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Introduction — World Water Shortage
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1. https://www.wri.org/insights/domestic-water-use-grew-600-over-past-50-years, Otto and Schleifer (2020)
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3. Caretta et.al., Climatic Change (2023) 176:100
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Introduction- UHPRO membrane compaction @w
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ExaGOOP MPM SOlver 2D- dam break simulation LN/Pwl

Evolution of normalized position of water-front with

ExaGOOP Material Point Method Solver! Grid nodes [ ' time.

p = 1000 kg/m* (Curve: MPM, Dots: Experimental data’)
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Single level grid hierarchy
based on AMReX
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Level set based complex S 2D Elastic Disk Collision

geometry models

V/ Material points

Particle library based on Linear, quadratic/cubic

node b-spline shape
functions

—— Tot. Kinetic Energy
—— ot Strain Energy
—— Tot. Energy

AMReX library provides parallelism for
heterogenous (CPU+GPU) computing platforms

1. https://github.com/NREL/Exagoop

@ N R E L 2. “An experimental study of the collapse of liquid columns on a rigid horizontal plane”, Martin & Moyce, 1952, Philosophical Transactions of the Ro ciety of London
National Alliance for Water Innovation s er 2024 w5
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National Alliance for Water Innovation



Spectral Stability Analysis-Methodology LN W

Governing Equation: Periodic boundary
0
Dv .
pF =F;+F Material point, p Periodic boundary
v Velocity at time t,V;,
g | Ov V/
- 6_ UB_ I I I I I I I I I
x x
T &1 &7 T T & T &1 & —1¢
‘\ ) ,
MPM Governing Equation at nodes: Node. I Grid spacing, h
Velocity at time t, V}
Nparr Npar(
Z mpN1 (x,) Ny (xp) a5 = — Z mypo, VN (Xp) e
=1 =1 . .
: i Total number of nodes: Nyodes @ Material points
. i ints: Grid Nodes
Assumptions: Total number of material points: Npgy -+

*  One-dimensional

*  Periodic boundaries

*  External forces assumed to zero N;(x,) = shapefunction defined at node I and evaluated at

¢ All material point masses are equal and constant material point position x,

*  Stability studied assuming frozen material point
locations at a particular time instant

m, = mass of material point

o, = stress tensor defined at material point

a; = acceleration at node |

iINREL

Transforming ENERGY




Spectral Stability Analysis-Methodology @\Nl

1. Particle to grid interpolation 2. Nodal time integration 3. Grid to particle interpolation
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Spectral Stability Analysis-Methodology

Exact amplification factor MPM amplification factor
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Spectral Stability Analysis- Results (|G|)

Effect of a (PIC and FLIP update)
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Damping at all spatial frequencies for a = 0.0
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Spectral Stability Analysis- Results (|G|) NAWI

Effect of shape functions Material point location: Mid-cell
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Spectral Stability Analysis- Results (|G|)

Effect of material point location a =10
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Spectral Stability Analysis- Validation o et e NAWI

. . Fixed end Free end
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Application to UHPRO Membrane Compaction
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Simulation of HPRO membrane compaction

Pressure=200 bar

RO Polysulfone

membrane
%

PS membrane modeled as linear elastic body

N

¢ =
o UL, U1 N WL

Stress (MPa)

o

0 0.05 0.1 0.15 0.2
Strain (mm/mm)
Young’s modulus, E = 100MPa obtained from tensile test
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MPM Model:

SEM image of uncompacted membrane cross-section

Fine porous structures

Macro voids

Mag = 3.6 KX
10 um

Image converted to material point collection using
python script

Domain size: 100um x 60um
* Number of material points: 180K
.. Constitutive Model: Linear
Elastic
"~ Shape Function: Linear Hat
CFL=0.1

20 40 60 80 100 um




Load Application Strategy

Strategy-1

Fictitious material points with high
density and Young’s modulus

Membrane material points

*  Weight of fictitious material points enforces the desired
pressure

* Scaling Youngs’ modulus and density—> dt remains
unaltered

*  Numerical damping induced by reducing

l"-"d
Transforming ENERGY

Strategy-2

<)
NAWI
Rigid material points.

Do not take part in computatlons
Enforces downward displacement
Displacement obtained using sprlng §
mass damper analogy

Membrane material points

* Reactive force from membrane calculated by interpolating
stress on rigid material points

» External damping can be varied to reduce oscillations and
reach steady state

" NREL Fictitious body forces added to match applied pressures due to numerical instabilities
National Alliance for Water Innovation




Application to simulation of RO membrane compaction

SEM MPM

Image Uncompacted macro voids
Mrn

Uncompacted membrane

Compacted membrane

Mag = 3.6 KX
10 um

(c) (d)

*NREL Good qualitative match between MPM resultsandSEM

images
Sl ation
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Application to simulation of RO membrane compaction M\Nl
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in experiments and MPM
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Conclusions & Perspectives LNﬁ\[\ll

* MPM solver ExaGOOP developed based on AMReX library. Works on heterogenous platforms. Validated against >
experimental and analytical solutions /

» Spectral analysis of regular MPM method reveals numerical properties of regular MPM methods using linear hat B-. " 1
shape functions with explicit time integration schemes : |

 MPM applied to study HPRO membrane compaction. Numerical instabilities observed with load application strategiégé_
simplified approach adopted for now. 3-D, full-membrane simulations in progress. “

LiNREL
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