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Executive Summary 
Edge Computing and Internet of Things (IoT) are vital pieces of today’s technological landscape. 
Here, we describe CloudCV, a low-cost IoT sky imager programmed and managed using 
Amazon Web Services (AWS) GreenGrass. The sky imager was deployed for three months in 
2019 at the NREL Mesa Top facility, where it collected a 10-second resolution sky image and 
irradiance dataset. We demonstrate remote reprogramming of this device to load software that 
predicts sun shading events through an optical flow-based linear advection method, which is a 
baseline algorithm that can be used to benchmark algorithmic improvements in future work. 
Some future directions for research in cloud cover prediction using sky imaging are enumerated.  

The outcomes of this work are: 

• The CloudCV sky imager was designed and built at the National Renewable Energy 
Laboratory (NREL). It was deployed at NREL’s Solar Radiation Research Laboratory 
(SRRL) Mesa Top facility for three months in 2019. 

• A demonstration of programming and managing the device using the AWS GreenGrass 
IoT platform. This technology could be useful in future field experiments and facilitate 
scientific data collection. 

• A dataset of sky images and irradiance measurements was collected at a 10-second time 
resolution and 1920x1080 pixel image resolution. Ten seconds is a significantly shorter 
time interval than other sky imager datasets. A subset of this dataset will be published 
and made available through NREL’s Data Catalog. 

• A preliminary analysis is described using this dataset to perform irradiance forecasting 
using optical flow and linear advection. This method was able to achieve a Critical 
Success Index (CSI) score of 0.6 for sun shading events at the 1-minute time horizon for 
a hand-picked, ideal day, after manual tuning. 

• The software, including sky imager code and the preliminary analysis code, will be 
published and made available through Github. 
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Introduction 
This technical report summarizes the work performed in FY2019 for the SCEA Seed LDRD 
“Computer Vision on Edge Devices for the Short-Term Prediction of Cloud Cover.” The report 
is divided into four sections. Section 1 provides a high-level overview and background for the 
work. Section 2 provides a comparison of the various Internet of Things (IoT) platforms and 
devices which were considered for this project. Section 3 describes the process of configuring 
and evaluating an in-house sky imager on NREL’s campus. Section 4 describes a use case of this 
device to rapidly deploy algorithms to the edge for short term prediction of cloud cover using 
computer vision. 

1.1 Definitions of Edge Computing, The Cloud, and IoT 
Edge computing, the cloud, and IoT are closely related terms that are easy to confuse and may 
not be well defined. Here, we define this terminology as it should be understood in the context of 
this document. 

Edge computing is a paradigm in systems architecture to distribute data storage and 
computational burden to many small devices which are physically located close to the system 
which it is measuring or controlling. This is an inherently decentralized paradigm. Edge 
computing can describe computer systems that operate without internet connectivity, or which 
may face limited connectivity to a central server. These systems are expected to make decisions 
based on inputs gathered from local sensors, without the benefit of a centralized server or 
centralized decision-making capability. 

The cloud is a paradigm of centralization of computing and data storage to large, often 
commercial, datacenters. In this computing paradigm, centralized computing power is made 
available in a flexible (on-demand) manner, such that the resources can be shared between 
multiple tenants and reconfigured for each job. The ability to shift compute infrastructure to 
commercial datacenters, which are highly reconfigurable, has revolutionized information 
technology (IT) throughout many areas of business, academia, and government. Communication 
with resources in the cloud requires an internet connection. 

Internet of things (IoT) refers to the connection of edge computing devices to the internet, and 
more specifically to centralized infrastructure running on a cloud platform. The manifestation of 
this “IoT revolution” is seen in the marketplace as various “Smart” devices which the user can 
control and manage through an online portal or smartphone app. Examples of such devices 
include smart watches, smart speakers, smart thermostats, smart plugs, and smart lightbulbs. 

