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Battery Degradation Modeling in Hybrid Power Plants: An Island System
Unit Commitment Study

Jianqiao Huang, Xin Fang, Xinyang Zhou, Jin Tan, Shuan Dong, and Andy Hoke

Abstract—As hybrid power plants (HPPs), such as photovoltaic
(PV) and battery combinations, become increasingly important
in power systems with high renewable energy penetration to
address PV variability and ensure grid stability. This paper
focuses on the urgent need to model the coordination between
PV and battery systems in HPPs while accounting for bat-
tery degradation. We present a generation scheduling model
that explicitly incorporates PV-battery hybridization in the unit
commitment problem. Moreover, the cost function of the HPP
scheduling problem endogenously considers battery degradation
with adjustable weights to strike a balance between minimizing
production costs and prolonging battery life, particularly when
providing energy arbitrage and ancillary services. Using a realis-
tic island system simulation, we demonstrate that accounting for
battery degradation in the scheduling problem can significantly
extend battery life with only minor additional production costs.

Index Terms—Hybrid power plant, PV, battery degradation,
unit commitment, optimization

NOMENCLATURE

Indices
b Index for load buses
i Index for generation units
p Index for PV units
t Index for time interval
T Time span
l Index for transmission lines
Constants
SUi/SDi Startup/Shutdown cost of unit i
RU

i /RD
i Ramp-up/Ramp-down limit for unit i

RSU
i /RSD

i Ramp-up/down limit for unit i when starting
up/shuntting down

Limitl Transmission limit for line l
D̂b,t Forecast demand of load bus b at time t
Pp,t Forecast PV power of unit p at time t
Gi,t/Gi,t Max/Min generation output of unit i at time t
TU
i /TD

i Minimum uptime/downtime for unit i
GSF l−i Generation shift factor from bus i to line l
LP Load-shedding penalty price
CHi/DISi Charging/discharging limit for ESS i
SOCi Maximum state-of-charge (SOC) for ESS i
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SOCi Minimum SOC for ESS i
ηmin
i Charging/discharging efficiency of ESS i
RP /PFP Regulation and PFR shortage penalty price
PFRr

t PFR requirement at time t
Rgru,t/Rgrd,t Regulation-up (Rg-up)/Regulation-down (Rg-

dn) reserve requirement at time t
Variables
cpi,t Production cost for unit i at time t
Gi,t Generation output for unit i at time t
Gi,t Maximum generation for unit i at time t
Pp,t PV power output for unit p at time t
ci,t/di,t Charging/discharging status of ESS i at time t
chi,t/disi,t Charging/discharging power of ESS i at time t
SOCi,t SOC of ESS for unit i at time t
PHi,t HPP power output for unit i at time t
Db,t Scheduled demand of bus b at time t
∆Db,t Load-shedding quantity of bus b at time t
∆PFRt System PFR capacity shortage at time t
∆Dt System load-shedding at time t
∆RgUt System Rg-up shortage at time t
∆Rgdt System Rg-dn shortage at time t
RgUi,t/RgDi,t Rg-up/Rg-dn capacity of unit i at time t
PFRi,t PFR capacity of unit i at time t
vi,t/ui,t/wi,t Commitment/Startup/shutdown status of unit i

at time t

I. INTRODUCTION

Hybrid power plants (HPPs) usually combine a renewable
energy resource with another form of generation or energy
storage system (ESS) to firm electricity generation and/or
other forms of power, such as heat. Compared with a single
type of renewable resource, HPPs feature that (1) HPPs’
power is more predictable and controllable when the mixed
generation production of different resources is an anti- or
inverse correlated, (2) HPPs improve the system reliability by
providing grid services to alleviate the impact of forecasting
errors and variability of renewable energy and loads, and (3)
HPPs decrease the production cost and ensure the profitability
by providing energy and other ancillary services [1].

A recent report [2] shows a substantially increased share of
HPPs, i.e., 34% of all solar and 6% of wind in interconnection
queues, are proposed as hybrids in the USA. One popular
configuration of HPPs is solar plus storage. In [3], [4], a multi-
timescale electricity market operation modeling of PV and the
battery is proposed considering the temporal coupling from
day-ahead to real-time market operations. The comprehensive
analysis of the effects of PV and ESS on the multi-timescale
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system operation is studied. In [5], the battery and PV are
independently dispatched in a microgrid. None of these works,
however, has fully coordinated the dispatch of sub-components
of HPP or investigated the effect of considering ESS battery
degradation on the HPP dispatch results.

Battery degradation is important for modeling the battery’s
lifetime to reduce the overall investment cost of HPP. There-
fore, how optimally coordinating HPPs of different resources
while considering battery degradation is increasingly crucial
in the generation scheduling problems, e.g., unit commitment
(UC) and economic dispatch (ED). To fully co-control the
sub-components of an HPP, we propose an operation scheme
that optimally operates the HPP to provide grid services as a
conventional generation unit and simultaneously extends the
lifetime by reducing the battery degradation in a day ahead
unit commitment (DAUC) problem consisting of twenty-four
1-hour intervals.

