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Abstract

This paper presents a graph-based dynamic yaw model to predict the dynamic response

of the hub-height velocities and the power of a wind farm to a change in yaw. The model

builds on previous work where the turbines define the nodes of the graph and the

edges represent the interactions between turbines. Advances associated with the

dynamic yaw model include a novel analytical description of the deformation of wind

turbine wakes under yaw to represent the velocity deficits and a more accurate repre-

sentation of the interturbine travel time of wakes. The accuracy of the model is improved

by coupling it with time- and space-dependent estimates of the wind farm inflow based

on real-time data from the wind farm. The model is validated both statically and

dynamically using large-eddy simulations. An application of the model is presented that

incorporates the model into an optimal control loop to control the farm power output.
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1 | INTRODUCTION

Yawing of individual turbines within a windfarm has the potential to increase overall power output by deflecting their wakes from the inlet of

downstream turbines. This has motivated a wide range of models aimed at better predicting the wake behind a yawing wind turbine.1–7 These

models provide increasingly accurate representations of flow due to static wind turbine yaw and have been widely used to study yaw configura-

tions that increase power output for given wind conditions. Simulations,8,9 experiments,10,11 and, more recently, field tests 4,12–14 examining the

potential and effects of wake steering to increase the power output of the farm have provided further evidence of the usefulness of yaw optimi-

zation for a wind farm in steady state. While these studies provide important insights into the potential of yaw, they have largely been performed

in a static context and therefore neglect the transient response, which can impact the overall power output potential over a given time horizon. In

addition, the existing suite of static models is not built to capture the dynamic response of a wind farm to a change in yaw, which limits the devel-

opment of active control approaches under changing conditions.

The time scale of yaw changes is measured in minutes, which can be slower than interturbine travel time and therefore affect the behavior of

the overall power output of the farm. In fact, flow-through times for large wind farms can be multiple minutes, which is of similar order to the

yaw action. As wind power continues to increase, accuracy in predicting the transient response and trajectory of the wind farm power output is

of increasing importance, particularly as wind farms are asked to provide grid services or operate in the same manner as conventional generators

(i.e., follow a demand curve rather than providing all the power available).
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Recognizing the importance of the time evolution of farm power output as turbines yaw for our overall understanding of the potential of yawing

in farm operation and control has motivated recent efforts to account for time-dependent changes due to yaw. The formulation outlined in Shapiro

et al1 can represent dynamic changes, as it is based on a partial differential equation, although the dynamic version of that model has not yet been

fully validated. The FLOw Redirection and Induction in Steady State (FLORIS) model from the National Renewable Energy Laboratory (NREL) has

been adjusted to take dynamic changes into account between turbines by implementing time delays in the travel of information between turbines.15

A similar approach is also employed by Howland et al16 along with an ensemble Kalman filter to incorporate measurements.

While these approaches take steps toward addressing the need for dynamic models, they miss some of the important physics in the wake

dynamics of a yawed turbine. For example, none of the aforementioned models include the known wake shape deformation caused by the turbine

yaw. This deformation17 causes noncircular cross sections (curled wake) that when impinging on downstream turbines can significantly affect the

average velocity6 and thus affect power output. Including such subtle fluid mechanical effects in the context of fast and easy-to-evaluate models

for turbine interactions due to wakes is quite challenging. To address this challenge, this paper combines the graph-based modeling approach that

was used to model a wind farm under changing wind direction in Starke et al18 with physical models that incorporate important features of the

deformed wake structure due to yaw6 as well as time-dependent propagation.

The graph-based approach in Starke et al18 built upon prior work that introduced the idea of representing a wind farm as a graph.19,20 As

in these works, nodes comprised the individual turbines, and the edges were defined by the wake interactions between turbine pairs. How-

ever, rather than assuming a static graph, this approach allowed for changes in graph topology by introducing a time-varying graph framework

with edge switching.21 This enabled the resulting dynamic graph model to capture the transient response of the wind farm as the wind inlet

direction changed. In this paper, that graph-based modeling approach is adapted to incorporate the effect of dynamic turbine yawing on a

wind farm.

The dynamic yaw model incorporates several key extensions over the original formulation that enables it to accurately capture the time evo-

lution of the wind farm power output as individual turbines dynamically yaw. The model states that capture the wake interactions are redefined

using a novel physics-based analytical representation of wake deformation due to yaw.6 This addition includes the propagation of yaw effects

through the farm and the effect of yaw on the power of the turbines. Additionally, the time delay formulation was adjusted to incorporate the

effects of slower velocity due to the wakes of upstream turbines in the farm.

While the model includes a more advanced representation of the wake shape, the model also includes simplification of the physics to increase

computational efficiency and decrease run time in order to facilitate its use in real-time control applications. A necessary trade-off in such simpli-

fied models is less accuracy versus high-fidelity approaches, for example, using a large-eddy simulation (LES) model. Data enhancements have

been shown to improve the prediction of these models.16,22 In this work, we focus on the use of data to enable the model to represent heteroge-

neous velocity profiles in both the streamwise and spanwise flow directions in time. This particular choice is motivated by the significant changes

in the inflow conditions across wind farms, which typically span a distance of kilometers. Including these variations in the model, we can better

capture local conditions in the inflow that will propagate through the farm and affect wake advection and the power output at each turbine. The

ability to capture these local effects was shown to improve predictions even in traditional wake models.14,23–25

The final data-augmented model provides a low-order representation that captures both the transient response and the overall final

power level due to yaw changes that are emphasized in static approaches to maximizing power output through yaw angle optimization. We dem-

onstrate the utility of the dynamic yaw model in two examples of model-based control of the power output of a wind farm. These applications

confirm that the dynamic yaw model accurately predicts the transient response of the wind farm to yaw actions and within an active yaw control

loop. In the accompanying discussion, we describe some potential limitations of the approach and power-tracking control with only yaw-based

control.