Commercial providers of cloud services, such as Amazon, Microsoft, and Google, have all 
invested in developer-friendly frameworks to enable IoT use cases, with security, monitoring, 
and management capabilities built into the platforms. Additionally, these IoT frameworks can be 
used with a broad array of devices for many different edge computing use cases. IoT is an 
important concept to the industries in which NREL operates, with edge computing having many 
potential applications to research projects at NREL. Ideally, NREL can leverage the IoT 
frameworks from commercial cloud providers to accelerate this research. In the following 
section, potential use cases of IoT which are relevant to NREL’s core missions will be described. 
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1.2 Uses for an Edge Computing Platform at NREL 
In this Seed LDRD, we are evaluating a commercial, cloud-based IoT platform for its ability to 
manage an edge computing device for research purposes. To our knowledge the use of a 
commercial IoT solution like AWS GreenGrass to enable the programming of scientific devices 
is novel at NREL. Potential benefits of using Cloud based IoT solution include ease of 
programming, ability to reprogram the devices from a central workstation, and the abstraction of 
security and identity management concerns to the cloud platform provider. 

1.2.1 Control Algorithm Validation and Deployment 
One application of edge computing devices to NREL’s mission statement is in the development 
of smart controllers for distributed energy resources on the energy grid. There may be an 
opportunity to demonstrate large scale deployment of physical controllers on a campus such as 
NREL’s to quickly deploy and test advanced control algorithms on test systems. 

1.2.2 Data Collection and Streaming 
The development of new sensor technologies which generate data at high bitrates demands every 
larger network throughput. Pre-processing of sensor output, such as high-resolution imaging 
devices, is common use for edge computing devices in research. Edge computing devices allow 
researchers to deploy image processing and other machine learning algorithms to extract the 
most relevant features from high throughput sensors, transmitting only the relevant information 
back to the laboratory. If an internet connection is available, interesting data may be 
continuously streamed back to the laboratory instead of being manually retrieved from physical 
data loggers. 

1.2.3 Smart Devices 
The current niche for IoT in the marketplace is with so-called “smart devices,” which we define 
as edge computing devices which have some form of centralized management often coming from 
infrastructure configured with a commercial cloud provider. Therefore, any projects that aim to 
create or improve upon smart devices could benefit from an IoT platform supported by NREL. 

1.2.4 Hardware-In-The-Loop 
Simulations of physical processes on HPC can provide insights into the dynamic systems that 
drive them. These simulations, however, are often too computationally burdensome to offer 
value for real-time operations in the field, and they can be difficult and expensive to run and 
validate due to required computing power. Validation of techniques and algorithms discovered 
through simulation may only be possible by using edge computing devices that are located 
physically close to the experimental system. This is sometimes called a “cyber-physical system”, 
and such controllers may be tested using “hardware-in-the-loop” simulations. Such systems 
enable real-time control of experiments with micro-second response time, as opposed to the 
typical delays that are associated with communication over the internet. Moving experiments out 
of the lab and into the field could benefit from edge computing devices managed more through 
an IoT platform. 
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1.3 Edge Computing Platforms at Other Labs 
A paper from Argonne National Laboratory details the creation of Waggle: An Open Sensor 
Platform for Edge Computing Devices. (Beckman et al., 2017) This platform was used to deploy 
air quality sensors in Chicago and a promising open-source implementation of an IoT platform. 
In this case, the authors developed their own open-source IoT platform. Waggle appears to offer 
similar features to those offered by commercial cloud providers. 

A technical report from Sandia National Laboratory demonstrates the usage of Raspberry Pi 
devices to test assumptions of network latency for different topologies of networks. (Selorm et 
al., 2017) The idea is to use these devices to study the behavior of controllable, distributed 
energy resources in a realistic network environment. As far as we can tell, the researchers 
programmed their devices manually, without an IoT platform. 
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2 Comparison of IoT Platforms and Devices 
To perform the work in this Seed LDRD, several edge computing devices were purchased and 
configured. The choice of hardware and software platform may have outsized impacts down the 
road, so it is important to do a thorough review of the various offerings in the market before 
committing to one platform. The three components necessary for this work were: The 
microcontroller, the camera, and an IoT platform. In this section, we compare several different 
products and services for our sky imager. 

