis
- •SolarAnywhere
- •Solcast
- •TMY2 & TMY3 (deprecated)
- •EPW (EnergyPlus Weather Files)
- •PVGIS (Photovoltaic Geographical Information System)
- •CAMS (Copernicus Atmosphere Monitoring Service)
- •BSRN (Baseline Surface Radiation Network)
- •SURFRAD (Surface Radiation Budget Network)
- •SRML (Solar Radiation Monitoring Laboratory)
- •ACIS (Applied Climate Information System)
- •CRN (Climate Reference Network)
- •Solrad (NOAA)
- •MIDC (Measurement and Instrumentation Data Center)

Albedo Data

- Monthly and year-to-year variability depends on location and ground surface, especially snow
- Site-measured albedo has best accuracy, but satellite data has better coverage.

Ground data for 37 stations available from the DuraMAT website:

<https://datahub.duramat.org/project/albedo-study>

http://bifipv-workshop.com/fileadmin/layout/images/bifiPV/presentations2019/bifdiPV2019-NREL_Marion.pdf

Conclusions

- Solar arrays are very repetitive, which makes *bifacial_radiance* python wrapper very useful. Lots of customization on module, scene options, and common features requested by industry.
- Open source; established as state-of-the-art for other irradiance tools comparisons. Current roadmap is more agrivoltaic usage, and continue simplified model development.
- We are using gendaylit and gencumsky, and our own spectral concoction. Moving to the new hyperspectral Radiance modeling sounds great!

silvana.ovaitt@nrel.gov NREL/PR-5K00-91122

This work was also authored in part by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Partial Funding provided by the U.S. Department of Energy (DOE)'s Office of Energy Efficiency and Renewable Energy (EERE) from the Solar Energy Technologies Office (SETO), under CPS Agreement 38258 & 38535, and as part of the Durable Module Materials Consortium 2 (DuraMAT 2) funded by the U.S. DOE, Office of EERE, SETO, agreement number 38259. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government.