The remainder of this paper is organized as follows: In Section 2, we present the dynamic yaw model formulation, explaining how the

approach enables efficient reduced-order modeling of pairwise interactions between only those turbines that are related to each other via wake

interactions. We also describe the inclusion of yaw-induced curled wake velocity distributions and deflection. In Section 3, we validate the model

both statically and dynamically using large eddy simulation (LES). In Section 4, we present a specific example of the application of the

model where yawing is optimized to follow a prescribed power signal for a wind farm to demonstrate the potential use of the model. Finally,

Section 5 describes some conclusions and directions of ongoing work.

2 | THE DYNAMIC YAW MODEL

In this section, we formulate the dynamic yaw model. Sections 2.1 and 2.2, respectively, define the graph of the wind farm and the system states.

This is followed by a description of the system dynamics and model output equations in Sections 2.3 and 2.4, respectively. Finally, Section 2.5

outlines a method to incorporate real-time data into the formulation to improve the accuracy of the model. The resulting data-augmented

dynamic model provides a control-oriented approach to capture the trajectory of farm-level power output changes due to dynamically changing

yaw angles of the individual turbines.
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2.1 | The wind farm graph

Following the approach in Starke et al,18 the nodes N of a wind farm graph comprise the set of turbines and the edges E as the directed connec-

tions between turbines determined by the wake interactions in the farm. The wind farm is thus represented as a directed graph G¼ ðN ,EÞ, where

we define a directed edge between the ith turbine and the jth turbine only if the ith turbine is in the wake of the jth turbine. Figure 1A shows an

example wind turbine configuration and the modeled wakes of the turbines, and Figure 1B shows the corresponding directed graph. Based on this

graph definition, the elements of the wind farm interconnection matrix Λ are λi,j ¼1 if the ith turbine is in the wake of the jth turbine and λi,j ¼0 if

the ith turbine is not in the wake of the jth turbine.

Turbines that are not affected by the wakes of other turbines, for example, Turbines 1 and 2 in Figure 1, are labeled freestream turbines.

These turbines act as the head nodes of subgraphs (i.e., leader-follower trees) made up of a freestream leader turbine and all the follower turbines,

which are weakly connected to that lead (i.e., turbine through directed edges). In Figure 1, the two leader-follower trees would consist of Turbines

1, 3, and 4 and Turbines 2 and 4, where freestream Turbines 1 and 2, respectively, act as leaders. These leader-follower trees each form their own

subgraphs, enabling the farm to be thought of as a stack of multiple connected subgraphs.

We next describe the system states, which are defined in terms of the pairwise connections between turbines.

2.2 | System states

We build upon the approach in Starke et al18 where the states of the system are the normalized velocity deficits associated to each turbine pair.

The states in the approach outlined in Starke et al18 assumed that all turbines were always facing the incoming wind direction, thus not addressing

turbine yaw. The model presented here adds the ability to model dynamic turbine yaw. A dynamic turbine yaw model requires a deficit expression

that takes into account both the yaw angle and its effect on the shape of the wake as it propagates downstream. The new velocity deficit model

for the states follows Bastankhah et al,6 which describes the deformation in the wake shape using a relatively simple analytical expression that is

easy to evaluate. We now present a short overview of this model, which is explained more fully in Appendix A of this paper.

The basis of the new state description is an expression for the normalized velocity deficit based on the Gaussian model of26

δu
U∞

¼CðxÞexp �ðy�ycÞ2þðz� zhÞ2
2σðx,θÞ2

" #
, ð1Þ

where δuðx,y,zÞ is the wake deficit, where x is the streamwise, y is the lateral (spanwise), and z is the vertical direction. U∞ is the inflow velocity at

hub height, CðxÞ is the normalized velocity deficit at the wake centerline, yc is the y-location of the center of the wake (it can depend on down-

stream distance x due to yaw), zh is the turbine height, and σðx,θÞ is the wake width, which is a function of both streamwise distance x and polar

angle θ. The polar angle-dependent wake width is modeled as a combination of linear downstream growth and deformation due to yaw according to

σðx,θÞ¼ kwxþ0:4ξðx,θÞ, ð2Þ

F IGURE 1 Schematic example of how a graph is defined for a wind farm with four turbines, where (A) shows the wind turbines and their
wakes and (B) shows the directed graph that is formed from analyzing the wake interactions displayed in (A)
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where the first term is the standard linear wake expansion process due to turbulent diffusion and kw is the wake expansion coefficient. The sec-

ond term represents the wake shape. The function ξ is an analytical expression that depends on the streamwise distance, polar angle, and turbine

yaw angle. For practicality, here, we use an empirically fitted function that smoothly interpolates between various relevant asymptotic regimes, as

provided in Appendix B of Bastankhah et al.6

The wake centerline normalized wake deficit CðxÞ is evaluated using the following equation6:

CðxÞ¼1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�CT cos3ðγÞ

2~σ2ðxÞ=R2

s
ð3Þ

where CT is the thrust coefficient of the turbine, γ is the yaw angle, R is the radius of the turbine disk, and ~σ2 is proportional to the wake cross-

sectional area. Further detail is provided in Appendix A.

Using the model outlined above, we can compute the normalized velocity deficit associated with a turbine i located in the wake of turbine j

as follows. Noting that δuðx,y,zÞ depends on position in the wake, we evaluate the state variable ϕj
i as the average normalized velocity deficit at

the ith turbine disk (area Ai) according to

ϕj
i ¼

1
Ai

ð
Ai

CðΔxi,jÞ�

exp �ðy�yc,jÞ2þðz� zh,jÞ2
2σðΔxi,j,θjÞ2

" #
dydz,

ð4Þ

where Δxi,j is the distance between turbine i and turbine j and yc,j is the transverse displacement of the wake due to turbine j at turbine i.

The state vector then comprises the collection of all the normalized velocity deficits calculated between each turbine pair in the wind farm:

Φk ¼ ϕ1
1ϕ

2
1 ϕ

3
1…ϕN

1 ϕ
1
2 :::ϕ

N�1
N ϕN

N

� �T
: ð5Þ

Here, N is the total number of turbines in the farm, and the state vector has a total of N2 velocity deficits. By representing both the area over-

lap and the wake deficit strength, the state vector represents the appropriately weighted strengths of interactions among all turbine pairs.

