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Abstract—Capacity expansion models are important tools in 
examining the evolution of the electric power sector. Embedded 
in these tools are many modeling choices with consequential 
impacts on computational burden and associated analysis. In 
this study, we adjust the spatial resolution of the Regional 
Energy Deployment System (ReEDS) to understand the 
implications of higher-fidelity modeling on energy system 
projections and model solve times. The native ReEDS regions 
capture the contiguous United States in 134 balancing areas 
whereas the regions in the higher-resolution version are defined 
by over 3,000 U.S. counties. Using both resolutions, we conduct 
a case study of the Texas Interconnection (The Electric 
Reliability Council of Texas [ERCOT]) to explore differences in 
model projections and to inform appropriate applications of 
high spatial resolution in a large-scale, applied capacity 
expansion model.    

Keywords—Spatial resolution, capacity expansion, ReEDS, 
ERCOT, U.S. county 

I. INTRODUCTION  
 Long-term strategic energy planning has been an 
established field for many decades. In recent years, the 
burgeoning needs to address climate targets and ensure 
reliability have led to global efforts to improve energy system 
optimization models, particularly in the electricity sector. The 
paradigm of relying on higher shares of renewable resources 
has challenged established methods based on large-scale 
centralized electricity generation, particularly with respect to 
spatial and temporal detail [1]. Several studies have reviewed 
the trade-offs associated with manipulating resolution levers 
across multidecade capacity expansion models [2], [3]. 
Models typically solve for the least-cost portfolio of 
generation, storage, and transmission; however, the regions 
represented in these models span a range of spatial resolutions 
and geographic areas—at times leading to conflicting trends 
that result from changes in spatial resolution [4], [5].. Despite 
the difficulty in identifying consistent trends associated with 
spatial resolution across models, some congruency exists: 
namely that spatial resolution has a meaningful impact on 
location of variable renewable deployment, transmission 
system congestion,  and computational burden.  

Enhancing the spatial resolution of long-term electricity 
system models creates several challenges. The electricity 
system is large and complex, necessitating limitations in its 
geographic scope to remain computationally tractable. 
Furthermore, input data with sufficient spatial detail are often 

unavailable.  Notwithstanding, executing a capacity expansion 
model at multiple resolutions and comparing the results can 
provide valuable insight into the unintended consequences of 
model simplifications incurred from using a coarser spatial 
resolution.  Uncovering these effects can help analysts and 
decision makers better interpret model results and better 
understand trade-offs when selecting the spatial resolution for 
a given study.  

 The focus of this case study is to evaluate the implications 
of spatial resolution on the National Renewable Energy 
Laboratory’s Regional Energy Deployment System (ReEDS) 
long-term grid planning model. Prior research using ReEDS 
aggregated the 134 native regions to create a less spatially 
resolved model and examined  the impact of using very large 
regions [6]. In contrast, this work showcases a spatially 
flexible and higher-resolution version of ReEDS in which the 
underlying model data exists at the U.S. county resolution. 
Although ReEDS is typically used to perform national scale 
studies, emerging interest in regional impacts has increased 
the need for greater spatial granularity. Unique user-defined 
focus areas, such as utility service areas, can now be 
constructed and examined. Furthermore, the model 
parameters for which spatial resolution has the greatest 
implications can be isolated by comparing the results of the 
native ReEDS spatial resolution to the results at county 
resolution.  

II. MODEL DESCRIPTION 
ReEDS is a linear least cost deterministic model that 

optimizes generation, storage, and transmission capacity 
investment for the contiguous United States given 
assumptions concerning electricity demand, technology costs, 
policies, and other key electricity sector characteristics. This 
section provides a brief introduction to the model along with 
details outlining the model differences that arise between the 
native ReEDS spatial resolution and the U.S. county 
resolution.  

A. Model Formulation  
ReEDS determines the minimum capital and operational 

costs for the U.S. electricity sector subject to system 
constraints. The total system costs captured in the objective 
function include the overnight capital costs of each 
generation, storage, and transmission technology scaled by a 
financial multiplier (which accounts for regional factors, 
construction financing costs, cost of capital, and tax 
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incentives), the fixed operation and maintenance costs of 
each technology, any policy costs (e.g., alternative 
compliance payments), growth penalties, and the dispatch 
costs. This objective is subject to energy balance constraints 
within each modeled region, transmission  constraints, 
planning reserve constraints, operating reserve constraints, 
technology-specific operational constraints, resource 
constraints, and emissions constraints [5]. For this case study, 
the temporal horizon extends until 2050, with model solve 
years occurring every 3 years starting in 2020. Two spatial 
resolutions are evaluated as part of this work, both 
encompassing the interconnection managed by The Electric 
Reliability Council of Texas (ERCOT). Fig. 1 presents maps 
of this region at the two resolutions considered, the native 
ReEDS model balancing area (BA), and U.S. county. The BA 
resolution contains 7 modeled regions; the county 
representation contains 192.  