The main contributions of this paper are twofold: 1) we
propose a mixed-integer linear programming model for HPPs
providing both energy and ancillary services in the DAUC
scheduling model; 2) we co-optimize the production costs of
the system and the battery degradation cost of HPPs, conduct
case studies to validate the efficacy of HPP modeling in a
real island grid and study the effects of considering battery
degradation on scheduling results.

The remaining parts of this paper are organized as follows.
Section II proposes the HPP modeling respecting the battery
degradation and resources hybridization. Section III embeds
the HPP models into the general UC model. Section IV
performs a 14-day DAUC in a real island grid to show
the effectiveness of the battery degradation model in the
scheduling. Section V concludes the paper.

II. HYBRID POWER PLANT MODELING

A. Battery Degradation Modeling

In lithium-ion batteries, which are the subject of this work,
the battery capacity is reduced mainly by the depth of dis-
charge (DOD) over time, time spent at various SOC levels,
and cell temperature (Tc). In this paper, we assume that we
have good thermal management, so Tc will not influence the
degradation rate. We aim to reduce the degradation ascribed
to the DOD by coordinating BESS and PV in each HPP. The
impact of SOC will be addressed in the future.

In [6]–[8], the battery degradation can be characterized by
a nonlinear function of the DOD and time t as follows:

St(t) = ktt, Sδ(δ) = (k1δ
k2 + k3)

−1, (1a)

fd,i = Sδ(δ) + St(t), L = 1− e−
∑n

i=1 fd,i , (1b)

where δ and t represent DOD and time, respectively; St(t) and
Sδ(δ) denote the stress factors of time and DOD, respectively;
fd,i represents the degradation at ith cycle; and L is the loss
of the battery capacity. The time stress coefficient kt and DOD
stress coefficients k1, k2, and k3 are given in subsection IV-C.
Note that we neglect St(t) in DAUC scheduling model but

will consider St(t) to estimate the battery degradation after
solving DAUC.

The useful lifetime of the battery is the period when the
loss of capacity is less than 20% of the initial capacity, i.e.,
L ≤ 0.2. We then define battery degradation cost, CL, with
decision variable L as follows:

CL =
L

0.2
C0, (2)

where C0 denotes the battery price, L
0.2 represents the per-

centage of useful lifetime that was consumed. For a brand
new battery, the loss of capacity, L, is 0, so its degradation
cost, CL, is 0. The battery reaches the end of life at L = 0.2,
and the corresponding CL equals the battery cost C0.

However, because L is nonlinear as expressed in (1b),
it is computationally heavy to solve DAUC considering the
battery degradation cost, CL. To this end, we approximate the
nonlinear degradation cost with respect to DOD, δ, by the
following linear function:

L = aδ + b, (3)

where a and b are coefficients and constants of the linear
regression. Their value can be calculated by the least square
method. Substitute (3) into (2) to get the linearized degradation
cost C̄L in terms of δ as:

C̄L =
aδ + b

0.2
C0. (4)

The linear degradation cost can be further expressed by the
battery discharging and charging power disi,t and chi,t as:

C̄L =
aC0(disi,t + chi,t)

0.4E
+

C0b

0.2
. (5)

where E denotes the initial capacity of the battery. Now
we have a linear cost function C̄L with respect to decision
variables disi,t and chi,t, which will later be integrated into
DAUC with adjustable weight k for improved battery lifespan
in Section III-A.

B. Constraints for the Hybridization

We schedule each HPP as a generator while satisfying the
operational constraints of sub-component PV and battery:

Pp,t + disi,t − chi,t ≥ 0, (6a)
ci,t + di,t ≤ 1, (6b)

chi,t ≤ ci,tCHi, disi,t ≤ di,tDISi, (6c)
SOCi,t − SOCi,(t−1) = chi,tηi − disi,t/ηi, (6d)

SOCi ≤ SOCi,t ≤ SOCi, (6e)
0 ≤ Pp,t ≤ pp,t, (6f)

where constraint (6a) ensures that the battery can only
charge from local PV. The constraints of battery in-
clude charging/discharging status (6b), the maximum charg-
ing/discharging power limit (6c), and the SOC limit (6d)-
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(6e). The PV has power limit (6f). Moreover, we consider
the battery round-trip efficiency, ηi. Binary variables are ci,t,
di,t in (6b), and continuous variables are disi,t, chi,t, SOCi,t,
and Pp,t.