The nonzero elements in the state vector correspond to the edges of the wind farm graph (wake interactions). These graph edges depend on

a number of different factors, such as the geometry of the farm, the incoming wind direction, and the wake expansion coefficient kw , which is a

function of atmospheric conditions. This wake expansion coefficient is of particular importance in defining the graph edges because it determines

how quickly the wake of a turbine expands and the velocity deficit diminishes as it advects through the farm. It therefore defines the wake area

and the associated wake interactions between turbines. For example, two turbines that are not aligned and do not interact when the turbulence

intensity is low may interact under conditions of higher turbulence due to the associated increase in the wake expansion coefficient (i.e. wider

wake). Since the graph connections are based on the wake deficit area, this widening of the wake can result in connections between turbines that

would not exist with a narrower wake. Although, the strength of these connections (edge weights) will be weaker due to the more rapidly

decreasing velocity deficit.

Any change in wind direction will also shift the connections between turbines, as the distances and angles between turbines are defined on

the incoming wind angle. Additionally, when a turbine is yawed, it affects both the wake shape behind the turbine and also the power produced

by the turbine. This, in turn, also changes the connections between turbines. We next describe the update map that enables us to capture the

dynamic behavior of the farm under such changing conditions.

2.3 | System dynamics

Having defined the system states we now define the associated dynamics, which are described through the linear map:

Φkþ1 ¼AΦkþEk , ð6Þ

where Φk represents the states of the model at time index k and A is the update matrix. Here, we define A¼ I, and the input Ek updates the system

states based on changes to interturbine interactions, for example, due changes in turbine yaw angles for which the effects on the graph intercon-

nection propagate downstream.

STARKE ET AL. 1305
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Our implementation follows the log file approach,21 in which we start with two static graphs, the initial graph and the final graph, and cata-

logue the changes over the time period at intervals indexed by k. The update at each time step k is implemented in an event-based framework

that is detailed in Starke et al.18 Each

Ek ¼ fðΦk ,τk ,ΔEkÞ ð7Þ

is a function of the updated state vector Φk with values ϕj
i for (j¼1,…,N) for the ith turbine and ΔEk,i is the list of the edge changes that propagate

from a change to turbine i. We next describe the time delays associated with the propagation of the effect of changes to the graph, which are

denoted τk,i.

Equation (7) shows that the edge change input is a function of a time delay. The time delays τ in Equation (7) capture the finite travel time of

aerodynamic information between turbines (e.g., the propagation of the effect of the yawing of an upstream turbine for which the wake speed is

a function of the wind velocity). For example, a change that happens at the jth upstream turbine in the illustrative Figure 2 will not reach the ith tur-

bine until the air parcels arrive at the ith turbine while traveling at speed ujðxÞ. Incorporating this time delay and the associated transient behavior

of the graph edge set enables the model to capture the dynamic variation of the power output due to a change in wind farm conditions. These

transients have been shown to be important in capturing an accurate power output trajectory,18 which has implications for the accuracy of real-

time predictions of the available power and control.

Assuming a constant advection velocity uj, the time-delay between turbines would be given by τ¼Δxji=uj (Figure 2), where Δxji ¼ xi�xj is the

distance between the two turbines. However, the velocity of the wind varies between the turbines as a result of the wake expansion behind

the first turbine. We employ an analytical expression for the time delay that includes the position-dependent velocity deficit in the evolving wake

(Equation (1)). As representative of the wake velocity, we have chosen to use the velocity at the centerline of the wake, where y¼ yc and z¼ zh,

that is, ujðxÞ¼U∞½1�CðxÞ�. We find that the centerline velocity provides a sufficiently accurate representation of the advection speed rep-

resenting the most relevant parts of the wake, and it can be evaluated very efficiently in the modeling. Other more accurate options such as the

disk averaged velocity would require significantly more complicated operations. We can then find the time delay associated with each graph edge

by integrating downstream displacements over the distance between the turbines:

τji ¼
ðxi
xjþD

1
U∞ð1�CðxÞÞ dx: ð8Þ

Here, since the wake model chosen for this application is more appropriate in the far field, we integrate starting one diameter downstream of

the jth (upstream) turbine (at x position denoted by xjþD, up to the position of the ith turbine xi, where D is the turbine diameter). This approach

improves the accuracy of the model compared to the approach in used in Starke et al,18 which simply approximated u using the freestream veloc-

ity U∞ to directly compute τ¼Δxji=U∞.

Substituting the previous relation in for CðxÞ gives the following expression:

F IGURE 2 A schematic illustrating the geometry of the wind farm used to calculate the time delay between the ith and jth turbines. The
velocity uji is the effective velocity that affects the ith turbine due to the jth turbine and is modeled as U∞½1�Cðx�xjÞ� for x between xj and xi

1306 STARKE ET AL.
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τji ¼
ðxi
xjþD

1
U∞

1� CT cos3ðγÞ
ð2=R2Þ~σ2ðxÞ

" #�1=2

dx, ð9Þ

where ~σ2ðxÞ is provided in the appendix in Equation (A10). For ease of implementation, we apply a Taylor series expansion

ð1�yÞ�1=2 ≈1þy=2þ ::. using the parameter

y¼ CT cos3ðγÞ
ð2=R2Þ~σ2ðxÞ : ð10Þ

The approximation becomes more accurate for small y, that is, far downstream, as the wake size ~σ exceeds the disk radius R. Using the first-

order approximation, we can write the integral (Equation (9)) as

τji ¼
ðxi
xjþD

1
U∞

1þ1
2

CT cos3ðγÞ
ð2=R2Þ~σ2ðxÞ

 !
dx: ð11Þ

Using the explicit expression for ~σ2ðxÞ (Equation (A10)) and performing the integration give the following explicit expression for the time

delay:

τji ¼
1
U∞

xi�xj�Dþ CTR
2 cos3γ

1:6ξ0kwð1� cosγÞ

"

ln
kwxiþ0:4ξ0

kwxiþ0:4ξ0 cosγ
� ln

kwðxjþDÞþ0:4ξ0
kwðxjþDÞþ0:4ξ0 cosγ

� ��
:

Although there is an apparent singularity when γ¼0 due to ð1� cosðγÞÞ in the second term of the integral, the natural logarithm terms in the

numerator also vanish in such a way that the ratio remains meaningful. Numerically, this was dealt with by adding a very small constant with

the same sign as the cosine term in the denominator to keep the expression ð1� cosðγÞÞ finite (but negligibly small). Figure 3A shows the indefi-

nite integral as function of downstream distance x, representing the time delay over the bounds of the yaw angles from γ¼�20 ∘ to γ¼20 ∘ , and

at γ¼0 ∘ . Note that the lines representing γ¼�20 ∘ and γ¼20 ∘ fall on top of each other since the model has no yaw direction bias. Figure 3B

shows the time delays between turbines (with Δxji ¼100 m) over a range of upstream turbine yaw angles.

The dynamic formulation of this model includes a list of events that specifies specific changes for each turbine. The propagation of these

changes as well as a changing velocity inflow necessitates keeping a time history for each state in the system that is longer than the flow-through

time of the farm. There is a limited history kept for each state, and this history vector is updated at every time step. Additionally, in order to speed

up the model, a history is only created for states that are greater than zero, meaning there exists a directed connection between those two tur-

bines. If a connection is not used in the simulation, then a history is not created. If a new connection is added through the state change vector,

F IGURE 3 (A) Modeled time delay (in seconds) as a function of streamwise distance x, according to Equation (11) where the upper integration
limit is x and the different colors represent different yaw angles. (B) Modeled time delays (in seconds) between two turbines as a function of the
yaw of the first turbine. For this test, the turbine diameter was 100 m, the turbine hub height was also 100 m, the freestream velocity was U∞ ¼
7:77 m/s, and was determined by setting the friction velocity u ∗ ¼0:45 m/s, then using the equation U∞ ¼ðu ∗ lnðzh=z0ÞÞ=0:4 to find the
freestream velocity at hub height. The local coefficient of thrust was C0

T ¼4=3, and the wake expansion coefficient was determined using
kw ¼ u ∗ =U∞ ¼0:0579

STARKE ET AL. 1307
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the history is initialized with the value and then continues to be updated from its initialization time. A history is also kept of the time delays

between the turbines, since this quantity also changes with inflow velocity, yaw changes, and wind direction changes.

2.4 | Output: velocity deficit

We define the output as a normalized cumulative velocity deficit for each turbine (i), Δu ∗
i �Δui=U∞. For each turbine, this value is obtained by a

linear superposition of all of the velocity deficits due to all of the upstream turbines whose wakes impact turbine i. The vector formed by all the

turbines' cumulative velocity deficit at the next iteration (kþ1), denoted by Δu ∗
kþ1, can be calculated efficiently by multiplying the matrix ΛðτkÞ

with the state vector containing all of the individual turbines' normalized velocity deficits, that is,

Δu ∗
kþ1 ¼ΛðτkÞΦkðτkÞ: ð12Þ

This matrix ΛðτkÞ is of dimension N�N2, where the ith row holds the directed wake relationships for the ith turbine. The matrix is also delay-

dependent and corresponds to the graph that describes the current turbine interconnections found from the subgraphs present at previous times;

that is, it indicates which turbines will impact other turbines in the farm after time delay k. The quantity ΦkðτkÞ is the state vector (array of normal-

ized velocity deficits) at time k, which implements changes according to the time delay associated with the changes in the relationships between

turbines, thus incorporating the delay of information moving through the system. In this formulation, the states are updated at every time step,

but the effect of that update does not reach the output until after the time delay.

The output is then used to compute the actual velocity deficit at turbine i, which is given by δui ¼ ½Δu ∗ �iU∞. This value has to be subtracted

from the common background reference velocity U∞ to find the wind velocity at turbine i. Incorporating the effect of yaw of the turbine itself, we

can express the vector of disk velocities for each turbine according to

ud,kþ1 ¼U∞ cosðγkþ1Þ 1�Δu ∗
kþ1

� 	
1� C0

T

4þC0
T

� �
ð13Þ

where C0
T is the local coefficient of thrust for the turbine and γkþ1 is the current yaw of the turbine, which affects how much of the freestream

velocity is normal to the turbine disk. Finally, considering the effect of yaw on the turbine itself, the vector of power generation of all turbines at

step kþ1 is found according to

Pkþ1 ¼1
2
Aρ ud,kþ1½ �3C0

P ½cosðγÞ�p, ð14Þ

where for our case we set C0
P ¼C0

T (consistent with the optimal values for the local power and thrust coefficients which are defined using the local

velocity at the turbine disk) and the exponent p determines the effect of yaw on the power and changes for different turbines. We address the

value used for this exponent later in Section 3.

2.5 | Data-augmented model

In this section, we describe a method to incorporate measurements from a wind farm plant to improve the prediction of the graph model. In par-

ticular, we use the instantaneous turbine power measurements from the freestream turbines. The freestream turbines are either determined a

priori by the wind direction or computed dynamically if the wind direction is unsteady, such as in the example presented in Starke et al.18 These

measurements, which are readily available in operating farms, are run through a temporal smoothing filter, and the filtered power signal is then

used to determine the free-stream velocity appropriate for turbine n. The power measurements are represented by Pn ¼1=2 U3
dρAC

0
P,n, where

Ud ¼ðU∞,ncosðγnÞÞC0
T,n=ð4þC0

T,nÞ is composed of the velocity component normal to the turbine, U∞,n cosðγnÞ, and the axial induction adjustment of

the freestream velocity to find the disk velocity, represented here using the local thrust coefficient as C0
T,n=ð4þC0

T,nÞ. This equation is then solved

to find the freestream velocity, obtaining the following expression:

U∞,n ¼ 1
cosðγnÞ

2Pn
ρAC0

P,n

 !1=3
4þC0

T,n

C0
T,n

 !
: ð15Þ
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Figure 4 provides a schematic of the full data-augmented model. Since this method uses the actual power measurements from turbines, it can

be applied in real time for model updates that requires the inflow velocity as input. The model can be run simultaneously with the wind farm plant

(LES in our case), and the inflow is updated dynamically using the instantaneous power measurements from the plant's turbines. Since the graph

model relies on the pairwise interconnections between the turbines and does not resolve a complete velocity field, a changing inflow can be

advanced through the farm in the same way as the varying connections between the turbines.