B. Model Inputs 
The initial generation fleet in ReEDS is taken from the 

National Electricity Modeling System (NEMS) [7] and the 
Energy Information Administration’s form 860M [8]. It 
consists of existing plants, expected builds, and announced 
retirements. The data set includes each plant’s latitudes and 
longitudes, allowing each unit to be assigned to the 
appropriate BA or county. Technology costs and performance 
assumptions for these generation units are taken from the 2023 
Annual Technology Baseline [9], with moderate cost 
assumptions used across the scenarios in this case study. 
Renewable energy generation is characterized by supply 
curves that estimate the amount of resource available and the 
associated cost of accessing it. For wind, concentrating solar 
power (CSP), and utility-scale solar PV (UPV), unique supply 
curves are created for the BA and county resolutions using the 
renewable energy potential model (reV) [10]. Each wind and 
solar supply curve site from reV is mapped to its 
corresponding BA or county and aggregated to produce a 
representative curve for each modeled region. Embedded in 
the supply curves are the land use costs, investments required 
to reinforce the bulk transmission network, and the 
interconnection costs to tie the renewable plant to the existing 
grid infrastructure. In the case of the county resolution supply 
curves, the network reinforcement costs are not included 
because the more granular transmission network at county 
resolution can capture transmission upgrade needs. All 
remaining supply curve technologies (hydropower, biomass, 
pumped storage hydro, geothermal) have supply curve data at 
the native BA resolution; data are disaggregated to county 
resolution using the methods discussed later in this section.  

The underlying transmission networks for the BA and 
county resolutions are unique, although both are synthetic 
networks derived from the nodal transmission data set 
assembled as part of the North American Renewable 
Integration Study (NARIS) [11]. The transfer capacity 
between interfaces— BA-BA or county-county— is 
approximated by solving a linear power flow optimization that 
maximizes the total flow between interfaces subject to 
transmission line limits, the locational injection and 
withdrawal limits, and the relationships between power 

transfer and line flows [12].  This optimization is run 
independently for the BA and county resolutions, with the 
transmission nodes and capacity from the NARIS data 
mapped to the corresponding model region. The resulting 
networks are fundamentally different because of their 
different geographic resolutions.  

C. Disaggregation Methods 
All remaining inputs to ReEDS exist at their default 

resolution, typically the 134 BA resolution. To solve the 
model at the county resolution, these data sets must be 
downscaled using one of the following methods. Uniform 
disaggregation assigns the BA value to all counties within that 
BA. The regional technology financial multipliers are an 
example of data treated with this approach. Population-based 
disaggregation uses population-based weighting to spread the 
BA value across all counties within a BA. The hourly load 
data are one example data set downscaled in this way. 
Geographic size disaggregation is similar to the population 
method, but the fraction assigned to each county is determined 
based on geographic area of each county relative to the entire 
BA. Examples of data subject to geographic disaggregation 
include geothermal supply curves and inputs associated with 
water availability. Some hydropower data sets have their own 
unique disaggregation method. This procedure assigns 
multipliers to each county based on the amount of existing 
hydropower capacity in the county, as reported in the NEMS 
database, relative to the total hydropower capacity in the BA. 

D. Scenario Description  

This case study examines four scenarios: business as usual 
(BAU) and decarbonization (Decarb) at native ReEDS 
balancing area and county-level resolutions. The BAU 
conditions reflect current policies as of September 2023, 
moderate projections for all technology costs, default load 
growth, and reference case fuel costs. These assumptions are 
consistent with the 2023 Standard Scenarios [13]. The 
decarbonization scenario assumptions align with the BAU 
scenario, except that carbon emissions from the electricity 
sector are reduced to net-zero by 2035, with a required ramp-
down from current emissions to zero between 2023 and 2035. 
The study area in all cases is the isolated ERCOT 
interconnection. In the remainder of this paper, the four 
scenarios considered will be referred to as follows. BA BAU 
and BA Decarb denote the cases solved at the native ReEDS 
BA resolution for the BAU and Decarb scenarios, 
respectively. Similarly, county BAU and county Decarb refer 
to the cases solved at the county resolution for the BAU and 
Decarb scenarios, respectively.  