III. UNIT COMMITMENT MODEL

A. Objective Function

The objective function of the UC problem usually includes
the operational cost of traditional units—represented by their
generation costs associated with their startup and shutdown
costs—as well as the shortage penalties for the energy, regu-
lation, and PFR services. To prolong the lifetime of batteries
while minimizing the operational cost, the objective function
is updated with a weighted sum of the operational cost and
the linear battery degradation (5) as follows:∑

t∈T

∑
i∈g

(
SU iui,t + SDiwi,t + cpi,t

)
+ LP ·∆Dt+

PFP ·∆PFRt+RP ·(∆RgUt +∆Rgdt )+k · C̄L, (7)

where the parameter k functions as the trade-off between the
cost of production and battery life to be determined. Note that
the production cost, cpi,t, of the traditional thermal unit in (7)
can be approximated by a piece-wise linear function from its
quadratic production cost curve. In this model, we assume that
the operational energy price of PV is 0. For ancillary services,
the bidding prices are zero.

B. Constraints for the Single Unit

The constraints for traditional thermal units are similar to
those in [9] and are presented as follows for completeness,

ui,t + wi,t ≤ 1, (8a)
vi,t − vi,t−1 ≤ ui,t − wi,t, (8b)∑t

τ=t−TU
i +1 ui,t ≤ vi,t, (8c)∑t

τ−t−TD
i +1 wi,t ≤ 1− vi,t, (8d)

Gi,t −Gi,t−1 ≤ RU
i vi,t−1 +RSU

i ui,t, (8e)

Gi,t−1 −Gi,t ≤ RD
i vi,t +RSD

i wi,t, (8f)

Gi,t ≤ Gi,tvi,t, (8g)

Gi,t +RgUi,t ≤ Gi,t+1, (8h)

Gi,t + PFRi,t ≤ Gi,t+1, (8i)

Gi,t −RgDi,t ≥ Gmin
i,t+1vi,t+1, (8j)

RgDi,t −RD
i ≤ Gi,t −Gi,t−1, (8k)

Gi,t −Gi,t−1 ≤ RU
i −RgUi,t, (8l)

vi,t, ui,t, wi,t ∈ {0, 1} . (8m)

We consider the start-up and shut-down trajectories of con-
ventional generators in (8c) and (8d). In addition, (8e) – (8g)
show the ramping rate constraints for units; (8h) – (8l) impose
the limitation for the ancillary services.

C. System-Wide Constraints

The system constraints include the power balance constraint
for every time interval, system regulation reserve, PFR, and
thermal constraints of transmission lines as follows:∑

i∈g(Gi,t + Pp,t)−
∑

b∈B(D̂b,t −∆Db,t) = 0, (9a)∑
i∈gPFRi,t +∆PFRt ≥ PFRr

t , (9b)∑
i∈gRgUi,t +∆RgUt ≥ Regru,t, (9c)∑
i∈gRgDi,t +∆Rgdt ≥ Regrd,t, (9d)

−Limitl ≤
∑

i∈LgGSF l−i (Gi,t + Pp,t), (9e)

−
∑

b∈LbGSF l−b(D̂b,t −∆Db,t) ≤ Limitl. (9f)

D. DAUC Considering HPP

We present the DAUC problem formulation scheduling the
dispatch of thermal units, HPP, and other renewable energy
resources used in the case study as follows:

min (7), (10)
s.t. (5), (6), (8), (9).

IV. CASE STUDY

A. Simulation Setup

In this section, we will study the impact of the hybridization
on the production cost and demonstrate the effectiveness of the
linear degradation cost on extending the battery lifespan in a
2-week DAUC of an island system. We have four batteries,
including one standalone battery and three sub-component
batteries in three HPPs. They occupy 14.6% of generation
capacity. We refer to the details of the system to [10].

The 2-week DAUC has 14 sequential DAUC problems. Each
DAUC contains twenty-four 1-hour intervals. We use Pyomo
to formulate the optimization problem and centrally solve the
problem using the FICO-XPRESS solver.

B. Impact of PV and Battery Hybridization

The following two cases are simulated to study the effect
of the HPP modeling on HPP dispatch and production cost.

• Case 1: Dispatch PV and BESS independently.
• Case 2: Dispatch each HPP as a generator.
1) Dispatch of HPP: The optimal dispatch of HPPs is

plotted in Fig. 1. Compared to Case 1, the HPP behaves like
a generator in Case 2.

2) Production Cost: The daily production costs under the
two cases are presented in TABLE I. Compared with Case 1,
Case 2 increases the production cost by 0.18%, attributed to
the operation constraint that the battery can only be charged
from collocated PV. While in Case 1, the battery can charge
from the grid, which leads to a slightly lower operational
cost. In real-world hybrid power plants (HPP), the same
organization usually owns the collocated PV and batteries. It
is a common constraint that BESS cannot be charged from the
grid for HPP owners related to eligibility of the BESS for the
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Fig. 1: Comparison of HPP dispatch under different HPP modelings.