2.1 Microcontrollers 
The microcontroller provides the central processing unit (CPU), memory, and I/O capabilities. 
Special considerations for microcontrollers used in edge computing devices include the power 
requirements, and the environmental operating parameters such as the minimum and maximum 
operating temperature for devices which will operate outdoors, and in direct sunlight. 

Table 1: Features and specifications for four of the edge computing microcontrollers considered 
for this work. 

Device 
Name 

Raspberry Pi 3 
Model B+ 

Arduino Uno 
Wi-Fi Rev2 

Intel Compute 
Stick 

NVIDIA Jetson 
Nano 

Price $30  $50   $120  $99 

CPU ARM 1.26GHz 
Quad Core 
Broadcom 

ARM 16MHz 
Atmel 
ATMega 

x86-64 1.44 
GHz Intel 
Atom 

ARM 1.54 GHz 
A57 

GPU Dual Core 
VideoCore IV® 
Multimedia Co-
Processor 

None Intel 
Integrated 
Graphics 
(OpenCV) 

128 Core NVIDIA 
Maxwell (CUDA, 
OpenCV, cuDNN) 

OS Raspbian 
(Linux) 

None Windows 10, 
Linux 

Linux for Tegra 

I/O USB2, 40 Pin 
GPIO, CSI, 

USB, 20 pin 
GPIO 

USB, 
Bluetooth 

 USB3, CSI-2, 
PCI-e 

RAM 1GB 6144 Bytes 2GB  4GB 

Disk 16GB + Micro 
SD 

48KB 32GB + 
MicroSD 

 Micro SD 

Display HDMI, DSI None  HDMI  HDMI 
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Device 
Name 

Raspberry Pi 3 
Model B+ 

Arduino Uno 
Wi-Fi Rev2 

Intel Compute 
Stick 

NVIDIA Jetson 
Nano 

Network 802.11a/b/g/n 

100 Base 
Ethernet 

WiFi  802.11 
a/b/g/n/ac 

Gigabit Ethernet 

Power USB 2.1 amp 7-12V  5V   5/10W 

There are many different microcontrollers on the market. These devices come with community 
support and a large ecosystem of software packages that are pre-compiled for these devices. The 
ease of development for these devices is attractive for a scientific environment like NREL, where 
development speed may be more important than per-unit cost or various performance 
benchmarks. The devices we considered are listed in Table 2. 

In addition to the microprocessor, there are various co-processors available from manufacturers 
that can add capabilities to less powerful CPUs. Some of these devices include the Intel Neural 
Compute Stick (Movidious) and Intel ARRRIA, which provide hardware specialized for neural 
network computation and FPGA, respectively. These devices were considered, but ultimately not 
purchased since we believed that our computer vision task could be carried out by the built-in 
resources of all our microprocessors and would not be significantly sped up by these co-
processors. 

We acquired the Raspberry Pi 3 B+, an Intel Compute Stick, and the NVIDIA Jetson Nano1. The 
Raspberry Pi 3 B+ was ultimately used in the demonstration sky imager. Its combination of a 
great user community with many example codes, an ecosystem of PiCam camera modules, 
official support from Amazon AWS GreenGrass IoT service, as well as the onboard VideoCore 
IV GPU, all come together to make Raspberry Pi a good first choice. 

The Raspberry Pi can be extended through “hats,” which connect to its GPIO pins and sit on top 
of the device. One such hat that we investigated was the Pi Anywhere.2 This hat provides the 
Raspberry Pi with cellular connectivity, powered by Raspberry Pi’s power supply. As NREL had 
provided two different cellular modems which could interface with the Pi using Ethernet and Wi-
Fi, we did not end up purchasing this hat. It may be useful for projects in the future that require a 
more compact microcontroller assembly. 

2.2 Cameras 
Digital cameras are cheap and widely available. Most of the microcontrollers in section 2.1 
support most USB webcams on the market. One of the challenges with sky imagery is the 
requirement that the camera face directly into the sun. This can cause a burn-in effect on older 

 
 
1 Setup guide: https://www.pyimagesearch.com/2019/05/06/getting-started-with-the-nvidia-jetson-nano/ 
2 https://www.pyimagesearch.com/2019/05/06/getting-started-with-the-nvidia-jetson-nano/ 
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image sensors. Newer sensors such as the Sony IMX219 have been used in sky imaging devices 
successfully and can withstand the high intensity light from the sun for sustained periods. 