Fig 1. Maps Illustrating ERCOT at BA (left) and County (right) Resolutions 
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III. SCENARIO ANALYSIS AND RESULTS 

Fig 2 shows the total capacity in 2050 across all four 
scenarios. In the BAU scenarios, the installed land-based wind 
capacity is 37% greater in the county level relative to the BA 
resolution. This increase is accompanied by a 26% decrease in 
UPV and a combined 34% decrease in natural gas combined 
cycle (gas-CC) and natural gas combustion turbine (gas-CT) 
capacity. For the Decarb scenarios, land-based wind capacity 
increases by 20% at the county resolution relative to the BA 
case, meanwhile the UPV capacity is 30% less than what is 
observed in the BA results. Under the enforced 
decarbonization, the combined gas-CC and gas-CT capacity is 
replaced by hydrogen CT capacity. The relative 2050 installed 
capacity of these H2 technologies in the county-level solution 
is 19% less than the BA case.   

Fig. 3 shows the locational buildout of wind and solar for 
the BAU scenarios at BA and county resolution, respectively, 
for 2050. Regarding wind, the county-level solution shifts 
much of the installed capacity from northern to southern 
ERCOT. Part of the impetus for this change is the underlying 

resource supply curves. Regardless of the spatial resolution, 
each model region—either county or BA—is assigned one 
unique supply curve per resource class. In the case of land-
based wind, ReEDS groups individual sites into 1 of 10 
resource classes based on capacity factor [5]. Therefore, at the 
BA resolution there are 70 unique profiles for wind across 
ERCOT, while at the county resolution there are 1,920.  The 
additional detail in the county resolution allows the model to 
identify higher-value resources in areas for which the potential 
is diluted at lower resolution.  Furthermore, the granularity of 
the transmission representation can alter the accessibility of 
high potential resources. In the county-level resolution, the 
network reinforcement costs are excluded from the resource 
supply curve costs because the transmission investment 
decisions between counties are explicitly represented in the 
model. The impact of the supply curves is exemplified in the 
southernmost model region. The installed wind capacity in this 
model balancing area in 2050 amounts to 31 gigawatts (GW) 
in the BAU county-level solution and 15 GW in the BAU BA 
solution. A closer look at the county-level results reveals that 
most of this capacity lies along the coast, a region that is less 
attractive in the BA resolution because of the network 
reinforcement costs required to transfer the capacity to the 
nearest network node located at the BA’s load center in the 
north. In addition, this region has an average curtailment rate 
of 0.17 in the higher-resolution county scenario and a 
curtailment rate of 0.003 in the BA results. This indicates that 
at higher fidelity, the utilization of wind capacity is lower; 
however, the granularity of the underlying network still 
enables the high potential resources to be accessed as part of 
the least cost solution. Fig. 4 shows the curtailment rate across 
ERCOT for all four scenarios. In the BAU scenarios, lower 
spatial resolution leads to lower curtailment rates because of 
the enforced linkage between the amount of installed capacity 
and amount of required transmission reinforcement. In the 
Decarb scenarios, lower spatial resolution leads to higher 
curtailment in earlier years, in part because the required 
installed capacity, storage investments, and transmission 
investments are higher; however, the county and BA 
curtailment converge by 2050.   

Regarding UPV, the county-level solution in both the 
BAU and Decarb scenarios has less installed capacity in 2050 
relative to the BA solution. Fig. 3 shows that the displacement 

Fig. 3. ERCOT land-based wind and UPV buildout per BA in 2050 for the 
BAU BA (top) and County (bottom) scenarios 

Fig. 2. 2050 Installed Capacity by Technology: All ERCOT Scenarios.  
gas-ct: gas-combustion turbine; gas-cc: gas-combined cycle; h2-ct: hydrogen-fueled 

combustion turbine 

Fig. 4. ERCOT Curtailment Rates Across All Scenarios 



4 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

of UPV is prominent in the regions associated with increased 
wind. From a systemwide perspective, the shift to more land-
based wind is offset by a reduction in the amount of UPV. 
Nevertheless, the details in the underlying supply curves can 
still be associated with the resulting buildout in the county-
level and BA-level solutions. For instance, in the southwestern 
region the BA-level UPV supply curve cost is an order of 
magnitude less than the land-based wind supply curve cost in 
that region. As a result, the BA-level solution includes 21 GW 
of UPV capacity in this southern BA compared to the 4.2 GW 
installed at the county resolution. Similarly, in the 
northeastern region, the UPV supply curves at the BA 
resolution are comparable to the land-based wind supply 
curves; however, at the county resolution UPV is significantly 
more attractive, leading to a 130% increase of installed UPV 
capacity in 2050 in the county-level solution for the region. In 
broader terms, a shift in UPV capacity near load centers occurs 
at the county resolution in part because the intermittency of 
wind is less suitable to meet concentrated localized demand. 

