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1. Introduction

In liquid rocket engines, the fuel is supplied to the
combustion chamber in the liquid state though injectors. 
Such fuel undergoes atomization, vaporization, and 
combustion processes. To design reliable and efficient 
injectors, it is required to understand the full processes. 
This research is part of an effort to develop a full 
atomization-vaporization-combustion solver from 
first principles. As an initial step to tackle the 
atomization process, a multiphase flow solver is under 
development. For the development, a library of the 
volume of fluid scheme for multiphase, IRL [1-2], is 
coupled with a reacting Navier-Stokes equation solver, 
PeleLM [3]. Furthermore, as the surface tension has 
considerable effects on spray breakup. surface tension 
is implemented in the momentum equation using the 
continuum surface force model (CSF) [4] and the 
improved height function (HF) technique [5]. 

2. Numerical Methods

In the coupled PeleLM-IRL solver, the scalar field α
(volume fraction of fluid) is defined. If α is 0, there is 
no tracking fluid inside the cell, and if α is 1, the cell is 
full with the tracking fluid. Instead of solving the 
continuity equation of density, a flux of α is calculated 
with IRL in the coupled PeleLM-IRL solver. Then, the 
next time step αn+1 is updated with computed flux. The 
density is estimated by , where the 
subscripts l and g denote liquid and gas, respectively. 

In the CSF model [4], the surface tension volume 

force is calculated by , where σ is the surface 
tension coefficient, κ is the curvature which is 
calculated by the improved HF technique [5], and is 
the interface normal vector which is obtained from the 
gradient of α. Finally, the surface tension is introduced 
in the momentum equation by the external force term. 

3. Verification Results

To verify the implementation of surface tension, two 
test cases were conducted. In both test cases, the liquid 
density is 1,000 kg/m3 and the gas density is 1 kg/m3. 
The dynamic viscosity coefficient is set to 0.01 N·s/m2 
and the surface tension coefficient is 0.07 N/m. 

3.1 Verification 1: Stationary circular droplet 

The objective of the test case is to confirm that the 
surface tension implementation leads to the correct 
pressure difference inside a circular droplet. As shown 
in Fig. 1a, a circular droplet of the radius of 1 mm is 
placed on the simulation domain as an initial condition, 
then unsteady simulations were conducted on three 
different grid resolutions (Dx=Dy=23, 47, and 94 µm). 

Fig. 1b shows the resulting pressure distribution 
along the centerline on the fine grid. The pressure 
inside the circular droplet is fairly uniform, and the 
average pressure is 66, 67,1 and 67.5 Pa for the coarse, 
medium, and fine grids respectively. Considering the 
theoretical value of 70 Pa, the fine grid solution 
provides a small error of 3.6 %. 

(1 )l gr ra r a= + -
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Fig. 1. The result of the stationary droplet test: (a) The 
pressure field. (b) The pressure along the y = 0 line. 
 
3.2 Verification 2: Oscillating elliptical droplet 
 

 
 
Fig. 2. The total kinetic energy of oscillating droplet 
test case with various grid sizes. 
 

An elliptical droplet is given by , 
whose units are in mm. Fig. 2 shows the evolution of 
the total kinetic energy (T.K.E). Rayleigh [6] derived 
the analytic solution for the oscillation period when the 
amplitude is small. The analytical solution value is 16.3 
msec, while the first and second periods are 17.9 msec 
and 17.4 msec, respectively from the simulation. The 
differences (9.8% and 6.7%) are decreasing over time 
as the amplitude becomes smaller.  
 
4. Conclusion 
 

The surface tension is implemented in the coupled 
PeleLM-IRL solver using the continuum surface force 
model and the improved height function technique. 

Two validation cases were performed. Firstly, a 
stationary circular droplet test was conducted. The 
resulting pressure difference inside the droplet is 
similar to the theoretical value with a 3.6 % difference. 
Secondly, an oscillating elliptical droplet test was 
conducted. Total kinetic energy (T.K.E) is used to 
quantify the oscillating period. The amplitude of T.K.E 
decreases due to viscosity and the period is similar to 
the analytical solution [6] with a 9.8 % error. 

In future work, the liquid jet atomization will be 

simulated using the developed solver. Furthermore, 
vaporization physics will be implemented. 
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