Table 2: Feature comparison of the two cameras purchased for this project. 

Device Name PiCam V2 ELP 180 

Price $28  $50  

Max Resolution 3280x2464 1920x1080 

Outdoor Enclosure No No 

Connector Pi - CSi Interface USB 

Field of View 160 degree lens (64 
degrees default lens) 

180 degrees fisheye lens 

In searching for a useful camera module, we came across several home surveillance products on 
the market which package a webcam, microcontroller, and a cloud monitoring service in one 
product, offering a compelling off-the-shelf solution. Such products include the Amazon Cloud 
Cam, Logitech Circle, and the Nest Cam Outdoor. These products were considered for this 
project but were deemed as not suitable due to lack of API access to raw image data, the 
requirement of a reliable and fast internet connection, and the desire to re-program the device 
with custom research code. These security cameras may be viable choices for other use cases. 

Another class of cameras considered were security cameras, such as the Vivotek S Series 
FE9381-EHV Outdoor Fish-eye dome, as well as analog security cameras which are very 
inexpensive. These types of cameras do not have any on board processing beyond video 
encoding, and some require separate analog-to-digital converters. Furthermore, it was unknown 
if these cameras could withstand direct sunlight for sustained periods of time, and if they were 
waterproof when their dome is facing upwards (which would be inverted from normal usage as a 
security camera, facing downwards). 

The PiCam is an open-source camera board which is designed to be connected to a Raspberry Pi. 
There are two versions of the PiCam. V1 is built around the OV5647 camera module with a 
sensor resolution of 5MP. The PiCam V2 supports the superior IMX219 camera, which has a 
sensor resolution of 8MP. Unfortunately, all the camera modules on the market with fish-eye 
lenses were PiCam V1. Previous work by Richardson (Richardson et al., 2017) used a modified 
PiCam V2, which they modified by adding a fisheye lens. 

The final class of cameras we considered were standard USB webcams, such as the ELP180 
USB camera. These webcams use a standard USB interface, and manufacturers may provide 
drivers for Mac, Linux, and Windows operating systems. Some of these cameras are 
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customizable, with manually controllable exposure and resolution, but some manufacturers may 
disable these controls. 

We ordered a PiCam V2 with a built-in 160o field of view and an ELP180 webcam as a backup 
option. However, the PiCam V2 we received was dead on arrival, and the RMA process would 
have added risk to the project timeline. We ultimately used the ELP180 camera which worked 
out of the box with the Raspberry Pi as well as with the development laptop. 

2.3 IoT Cloud Platforms 
There are many cloud platform providers with offerings in the IoT space such as Amazon IoT 
Core, Microsoft Azure IoT, Google Cloud IoT, C3 IoT, and Siemens MindSphere. We chose 
Amazon IoT for this project as NREL provides ready access to an Amazon AWS account, and 
this service is supported internally. Further, products such as the NVIDIA Jetson support AWS 
GreenGrass out of the box, with documentation that is specific to GreenGrass. Although we 
chose GreenGrass for this project, a more thorough comparison between IoT cloud products 
should be made. To be clear, this is not a statement of preference for the Amazon product or an 
implication of its superiority to other products on the market. NREL does not endorse Amazon or 
Amazon’s products by the publication of this report. 
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3 The CloudCV Sky Imager 
In this section, a description of the construction of our in-house sky imager is provided. We 
describe the choices made in building the enclosure, as well as special considerations for IoT 
devices being deployed at NREL. 

Table 3: Approximate cost of the CloudCV sky imager, by component, in 2018. 