In the next section, we validate the model in static and dynamic settings.

3 | MODEL VALIDATION

The model was first tested under static conditions. The setup has two turbines that are aligned with a distance of 7D between them in the

streamwise direction. The first turbine is then set to various yaw positions: γ � ½�30 ∘ ,30 ∘ �. We compare average power output predictions from

LES under stationary conditions with the model results. Here, we report results from the model described in Section 2 without the data augmen-

tation (since we are comparing to static conditions for a wind turbine pair) as well as a simplified model that does not include the curled wake

shape; that is, we set ξ¼R, constant in Equation (2), which assumes an axisymmetric distribution of the wake throughout its evolution.

The LES is performed with the JHU LESGO code27 with an actuator disk model and a correction factor accounting for finite grid resolution.28

This code has been validated for several wind energy applications.29–31 The simulation uses an inflow generated by the concurrent-precursor

approach.32 The turbines have a diameter and hub height of D¼ zh ¼100 m. A ground surface roughness height of z0,lo ¼0:1 m is used to pre-

scribe the bottom boundary condition of the LES. The turbulence intensity at hub height from the concurrent-precursor fields was TI = 7.88%.

The main simulation domain uses (Nx�Ny�NZ ¼256�256�192) grid points for a domain size of 3 km �3 km�1 km. The Lagrangian scale-

dependent dynamic subgrid-scale model33 is used to determine the eddy viscosity without tuning parameters. The turbine (local) coefficient of

thrust is kept constant at C0
T ¼1:33 throughout the simulation.

Figure 5 compares the mean turbine power obtained from the LES with the original version of the graph model from Starke et al18 using the

Gaussian wake formulation and the updated graph model presented in this paper that uses the curled wake formulation outlined above. All the

results are normalized by the power of the first turbine at zero yaw. The graph model results using the curled wake formulation are represented

by the red symbols, and the graph model results using the axisymmetric wake formulation from Starke et al18 are represented by the blue symbols.

The figure shows that in this case, yawing does not meaningfully increase the overall power generation (crosses), as the gains seen by the second

turbine are offset by the losses of the first turbine.

The results show that even if the deficits matched for γ¼0, the axisymmetric formulation would overpredict the wake deficit caused by the

first turbine because it does not account for the “curling,” which in fact increases the velocity seen by the downstream turbine. As a result, the

axisymmetric formulation results in lower power and a power curve that is too shallow for the second turbine. The curled wake does a better job

of capturing the wake deficit caused by the first turbine, particularly on the right side of the curve. Although it underpredicts the wake deficit

slightly on the left side of the curve, overall, the curled wake method seems to represent the relationship between the first and second turbines

better than the axisymmetric model in this case.

F IGURE 4 A block diagram showing how the dynamic yaw model uses the instantaneous power measurements from the LES wind farm plant
to augment the model's power prediction.
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This two-turbine study was also used to fit the exponent p parameter for the power, shown in Equation (14), similar to the study performed

in Gebraad and van Wingerden34 and Gebraad.8 The exponent value that best fits the LES turbine models used here best is p¼0:5, which will be

the value used in the power calculations done in this study going forward.

Next, the dynamic yaw model is tested in a time-dependent setting through comparison to an LES flow generated by a dynamically yawing

wind turbine pair. The simulation was done using the JHU LESGO code with the same configurations and parameters as the static case described

above. For the time-dependent case, the first turbine is dynamically yawed to 15 ∘ in the first 25 s, and then returned back to 0 ∘ yaw starting at

150 s. The results are averaged over 120 realizations to smooth out the instantaneous turbulence fluctuations. Figure 6 shows the power from

the first turbine (solid lines) and the second turbine (dashed lines) as a function of time during the dynamic yawing from the LES (in black) and the

model (in red). As described in Section 2, the model result applies the changes to the strength of the graph edge (wake interaction) due to the

change in yaw of the first turbine in discrete steps, and the effect of this is visible in the power of the first turbine, particularly over the first 25 s.

The results demonstrate that for this test, the model is able to match the timing of the yaw change, including how long it takes the change from

the first turbine to affect the second turbine (the effect begins to be seen at 130 s, where the second turbine increases its power once the wake

deflection has reached its location). The model also captures the magnitude, which is how much the power of the second turbine increases as a

result of the yawing of the first turbine. The power of the second turbine is reduced again starting near 265 s, once the first turbine's return to

the unyawed condition at t¼150 s is felt at the second turbine's location.

Finally, we also show a validation of the data-augmented graph model where we use an LES as the wind farm. We apply this to a small wind

plant with three turbines aligned to the incoming wind direction in a single column. Here, the aim is to test the performance and effects of the

data-driven input to determine the local inflow velocity U∞ from the measurements. Figure 7 shows a comparison between a time series of

the power from the LES and the full data-augmented dynamic yaw model. Figure 7A compares the power from the first turbine in the column,

that is, from the “freestream” turbine from the LES and the model. We can see here that the data-augmented graph model follows the LES power

very well. This result is expected, as the graph model is using the measured velocity for the first turbine. Figure 7B,C shows the time series for the

second and third turbines, respectively. In these cases, the model matches the LES less well, especially missing the high-frequency turbulent fluc-

tuations that are present in the LES, which is expected because these cannot be captured by the wake modeling approach and are faster than the

update rate of the model. The dynamic yaw model captures the low-frequency behavior responding to imposed yaw and turbine actions, but with-

out the turbulent fluctuations.