To isolate the impact of the higher-resolution renewable 
supply curves, the transmission cost and congestion in the 
underlying BA and county-level data must be eliminated. This 
is achieved by removing the network reinforcement costs from 
the BA-level resource supply curves and increasing the initial 
AC transmission capacity of both networks, effectively 
rendering them as copper plates. With this topology, the BAU 
and Decarb scenarios are solved again at the BA and county 
resolutions.  In general, the results show that the regions which 
were most advantageous at each resolution for wind and UPV 
remain palatable; in fact, the preference for the resources in 
these areas is exacerbated. In the initial BA BAU scenario, 
59% of the installed wind capacity in 2050 is in the northern 
BAs. In the copper plate BA BAU scenario, 79% of installed 
wind capacity in 2050 is in these northern regions. In the 
county resolution BAU scenarios, the installed wind capacity 
for the original network in the southern BAs amounts to 54% 
of the total installed wind; in the copper plate scenario, the 
proportion increases to 75%. Holistically, the total installed 
UPV and wind capacity in 2050 for the copper plate BAU 
scenarios converge to similar values at both spatial 
resolutions. However, the misalignment of where the model 
prefers to build each technology—despite disregarding 
transmission constraints—highlights the spatial resolution of 
the underlying supply curves as the primary driver in the 
locational shift. This observation is less obvious but still 
pervasive in the Decarb scenarios. As the carbon cap is 
enforced, the model must reach beyond the areas where the 
highest potential resources exist, diluting the dominance of the 
most attractive regions in the BAU scenarios. Nevertheless, 
the role of transmission cannot be excluded and is integral to 
the accessibility and allocation of resources.  

 Capacity credit is another important factor in the 
evaluation of technology buildout. This value represents the 
fraction of a resource’s installed capacity that can reliably 
contribute to resource adequacy requirements. In ReEDS, 
resource adequacy is ensured in every model year by 

 
1 Stress periods refer to highest-risk hours ideally identified as the hours 
with the highest loss of load probability (LOLP). In practice, an 8760-based 
approach is used to determine the highest seasonal demand hours of the 

enforcing planning reserve margins with levels taken from the 
reserve margin recommended by the North American Electric 
Reliability Corporation [4]. Fig. 5 shows the firm capacity 
contributions required to ensure sufficient resources during 
system stress periods.1 In both the BAU and Decarb county-
level scenarios, the installed wind capacity in the south 
contributes to a larger share of the total firm capacity, which 
is congruent with [15], in which the authors concluded that 
these southern regions have the highest capacity credit values 
in ERCOT. The remaining firm capacity is covered by 
dispatchable sources, with gas and coal in the BAU scenario 
being replaced by hydrogen-fueled turbines under 
decarbonization constraints. Interestingly, the BA Decarb 
scenario exhibits a larger share of 8-hour storage. In [14], the 
authors demonstrate that increasing deployment of solar in 
ERCOT can result in a winter peaking system with a wider net 
load peak, favoring longer-duration storage. Fig. 2 shows that 
the BA Decarb scenario installs the largest share of solar 
capacity across all scenarios and the corresponding solar 
generation is 41% of total generation in 2050. This suggests 
that the higher deployment of 8-hour storage in the BA Decarb 
scenario is in part a result of longer-duration storage receiving 
a higher capacity credit than its 4-hour counterpart, which is 
no longer sufficient to meet peak load.    

Lastly, Table 1 summarizes the net present value of total 
system costs and the runtime of each scenario. The county 
resolution cases have lower costs than their lower-resolution 
counterparts for both the BAU and Decarb scenarios. This can 
be attributed to high-potential and lower-cost resources being 
more accessible. The runtime largely depends on the machine 
specifications and model functionality enabled; however, 
preliminary testing has shown that increasing the number of 
regions by an order of magnitude leads to at least an order of 
magnitude increase in runtime.  

load duration curve, which serve as a proxy for hours with highest LOLP 
[5].  