Component Name Cost to Project (Excludes 
extra parts and services 
provided by NREL) 

Description 

ADS1115 $16 Analog to Digital Converter 
for the Pyranometer 

CanaKit Raspberry Pi 3 B+ 
Starter Kit 

$80 Microcontroller 

ELP 180 degree Fisheye Lens 
Wide Angle USB Camera 
with Housing 

$48 Camera  

Pelican Case 1200 $45 Enclosure 

70mm Acrylic Dome $10 Window for camera lens 

Campbell Scientific Conduit 
25746, 25744 and Putty 6596 

$13 Waterproof conduit for wires 

Cradlepoint IBR600 $0 (NREL provided) Wireless gateway and router 

LICOR LI200 $0 (NREL provided) Pyranometer 

 Total Cost per device: $212 

 

 

 

3.1 Device Enclosure 
The sky imager must work outside in a variety of weather conditions. We started with a Pelican 
Case 1200, which is a waterproof case commonly used for field work. The case was then 
modified by the NREL machine shop in three ways. First, an acrylic dome was added to the top, 
which provides a clear view of the sky. This was done by drilling a hole in the top side with a 
relief around the rim, and then affixing the acrylic dome in place with epoxy. Second, a large 
hole was drilled in the bottom of the enclosure from which a Campbell Scientific conduit was 
attached. This conduit uses electrician’s putty as a seal, keeping water outside of the enclosure 
while allowing cables to pass through. The third and final modification made to the enclosure 
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was reflective white spray-paint, which was intended to reflect as much heat energy from the sun 
as possible, reducing the heat inside the imager. 

One concern when designing the sky imager was the potential for over-heating, as the device 
must sit outside in the sun, and it has a clear dome which is pointed towards the sun. We decided 
to cover the sky imager in white reflective paint and place a reflective white card at the bottom of 
the camera dome to reflect as much heat energy as possible back out through the dome. If 
necessary, we could have also cut holes in the bottom of the device or added a fan to provide for 
more ventilation. There are several different options when it comes to cooling the sky imager: 

- Active cooling of permeable enclosure with an enclosure fan, and downward facing 
air conduits. 

- Active cooling of a sealed enclosure using a thermoelectric heat coupler. 

- Passive cooling of permeable enclosure with downward facing air conduits. 

- Passive cooling of sealed enclosure using a reflective coating. 

One possibility that was not considered, but which may prove useful in future iterations, is to use 
two separate enclosures: one for the camera, and one for the microcontroller and all other 
components. This would separate the heat load of the microcontroller from the clear window, 
allowing the microcontroller to be placed in a nearby but covered location, in the shade and 
sheltered from the rain. 
 

3.2 Hardware 
The main sensor included in the device is the ELP 180o Fisheye Lens Wide Angle USB Camera. 
In addition to the webcam, the sky imager also collects irradiance data from an onboard LICOR-
LI200 Pyranometer.  This pyranometer was provided by the NREL Solar Radiation Research 
Laboratory (SRRL) and outputs a voltage differential in the millivolt range. As the Raspberry Pi 
does not have analog I/O pins, a separate analog to digital converted (ADC) was purchased and 
connected to the Raspberry Pi’s serial port. We chose the Adafruit ADS1115 ADC, since it 
features a built in 16x gain, as well as a relatively high 12-bit precision. This device was known 
to work with the Raspberry Pi and example Python code for this use case was available through 
the manufacturer. 
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Figure 1: Block Diagram of the hardware in the CloudCV Sky Imager 

 

3.3 Software 
The Raspberry Pi was loaded with the Raspbian operating system, which is a distribution of 
Linux. The software lifecycle onboard the device is handled by the Amazon GreenGrass 
daemon, which was installed on the device before field deployment. The GreenGrass daemon 
executes AWS Lambda functions, which may contain arbitrary Python code, and are specified 
through the AWS management console. The lambda function contains the research code needed 
to capture images from the camera, perform any image processing, and then upload data to the 
cloud. 

In addition to AWS IoT Core, GreenGrass, and Lambda, we used IoT Events and CloudWatch 
for event logging, such as recording errors. As the IoT device may be deployed in the field, it is 
important to be able to log errors and create a feedback loop for software development and 
debugging. Finally, we used AWS S3, which is an object store, to store images and pyranometer 
readings for later analysis. A diagram of how we used these products is provided in Figure 2. 



11 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 

Figure 2: Block diagram of the AWS services used to control the sky imager. The box on the left 
represents the imager, while the box on the right represents Amazon’s cloud infrastructure. 