The model is able to follow the low-frequency trend of the second and third turbines. One of the salient features of the model is that it takes

the interturbine travel time from the first turbine for the second and third turbines into account and can represent the changes in the inflow

(which can be seen in the initial constant value of the third turbine). The second point of note is that the variations of the inflow, such as the large

F IGURE 5 Power generation of two turbines where the upstream turbine ðT1Þ is yawed at angle γ. This plot compares the results from the
LES study with the graph model using a simple axisymmetric velocity deficit distribution and the graph model using the more accurate curled
wake shape formulation for the velocity deficit. Power production of each turbine is shown separately (circles and stars) and added together
(crosses)
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troughs and peaks around 800–1200 s in Figure 7A, can be seen propagated to the second and third turbines, such as the trough at 1000 s in

Figure 7B. Recalling that the data-augmented approach also allows for inflow velocity dependency in the spanwise direction, present results con-

firm that this model is able to represent heterogeneous flow in time in the spanwise direction as well as in the streamwise direction due to the

F IGURE 7 A comparison between power from an LES compared with a graph model power output using the same inflow for three turbines
that are in an aligned configuration, where (A) is power from the freestream turbine in the column, (B) is the power from the second turbine, and
(C) is the power from the third turbine. The total power for the column from the LES and the graph model is shown in panel (D)

F IGURE 6 Time-dependent power production of two turbines in which the upstream turbine (solid lines) is yawed at t¼0 s to 15 ∘ and then
back to 0 ∘ at t¼150 s. The downstream turbine power history is shown as dashed lines. The figure compares the results of the dynamic yaw
model using the curled wake shape model (red lines) to the results from LES (black lines)
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advective character of the model with time delays. Future work involves validating the time-delay formulation on a wider variety of interturbine

distances in LES, which may require additional parameter adjustment.

Figure 7D shows a comparison between the LES and the graph model for the entire column of turbines, that is, the sum of the three turbine

powers. As mentioned above, while the graph model misses the high-frequency, high-amplitude turbulent fluctuations, it is able to track the low-

frequency power output signal of the wind farm. The model resembles a smoothed-out version of the LES signal. In terms of the broader applica-

bility of this type of graph model for control-oriented applications, this artifact could affect the control actions selected using this model if applied

in the case of rapid changes (e.g., pitch control). However, this is not an issue for yaw, which inherently takes place at slower timescales. The

strength of this approach is its ability to represent changing overall conditions in the wind farm that occur on slower timescales and to represent

ensemble-averaged effects of yaw actions, even if applied on relatively fast time-scales (i.e., a few minutes). In the next section, we focus on appli-

cations of yaw-based control in which desired effects occur over time-scales of several minutes.

4 | APPLICATION: WIND FARM CONTROL

In this section, we discuss a possible application of the model and demonstrate proof of concept for model-constrained optimal control using

dynamic yaw actuation. We first examine how the dynamic graph model could be incorporated into a yaw controller formulation on its own and

then present a simple application to a wake model wind farm plant.

4.1 | Controller formulation

The structure of the yaw model-constrained optimal control is shown in Figure 8, where the dashed box outlines the controller. The controller is

composed of an optimization solver, which uses information from the cost function, and the dynamic yaw model to find an optimal yaw solution

γi for each turbine i. This solution is then given to the wind farm plant.

The optimal control power tracking problem is composed of solving a finite-time optimal control problem for each controller update. At each itera-

tion, the optimization solver finds one optimal yaw for each turbine over the finite time horizon T. The resulting yaw is then applied to the wind farm

for a time Ta < T. The problem is then solved again for a new time frame starting at Ta and ending at TaþT, representing one controller update.

The yaw of each turbine, γ, is used as the control variable in the model-constrained optimal control. For each iteration, the optimization prob-

lem finds the best yaw angles over the horizon time according to a cost function that minimizes the difference between the power reference sig-

nal and the power output of the farm predicted by dynamic graph model. The cost optimization has the form:

min
γ

ðTa

0
ðPGM�PrefÞ2dt


 �
, ð16Þ

where PGM is the power from the dynamic yaw model, which is integrated into the future to predict the behavior of the wind farm. Yaw is incorpo-

rated into this problem through the dynamic yaw model formulation. The optimization is subject to the limits

F IGURE 8 Block diagram showing the structure of the model-constrained optimal control of the wind farm. The model-constrained optimal
controller (shown in purple) is composed of an optimization solver that minimizes a cost function constrained by the dynamic yaw model. The
controller then feeds the optimal yaw to the wind farm plant, represented in the right block with an instantaneous snapshot from a wind farm
simulation.

1312 STARKE ET AL.

 10991824, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/w

e.2884 by N
ational R

enew
able E

nergy L
ab, W

iley O
nline L

ibrary on [17/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



�30 ∘ ≤ γ ≤30 ∘ , ð17Þ

since the models for wind turbine yaw are less accurate beyond these angles. The minimization of the objective function is accomplished using

Powell's Algorithm, see Appendix B, and is coded in Python in our application. We remark that the version of Python used in our work does not

support setting bounds on the minimization. Therefore, the bounds were enforced by not allowing values that fall outside of the allowable yaw

range: If a value falls outside the viable range, the optimization function exits that evaluation, and the optimization continues.

We first demonstrate a simple implementation in which the goal of the optimization is to reach a specified steady power output that is

greater than the nominal value, but less than the maximum power achievable by the farm. The wind farm configuration used is a six-turbine

aligned wind farm arranged in two columns of three turbines each, shown in Figure 9A. In this case, the optimization is attempting to reach a final

steady power output of 12 MW, shown in Figure 9B by the black dashed line. The unyawed power of the farm is 11.61 MW, which is the initial

condition for the optimization.

Figure 9A shows the final yaw values of the turbines, where only the first two turbines are yawed a significant amount. The optimization pro-

cess assumes that these optimal yaw values can be applied instantaneously at the start of the time horizon. Figure 9B shows the time evolution

of the power of the wind farm (in blue) in reaching this optimal configuration. There is an initial dip when the turbines are yawed, and then we

observe two increases in the power, which is the result of the wake effects from the first row decreasing on the second and the third rows. The

effect of the wake on the second row is larger than on the third row, which is expected as the wake effects are inversely proportional to distance

due to the growth and weakening of the wake. The final value that the optimization achieves is 11.98 MW.