Fig. 5. 2050 Firm Capacity by Technology: All ERCOT Scenarios 
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TABLE I. NET PRESENT VALUE OF TOTAL SYSTEM COST AND 
RUNTIME 

 
Scenarios 

BA 
BAU 

County 
BAU 

BA 
Decarb 

County 
Decarb 

NPV Total System 
Cost (billions of $)  

232.9 229.3 305.8     288.4 

Runtime (hours) 0.2 2.94 0.19 2.05 

IV. CONCLUSION 
Spatial resolution is a consequential lever in long-term 

energy system modeling. Higher-resolution models provide 
an opportunity to investigate custom, user-defined focus areas 
and can enhance the granularity of model results, especially 
regarding the transmission system, resource quality, and 
temporal profile. However, the input data needed to create 
high-fidelity models are often unavailable at the desired 
resolution and must therefore be created using disaggregation 
techniques. The methods chosen could bias the results; that is, 
higher resolution should not automatically be conflated with 
higher accuracy. In this ERCOT case study, the native ReEDS 
resolution is compared to a higher-resolution county version 
to begin to identify key implications of spatial fidelity on 
model outcomes. These findings are unique to the ReEDS 
ERCOT representation, though work is underway to more 
broadly define trends associated with different spatial 
resolutions for the contiguous United States. 

The results of the ERCOT study revealed that the relative 
competitiveness of wind and UPV is largely dependent on the 
underlying resource supply curves and transmission networks.  
The confluence of results for installed capacity, annual 
generation, and resource adequacy requirements shifts the 
model towards land-based wind capacity at higher spatial 
resolution. Enhanced granularity of the resource supply curves 
enables the model to better identify areas with more valuable 
resources, both in terms of cost as well as capacity credit 
contribution. The higher-detail representation of available 
resources, coupled with the higher capacity factor of wind 
compared to UPV, ultimately results in less overall installed 
capacity across ERCOT and a geographic shift in the 
allocation of resources. The ERCOT results indicate that 
higher spatial resolution leads to more opportunistic allocation 
of resources and an augmented valuation of resource adequacy 
contribution. The county solution offers more granular 
reporting at a substantial computational expense, therefore the 
value added must be evaluated on a case-by-case basis. 
Generally, for resources with heterogenous capacity factors 
across the scope of the analysis, the spatial resolution has a 
more meaningful impact on the results. Additionally, studies 
with a particular emphasis on transmission infrastructure may 
benefit from higher-fidelity representation as bottlenecks and 
curtailment are better captured.  

ACKNOWLEDGMENT 
We are grateful to Stuart Cohen, Bethany Frew, and Emily 
Horvath for providing input on this manuscript. This work 
was authored in part by the National Renewable Energy 
Laboratory, operated by Alliance for Sustainable Energy, 
LLC, for the U.S. Department of Energy (DOE) under 

Contract No. DE-AC36-08GO28308. Funding provided by 
the Office of Strategic Analysis. The views expressed in the 
article do not necessarily represent the views of the DOE or 
the U.S. Government. The U.S. Government retains and the 
publisher, by accepting the article for publication, 
acknowledges that the U.S. Government retains a 
nonexclusive, paid-up, irrevocable, worldwide license to 
publish or reproduce the published form of this work, or 
allow others to do so, for U.S. Government purposes. 

REFERENCES 
[1] S. Pfenninger, A. Hawkes, and J. Keirstead, “Energy systems 

modeling for twenty-first century energy challenges,” Renew Sustain 
Energy Rev, vol. 33, pp. 74–86, May, 2014, doi: 
10.1016/j.rser.2014.02.003. 

[2] B. A. Frew and M. Z. Jacobson, “Temporal and spatial tradeoffs in 
power system modeling with assumptions about storage: An 
application of the POWER model,” Energy, vol. 117, pp. 198–213, 
Dec, 2016, doi: 10.1016/j.energy.2016.10.074. 

[3] V. Aryanpur, B. O’Gallachoir, H. Dai, W. Chen, and J. Glynn, “A 
review of spatial resolution and regionalisation in national-scale 
energy systems optimisation models,” Energy Strat Rev, vol. 37, p. 
100702, Sep, 2021, doi: 10.1016/j.esr.2021.100702. 