3.4 Deployment at NREL South Table Mountain Campus 
The CloudCV sky imager was deployed for three months at NREL’s Solar Radiation Research 
Laboratory Mesa Top facility, located behind NREL’s South Table Mountain campus, in 
Golden, Colorado. This location was chosen due to its “Mezzanine” structure which provides a 
good platform for solar measurement devices. This platform has tables which are convenient 
places to strap down new devices, as well as power outlets and mount points for waterproof 
conduit. Additionally, the Mesa Top facility has other solar sensors for ongoing experiments that 
are aggregated by the Baseline Measurement System (BMS) and freely available on the internet. 
By placing the sky imager at the Mesa Top, we receive plentiful solar data from the same 
location, which can be downloaded for free and used in future analysis. 

Before being placed on the Mesa Top facility, the plans for this device were discussed with 
NREL’s Environmental Health and Safety department as well as an internal which reviewed the 
device for electrical issues as well as for general safety. Some key lessons learned include 
keeping the electronic devices under 20V DC inside our enclosure and using a NEEMA 
enclosure for any 120V AC supply current; removing any lithium batteries from the components 
of the sky imager, as such batteries are flammable and may not withstand high temperatures. For 
example, many commercial 4G LTE hotspot devices contain a lithium battery backup. This was 
the main consideration for using a Cradlepoint IBR350, which has a slower throughput since it 
only supports the 3G cellular network, but it does not contain a battery. 

Initially, we had expected to connect the sky imager directly to the Wi-Fi network at the Mesa 
Top facility. However, it was determined that Raspberry Pi devices could be considered a 
security threat, as demonstrated by a recent hack of NASA JPL from an unauthorized Raspberry 
Pi3. Therefore, we were forced to take the more complicated approach of setting up a mobile 

 
 
3 https://www.zdnet.com/article/nasa-hacked-because-of-unauthorized-raspberry-pi-connected-to-its-network/ 
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internet connection through a cellular gateway. This approach isolated the Raspberry Pi from the 
NREL enterprise network, but it comes at the expense of a more complicated device, more 
expensive operational costs, and lower throughput. 

 

 

   
Figure 3: Photographs of the CloudCV sky imager and pyranometer as deployed on the mezzanine 

of the NREL Mesa Top facility. 
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4 Preliminary Analysis of the Short-Term Prediction of 
Cloud Cover 

This section provides an outline of a preliminary analysis of cloud cover prediction using an 
algorithm based on optical flow and linear advection, described by (Chow et al., 2011). A short 
review of the current literature in cloud cover prediction using sky images is provided. Then, we 
describe the cloud cover prediction algorithm. The performance of this prediction algorithm is 
reported using the critical success index, which is an event-based metric. Finally, a discussion of 
the results along with recommendations for future research is given. 

4.1 Background 
There are several groups in the United States that are working on cloud cover prediction using 
sky imagers. One group from the University of California in San Diego deployed a sky imaging 
system to record images of the sky at 30 second intervals (Chow et al., 2011). These images are 
then used to produce cloud cover forecast estimates through a cloud advection algorithm. The 
authors of this paper claim their technique improves over baseline algorithms. 

Another group is based out of the University of Texas in San Antonio. In their paper (Richardson 
et al., 2017), cloud position is determined using a computer vision algorithm, and then a ray 
tracing algorithm is applied to project the shadow of these clouds onto a terrain map. Their goal 
is to forecast cloud cover at an arbitrary position in some domain around the sky imager, not only 
at the sky imager’s location. In a follow up paper (Moncada et al., 2018), it is shown that deep 
learning techniques can be used to extract precise irradiance values from an all sky image, 
without the need for a pyranometer. 

Finally, we found an effort at Brookhaven National Laboratory, in collaboration with the Electric 
Power Research Institute and NCAR, to implement regional forecasting of cloud cover using a 
network of multiple sky imaging devices (Kalb, 2018). 

4.2 Forecast Method 
We implement an optical-flow based linear advection algorithm to predict cloud cover, similar to 
the algorithm described in (Chow et al., 2011). Our forecasting algorithm produces a signal 
which predicts events where clouds shade the sun at the 60-second time horizon. 