Figure 9B shows that the power output of the farm as the turbines yaw initially drops before reaching the desired value due to the transient

response of the farm wakes of the yawing turbines propagating through the farm. This behavior demonstrates that in order for the yaw to be

effective, the time horizon needs to be long enough for the improvement in the total error measured by the cost function to outweigh the initial

degradation. For example, if the time horizon in Figure 9B was only 4 min, the decrease in the error would not have been enough to outweigh the

initial drop in the integral of the total error over the time horizon, and the optimal solution would be to take no action. This initial drop in power

F IGURE 9 An example of a six-turbine wind farm optimized using a dynamic yaw response, where (A) shows the final yaw of turbines (wind
farm is seen from above) and (B) shows the evolution of the power of the farm in time (blue line), as compared to the target power reference
signal (black dashed line)
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and subsequent increase reflects the interturbine travel distance that needs to be captured in modeling the dynamic response of the wind farm to

the yawing turbines. This travel time plays an important role in determining the optimal control action and demonstrates that static yaw optimiza-

tion that only computes the power gains in the final yaw configuration misses the initial power losses and thus may overestimate the benefits of

yaw control, particularly under dynamically changing conditions.

We note that the results here demonstrate the effect of the transient behavior, but that improvements in performance are possible through

changes to the control strategy. For example, computing a series of yaw angles over the time horizon rather than the single best yaw value over

the full time horizon would likely improve performance. However, we do not do that here, as such a scheme would require the calculation of a full

yaw trajectory for each turbine as a function of forward time. As the structure of the graph model prevents the use of gradient-based optimization

at this time, we only calculate the best single yaw value overall for each turbine over the finite time horizon. Further refinements will be required

to develop a full model predictive control framework for dynamic yaw.

In the next section, we discuss modifications to the setting of Figure 9 to consider additional relevant timescales for application to power

tracking.

4.2 | Yaw control results

We now use the dynamic yaw model within a wind farm control scheme for farm-level power tracking. In this application, the controller uses the

dynamic yaw model as both the wind farm plant surrogate as well as the control model. This farm has the same number of turbines and the same

configuration as that shown in Figure 9A. The desired power signal is shown as the black dashed line in Figure 10. It includes a 9% power increase

at 30 min.

Here, we make a couple of changes to the approach in the previous example to improve the system performance. Rather than assuming the yaw

is applied instantaneously at the beginning of the time horizon, we incorporate the time corresponding to the physical action of yawing, including a

yaw rate of 4 ∘ per minute. We also split the full time horizon into control intervals and recompute the yaw set points (update the control set

points) at these intervals based on the current state of the system; that is, each optimization horizon does not encompass the whole

control signal, but rather encompasses a subsection of the control signal at each evaluation. More specifically, the controller first computes opti-

mal yaw over the full time horizon. Then, the turbines are yawed according to the set yaw rate until either they reach the desired yaw or it is time

for another controller update. The current yaw of the turbines is then used as the initial conditions for the next update, and the process is

repeated. From this process, one can infer that the turbines will not always reach the target yaw within one controller update period. In this exam-

ple, the simulation time was 3600 s, the controller look-ahead time period was 300 s, and the controller was updated every 240 s. To lessen the

inherent dependence of the nonlinear optimization problem on initial conditions, an ensemble of optimizations are run (we used 10 members in

the ensemble), each with differing initial conditions that are perturbed randomly within �2 ∘ from the current yaw. This ensemble of optimizations

can be parallelized since each realization is independent of the others. Thus, the addition of an ensemble of optimizations will not extend the time

it takes to reach the final control since they can be calculated in parallel. The final yaw control commands use the average of the ensemble

results.

F IGURE 10 Wind farm power in an application of power tracking applied to a six-turbine wind farm where the dynamic yaw model is used as
the wind farm plant as well as the control model. The figure shows the evolution of the power of the farm in time (blue line), as compared to the
target power reference signal (black dashed line). The controlled signal has an RMSE of 0.24 MW from the reference signal.
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Figure 10 shows the controlled response (in blue) alongside the desired trajectory (black dashed line). There are a few aspects of the control

seen in Figure 10 worth remarking upon. The first is that the controller is able to curtail the power down to 11 MW from the initial power of

11.61 MW. Then, the yaw control is asked to navigate a step change in the middle of the control period. Following a step change is a somewhat

unrealistic expectation for yaw control, due to the slower timescale of yawing. Nevertheless, we can see that the yaw control is able to anticipate

the step change before it happens, due to the model-constrained optimal framework. Finally, we can see that even though the power output

increases with the step change, it is unable to fully reach the final power reference value and seems to hover with a constant offset under the

power reference signal. This could be a result of using the average of an ensemble of optimizations, or it could be that yawing simply cannot reach

the demanded power increase of 8% under the assumed operating conditions.

5 | CONCLUSIONS

In this paper, we presented a new graph-based dynamic yaw model that is able to represent the transient response of a wind farm due to dynamic

yaw actions of individual turbines at different times. The model incorporates a new analytical description of the wake deficit deformation due to

yaw to represent the pairwise turbine interactions. The model also includes a time-delay formulation that accounts for the slower wake velocities

behind turbines and the time delays for the propagation of velocity and yaw information through the farm. Real-time data are used to create a

time-dependent and spatially-dependent velocity inflow that improves model performance. The model was validated both statically and dynami-

cally using LES.

The dynamic yaw model was then implemented in a model-constrained optimal control structure to use yaw to control the power of a wind

farm. The results showed that the controller was able to use yaw to achieve controlling a wind farm power output to follow a desired step change

control signal. However, further work on the controller formulation could improve the performance, particularly in the response time of the con-

trol and the final value the controller achieves, which settles into an equilibrium state just below that of the reference signal.