[4] W. Cole et al., “Variable Renewable Energy in Long-Term Planning 
Models: A Multi-Model Perspective,” NREL/TP-6A20-70528, 
1416124, Nov. 2017. doi: 10.2172/1416124. 

[5] M. M. Frysztacki, J. Hörsch, V. Hagenmeyer, and T. Brown, “The 
strong effect of network resolution on electricity system models with 
high shares of wind and solar,” Appl. Energy, vol. 291, p. 116726, 
Jun, 2021, doi: 10.1016/j.apenergy.2021.116726. 

[6] Ho, Jonathan, Jonathon Becker, Maxwell Brown, Patrick Brown, Ilya 
Chernyakhovskiy, Stuart Cohen, Wesley Cole, et al. 2021. Regional 
Energy Deployment System (ReEDS) Model Documentation: Version 
2020. Golden, CO: National Renewable Energy Laboratory. 
NREL/TP-6A20-78195. 
https://www.nrel.gov/docs/fy21osti/78195.pdf. 

[7] V. Krishnan and W. Cole, “Evaluating the value of high spatial 
resolution in national capacity expansion models using ReEDS,” in 
IEEE PESGM, Boston, MA, USA, 2016, pp. 1–5. doi: 
10.1109/PESGM.2016.7741996 

[8] EIA. 2017b. “The Electricity Market Module of the National Energy 
Modeling System: Model Documentation 2016.” Washington, D.C.: 
U.S. Energy Information Administration. 
https://www.eia.gov/outlooks/aeo/nems/documentation/electricity/pdf
/m068(2016).pdf.  

[9] “Form EIA-860 Detailed Data with Previous Form Data (EIA-
860A/860B).” 2018. https://www.eia.gov/electricity/data/eia860/. 

[10] NREL. 2023. “2023 Annual Technology Baseline.” Golden, CO: 
National Renewable Energy Laboratory. https://atb.nrel.gov/. 

[11] Maclaurin, Galen, Nick Grue, Anthony Lopez, and Dona Heimiller. 
2019. “The Renewable Energy Potential (ReV) Model: A Geospatial 
Platform for Technical Potential and Supply Curve Modeling.” 
NREL/TP-6A20-73067. Golden, CO: National Renewable Energy 
Laboratory. https://www.nrel.gov/docs/fy19osti/73067.pdf. 

[12] Brinkman, Gregory, Dominique Bain, Grant Buster, Caroline Draxl, 
Paritosh Das, Jonathan Ho, Eduardo Ibanez, et al. 2021. “The North 
American Renewable Integration Study (NARIS): A U.S. 
Perspective.” NREL/TP-6A20-79224. Golden, CO: National 
Renewable Energy Laboratory. https://doi.org/10.2172/1804701 

[13] Brown, Patrick R., Clayton P. Barrows, Jarrad G. Wright, Gregory L. 
Brinkman, Sourabh Dalvi, Jiazi Zhang, and Trieu Mai. 2023. “A 
General Method for Estimating Zonal Transmission Interface Limits 
from Nodal Network Data.” arXiv. http://arxiv.org/abs/2308.03612. 

[14] Gagnon, Pieter, Maxwell Brown, Dan Steinberg, Patrick Brown, 
Sarah Awara, Vincent Carag, Stuart Cohen, Wesley Cole, Jonathan 
Ho, Sarah Inskeep, Nate Lee, Trieu Mai, Matthew Mowers, Caitlin 
Murphy, and Brian Sergi. 2022. 2022 Standard Scenarios Report: A 



6 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Electricity Sector Outlook. Golden, CO: National Renewable 
Energy Laboratory. NREL/TP-6A40-84327. 
https://www.nrel.gov/docs/fy23osti/84327.pdf. 

[15] Denholm, Paul, Wesley Cole, and Nate Blair. 2023. Moving Beyond 
4-Hour Li-Ion Batteries: Challenges and Opportunities for Long(er)-
Duration Energy Storage. Golden, CO: National Renewable Energy 
Laboratory. NREL/TP-6A40-85878. 
https://www.nrel.gov/docs/fy23osti/85878.pdf. 

[16] Jorgenson, Jennie, Sarah Awara, Gord Stephen, and Trieu Mai. 2021. 
Comparing Capacity Credit Calculations for Wind: A Case Study in 
Texas. Golden, CO: National Renewable Energy Laboratory. 
NREL/TP-5C00-80486. 
https://www.nrel.gov/docs/fy21osti/80486.pdf. 
 
 




