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Everyday 
technologies are 
critically reliant on 
mastering materials 
lifecycles
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Such mastery depends on rich understanding of 
materials synthesis pathways…

K A G A N E R .  P A U L - D R U D E - I N S T I T U T
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…and degradation 
behavior in 
extremes

Averback and Diaz de la Rubia, Solid State Physics, edited by Ehrenfest and Spaepen 51 
(Academic Press, New York 1998) 281.
https://www.youtube.com/watch?v=TyYBIj-A9tY
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Our aim is an 
ontology of the 
materials lifecycle:

A systematic mapping of 
data to meaningful semantic 
concepts…across spatial 
and temporal scales

Palantir Blog
https://blog.palantir.com/ontology-finding-
meaning-in-data-palantir-rfx-blog-series-1-
399bd1a5971b
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Our aim is an 
ontology of the 
materials lifecycle:

A systematic mapping of 
data to meaningful semantic 
concepts…across spatial 
and temporal scales

https://www.bimframework.info/2015/08/bim-ontology.html

Palantir Blog
https://blog.palantir.com/ontology-finding-
meaning-in-data-palantir-rfx-blog-series-1-
399bd1a5971b
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Such an ontology 
will transform raw 
multi-modal data 
into predictive 
physical models

Spurgeon et al. Nature mater, 20(3), 274–279. (2021).



Understanding 
Materials Synthesis
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Epitaxial integration of semiconductors and oxides 
is a challenge for emerging devices

Kum et al. Nature Electron. 2, 439–450 (2019).
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Tailored materials design requires direct local 
probes of structure and chemistry

Functional Thin Films for Energy Applications

~1 cm

5 µm

Site Specific
Metrology

Focused Ion Beam

STEM

Spurgeon et al. Chem Mater, 28.11. 3814–3822. (2016).
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Electron microscopy can richly inform lifecycle 
models to achieve predictive control

Imaging Diffraction Spectroscopy

Structure Chemistry

Ge

SrTiO3 SrZrTiO3

UO2

Si

Du et al. Phys Rev B 2, 094602. (2018). | Popel et al. ACS Appl Mater Int. 12, 39781. (2020). | Spurgeon et al. PNAS  116, 17181. (2019).
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The Challenge
Imaging parameters 
strongly affect the 
representation of an 
object in data

Spurgeon. (2020). DOI:10.48550/arXiv.2001.00947
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The Task
Classify 
microstructural 
features using 
limited examples
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Few shot learning uses limited prior knowledge to 
classify features in discovery scenarios

Akers et al. (2021). npj Computational Materials, 7(1), 187.
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Careful pre-processing is needed for best model 
performance
Without Contrast Leveling Adaptive Histogram Equalization (CLAHE) With CLAHE

2 nm

Akers et al. (2021). npj Computational Materials, 7(1), 187.
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A simple GUI can interact with model parameters 
and support sets for different tasks

Doty et al. (2022). Computational Materials Science, 203, 111121. 
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We can rapidly classify atomic motifs in data to 
understand phase distributions

Original HAADF Image Support Sets Segmented Image Pixel Fraction

5 nm

Akers et al. (2021). npj Computational Materials, 7(1), 187.
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Such a model can easily be applied to different 
synthesis tasks

Original HAADF Image Support Sets Segmented Image Pixel Fraction

5 µm

Akers et al. (2021). npj Computational Materials, 7(1), 187.
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We can ultimately extract materials descriptors in a 
faster and more reproducible manner

Manual Analysis
10 minutes

Few-Shot
Task 1
8 seconds

MoO3

Few-Shot
Task 2
8 seconds

75-100x Faster!

Doty et al. (2022). Computational Materials Science, 203, 111121. | Akers et al. (2021). npj Computational Materials, 7(1), 187.



Describing Disorder
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Interface charge affects radiation-induced 
disorder

Controlling materials degradation is critical for 
electronics and sensors in extremes

Aguiar et al. J. Mater. Res. 29(16), 1699–1710 (2014). | Spurgeon. Curr. Opin. Solid. State Mater. Sci. 24(6), 100870 (2020). | Kim et al. J. Mater. 
Chem. C 7, 10–24 (2018).
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We can visualize damage buildup at these interfaces 
at stages of irradiation ex situ

Spurgeon, S. R. et al. Adv. Mater. Interfaces. 2020, 7(8). 1901901944.
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At CINT we took this one step further, visualizing 
materials breakdown in situ using the I3TEM

https://tours.sandia.gov/ibl_info.html

Chris Barr

Khalid Hattar (UTK)
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In situ TEM shows that disorder percolates through 
the material in a non-uniform manner

Filtered, Aligned HRTEM Time-Resolved Fourier Filtering

2 0  n m

Pt/C

LaMnO3

STO

Pt/C

LaMnO3

STO

1 Hr Irradiation
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We can quantify the loss of crystallinity through 
statistical analysis of time series data

Matthews et al. (2021). Nano Letters, 21(12), 5353–5359.
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More recently, we have been developing unique 
order descriptors based on graph analytics

Ter-Petrosyan et al. Proc. Thirty-Seventh Conf. on Neural Information Processing Systems (NeurIPS). (2023). DOI:10.48550/arXiv.2311.08585
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Multi-modal graphs effectively classify radiation damage signatures 
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Such models reveal changes in composition associated with irradiation

Ter-Petrosyan et al. In preparation.
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Such models reveal changes in composition associated with irradiation



Toward Autonomous 
Experimentation
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We have built an autonomous microscope platform 
based on few-shot and other ML models

Olszta et al. Microscopy and Microanalysis, 28 (5), 1611-1621. (2022).
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This platform 
enables intelligent 
closed-loop 
experiments and 
statistical analyses

Olszta et al. Microscopy and 
Microanalysis, 28 (5), 1611-1621. 
(2022).
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An Aside: Design of automated systems is 
challenging but it is getting easier

Get the
PyJEM API!

• Electronic optical system control：
Beam control, detector In / Out, magnification 
change, brightness change, etc..

• Stage control：
Absolute position movement, Relative position 
movement, Piezoelectric movement, etc.

• Image acquisition：
STEM or TEM image acquisition, image storage 
type change, resolution specification, etc.

• Auto function：
Auto Focus, Auto Contrast Brightness, Auto 
Stigmator, etc.

https://github.com/PyJEM/PyJEM
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We can build large libraries of synthesis and 
degradation pathways

Ter-Petrosyan et al. Proc. Thirty-Seventh Conf. on Neural Information Processing Systems (NeurIPS). (2023). DOI:10.48550/arXiv.2311.08585
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What is next?

NREL is leading a 
$14M recapitalization 
of our electron 
microscopy center, 
with a focus on in situ 
and autonomous 
science
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What is next?

NREL will be home to 
a new autonomous 
electron microscope 
platform built around 
dynamic and adaptive 
experiments

Autonomous

Adaptive

Dynamic

Multi-Modal

Intelligent

AM3

The Autonomous Multi-Modal Microscope



Autonomous science is revealing 
previously hidden materials 
lifecycles and transforming the 
design of clean energy systems

For more information on electron 
microscopy @ NREL, visit:
https://tinyurl.com/z8ryk4y3
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