The results shown here demonstrate that the proposed dynamic yaw model represents a computationally efficient approach to predict the

time-dependent response including the transient behavior of a wind farm to changes in yaw that is suitable for control applications. The dynamic

yaw model therefore provides a controls-based wind farm modeling approach that is able to represent a wind farm under changing conditions.

Ongoing work aims to implement this model in conjunction with pitch control to provide additional control authority and enable faster control

response. Future work to modify the model to enable gradient-based optimization or adapt an optimization scheme for a receding horizon

approach is likely to improve the model performance.
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APPENDIX A: THE ANALYTICAL CURLED WAKE MODEL INCLUDING YAW

The model is based on the Gaussian wake model26 in which the wake velocity deficit is expressed as

δu
U∞

¼CðxÞexp �ðy�ycÞ2þðz� zhÞ2
2σ2

" #
, ðA1Þ

where δu is the wake deficit, U∞ is the freestream velocity, CðxÞ is the initial velocity deficit, yc is the y-location of the center of the wake, zh is the

turbine height, and σ is the width of the wake. If σ is only a function of x, one obtains the original Gaussian model.3 However, yaw deforms

the shape of the wake into a curled shape. As shown in Bastankhah et al,6 the wake deformation can be represented by making the wake's

“radius” dependent on the polar angle θ, that is, by using σðx,θÞ, where θ is defined as

θ¼ arctan
z� zh
y�yc

� �
: ðA2Þ

The velocity deficit also depends on the spanwise position of the wake center, which is defined as

yc ¼
ðπ�1Þjt̂j3þ2

ffiffiffi
3

p
π2 t̂

2þ48ðπ�1Þ2jt̂j
2πðπ�1Þt̂2þ4

ffiffiffi
3

p
π2jt̂jþ96ðπ�1Þ2

sgnð btÞ
�2
π

t̂

ðzþ zhÞ=ξ0½ �2�1
,

ðA3Þ

where t̂ is a dimensionless downstream travel time (it is a function of x) as specified by an approximate analytical solution provided in Bastankhah

et al6 and

ξ0 ≈R
ffiffiffiffiffiffiffi
A ∗

p
ðA4Þ

is the initial wake radius based on the projected area of the yawed rotor with

A ∗ ¼ 1�a
1�2a

¼1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�CT cos2γ

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�CT cos2γ

p , ðA5Þ

where a is the turbine induction factor and is related to the disk velocity ud by ud ¼U∞ cosγ ð1�aÞ. The induction factor is affected by the yaw of

the turbine and relationship between the induction factor and the local thrust coefficient can be approximated1 as

a¼ C0
T cos

2ðγÞ
4þC0

T cos
2ðγÞ : ðA6Þ

From this equation, the thrust coefficient can also be calculated based on the local thrust coefficient as

CT ¼ 16C0
T

ð4þC0
T cos

2ðγÞÞ2
: ðA7Þ

This is the coefficient of thrust used in Equation (A5).

Once the wake streamwise centerline and the polar angle are known, we can calculate wake function as

σðx,θÞ¼ kwxþ0:4ξðx,θÞ, ðA8Þ

where the first term in the equation represents the standard linear wake expansion with coefficient kw , and the second term represents the evolu-

tion of the wake shape. The function ξ is a complicated function that depends on the streamwise distance, the polar angle, the current yaw angle,

the dimensionless time, and the rotation rate of the turbine blades. The function is obtained using a power-series expansion and solution to the

vortex sheet transport equation. The solution is written as
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ξðx,θÞ¼ ξ0 1�
X4
n¼2

cnðt̂ÞcosðnθÞþdnðt̂ÞsinðnθÞ
� � !

, ðA9Þ

where expressions for the coefficients cn and dn in terms of the dimensionless time t̂ (depending on x) are provided in Appendix B of Bastankhah

et al.6 These expressions include an empirical transition function that interpolates between different asymptotic behaviors for different regimes

(near and far from the turbine).

Finally, to fully define this model, the initial wake deficit CðxÞ is calculated using Equation (3) in the main text, for which the area ~σ2 uses a

simplified version of the original σ function, which avoids a dependence on θ by using the approximation for ξ defined in Equation (A4). It is evalu-

ated as

~σ2ðxÞ¼ ðkwxþ0:4ξ0Þðkwxþ0:4ξ0 cosγÞ, ðA10Þ

which uses Equation (A4), defined earlier. It includes the effect of yaw in modifying the wake width in the spanwise direction, but leaving the ver-

tical width unchanged.

APPENDIX B: POWELL'S ALGORITHM

Powell's algorithm is a conjugate direction method that performs a minimization without calculating the derivatives. The algorithm is initialized

using an initial point and an initial set of search vectors, represented by s1,…,sN for an N-dimensional problem. The method minimizes the function

then iterates over the search directions, finding the minimum of the function in a line search over each search direction. The minima found in each

bidirectional line search can be expressed as

x0þα1s1,x0þ
X2
i¼1

αisi,…,x0þ
XN
i¼1

αisi , ðB1Þ

where x0 is the initial point and αi is the scalar that determines the minimum in the si line search direction. The next point is then expressed as

x1 ¼ x0þ
XN
i¼1

αisi: ðB2Þ

A new direction is then added to the search directions, defined by x1�x0, or
PN
i¼1

αisi , which can be thought of as the average direction moved

during this iteration. A direction is also dropped from the search directions to keep the search directions of size N. In Powell's modified algorithm,

which is what is used in Python, the direction that achieved the largest decrease in the bidirectional minimization is dropped, if it satisfies specific

conditions. This is to decrease the chances of linear dependence in the search directions, since the search direction that caused the largest change

will also be a significant part of the new search direction. The conditions for the search directions to be kept the same are if (1) the function shows

no great improvement along the direction of greatest increase in the iteration, or (2) the direction of the greatest improvement does not account

for a sufficiently large fraction of the new search direction, which would indicate that several directions are contributing to the minimization.

The algorithm is iterated until there is no significant improvement to the objective function.35–37
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