First, the images were downscaled to 500x500 pixels to ease computational burden on the sky 
imager. These images have significant fish-eye distortion, which are assumed to be spherical. We 
perform a spherical coordinate transformation to map the fish-eye images to undistorted images. 
The undistorted images are then passed through a Farneback optical flow algorithm (Farnebäck, 
2003), as implemented in the OpenCV (Bradski, 2000) software package’s 
“calcOpticalFlowFarneback” function. This algorithm produces an estimate for optical flow 
between two images on a pixel-by-pixel basis. 

The location of clouds is extracted by using a grayscale thresholding algorithm. Cloudy areas 
have pixels of higher intensity, close to a white color, while the sky has a darker shade. We used 
a threshold of 240 out of 255. Some other papers use a ratio of red to blue to detect cloudy 
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pixels, but the ELP180 webcam in the CloudCV sky imager struggled to capture the color, so 
this method was unreliable. 

Finally, the optical flow vectors are masked by the presence of cloud cover at their tails. These 
vectors were then multiplied by a scaling factor proportional to the desired time horizon. The 
vectors are then masked at their heads by a 25 pixel radius disk around the location of the sun. 
The heads of the remaining vectors represent clouded areas which are projected to cover the sun 
disk at the desired time horizon. The quantity of such vectors is then divided by the total number 
of pixels in the image, yielding a prediction signal. A visual representation of these steps is 
provided in Figure 4.  

 

Figure 4 (A) Sample image from the CloudCV sky imager. (B) image after fisheye correction, (C) 
visualization of the optical flow, (D) linear extrapolation of the optical flow, yellow pixels represent 
clouds that are projected to shade the sun in the next minute. (E) Visual comparison of the image-

based forecast signal (in blue) with the observed irradiance signal from the pyranometer (in 
orange). (F) Picture of the CloudCV Sky Imager as it was deployed to the NREL Mesa Top facility. 

 

4.3 Forecast Results 
This forecast algorithm was used to predict cloud cover events at a 60-second forecast horizon 
for one day, September 10th, 2019. Here, we evaluate the skill of this forecast using an event-
based score. First, the prediction and irradiance signals are converted into discrete events using a 
threshold. We pick a threshold of 0.35 for the prediction signal (which is a unitless proportion), 
and 400 W/m2 for the absolute difference in the irradiance signal. In both cases, we look for 
events where the signal has not met the threshold for at least ten minutes, followed by the 
threshold being met for at least a single frame. Using these parameters, we found 4 irradiance 
prediction events and 4 actual irradiance events on the day being studied. 
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To determine if a prediction event has a matching subsequent irradiance event, we look for 
irradiance prediction events which lead an actual irradiance event by 30 seconds to 5 minutes. 
Using these parameters, we find 3 true positive events, 1 false positive, and 1 false negative. This 
yields a critical success index (CSI) score of 0.6. It is important to note that this score represents 
the result of manually tuning the cloud-cover prediction algorithm for one specific day. This day 
was sunny in the morning, yielding to relatively small clouds in the afternoon. 

4.4 Next Steps 
The forecasting algorithm described was able to provide some predictive capability for sun 
shading events on one day with ideal conditions and manually tuned parameters. It is unknown 
how this algorithm will perform on other days, or how it would perform with different 
parameters. A more robust analysis of this prediction algorithm, spanning more days of the 
dataset, different time horizons, and different parameters, would be beneficial. Additional 
prediction methods, such as deep learning-based methods, may also be studied to further 
improve prediction accuracy. 

Further exploration of the evaluation metrics used for event-based forecasts and the potential 
market value and utility for improvements in such forecasts. For example, solar generation 
facilities may be able to use a cloud cover prediction to optimize the use of energy storage 
devices, such as batteries. 

Finally, the sky imager itself could be improved by adding more and higher quality sensors. Such 
a device would capture more data about the atmospheric state, increasing the amount and quality 
of input data used in the cloud cover prediction. In addition, multiple sky imaging devices can be 
deployed over a larger geographic region. 
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