U.S. Federal investment tax credit for renewable energy plants.
Case 2 is designed to model HPPs based on this condition.

If the batteries and PV are owned by different owners, the
system operators might not have this local charging require-
ment. Or, if the HPP owners have different interconnection
requirements that allow charging from the grid, Case 1 will
be the better operation model for HPPs.

TABLE I: Production cost ($1 M)

Case Min Max Mean Std Sum
Case 1 0.2902 0.5647 0.4365 0.0811 6.1116
Case 2 0.2912 0.5650 0.4373 0.0812 6.1224

C. Impact of Battery Degradation

We run a 14-day DAUC with different k values to study
the effect of the weighted linear degradation cost k · C̄L

on the battery lifetime, total production cost, dispatch, and
SOC. Recall that k serves as the weighting factor of C̄L in
our objective function (7). The coefficients in (1) are set to
1.4× 105, −5.01× 10−1, −1.23× 105, and 4.14× 10−10 for
k1, k2, k3, and kt, respectively. We use the nonlinear model
to calculate the battery degradation. The battery price, C0, is
estimated by multiplying the initial capacity by the unit price
$250/kWh [11].

1) Battery Lifetime: The four batteries are indexed by XP,
M014, M0041, and M0042. We estimate their lifespan based
on the 2-week battery degradation rate in TABLE II. The
maximum lifespan is 15.31 years when we only consider
the time stress factor. As shown in TABLE II, with the
increasing value of k, the lifespan of batteries becomes larger.
Particularly, the lifespan is larger than 12 years with k = 25.

2) Total Cost: The total cost is the sum of the generation
cost and the battery degradation cost. We plot the lifespan
of the battery, generation cost, and total cost in Fig. 2. As

TABLE II: Battery lifespan

Battery Lifespan (yr.)
k XP M014 M0041 M0042
0 4.86 5.71 5.76 5.52

0.02 4.92 5.78 5.65 5.71
0.2 5.52 5.86 6.98 5.95
0.8 7.07 7.22 8.06 7.24
1 7.30 7.40 7.91 7.38

1.3 6.72 7.37 7.63 7.77
2 7.11 7.46 8.13 7.56
8 12.71 13.26 12.24 12.44
13 12.71 13.58 12.37 12.22
20 13.38 13.73 12.52 12.22
25 13.31 14.10 12.17 12.44

Fig. 2: The battery lifetime (up); the generation cost, Gen, together
with the total cost, Gen+BESS, (down) using different k values.

shown in the figure, with the increasing value of k, both the
generation cost and the lifespan become larger. The minimum
overall cost is $6.498× 106 when k = 1.3.

3) Dispatch of Units: We plot the dispatch of inverter-
based renewable energy resources, traditional generators, and
batteries on a typical day, the third day, under three cases:

• Case 1: Overlook the battery degradation with k = 0,
• Case 2: Upweight the battery degradation with k = 2,
• Case 3: Upweight the battery degradation with k = 25.

As shown in Fig. 3, among the three cases with different k
values, k = 2 and k = 0 have very similar dispatch profiles
that BESS charges at high renewable electricity generation
(HREG) level and otherwise discharges. However, when k =
25, BESS is idle most of the time. It results in large amounts
of renewable energy curtailment at the HREG level and an
increase in the dispatch of traditional generators at other times.

4) SOC of BESS: The SOC on the same typical day is
depicted in Fig. 4. Note that the SOC is consistent with the
charging and discharging pattern of batteries in the lower
figure of Fig. 3. Specifically, SOC increases at HREG level,
and decreases at other times with k = 0 and k = 2, whereas
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Fig. 3: The dispatch of traditional unit (up), renewable energy
resource (middle), and the BESS (down) using different k values.

Fig. 4: SOC of BESS using different k values.

SOC remains 60% with k = 25.

V. CONCLUSION

In this paper, we embedded the proposed HPP model
respecting the battery degradation into the UC problem of
an island system. The 2-week simulation results show that
compared with independently dispatching PV and battery, the
coordinated control of PV and battery in HPP produces a
minor increase in the production cost. Moreover, the proposed
formulation can extend the battery lifespan by explicitly

modeling the degradation cost in the objective function. The
sensitivity study finds out the desired value of the degradation
penalty factor to achieve the minimum overall cost, the sum
of the generation cost and the cost for the battery degradation.
This demonstrates the efficacy of the proposed scheduling
model with battery degradation cost.

In the future, we will extend the research in three directions.
First, we will formulate more operational constraints, e.g.,
the inverter constraints for AC-coupled and DC-coupled HPP.
Second, we will derive a more accurate penalty for the cycle
aging and consider partial calendar aging due to the SOC to
further reduce the overall costs. Third, we will study the effect
of real-time AGC signals on the lifespan of the battery.
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