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Abstract—Traditional protection schemes face significant chal-
lenges when applied to microgrids with high penetrations of
renewables with inverter-based resources (IBRs). The prolifer-
ation of advanced sensing and communication technologies has
generated copious data, offering an opportunity to overcome
these limitations using data-driven machine learning approaches.
This work proposes a novel approach based on a support vector
machine (SVM) for detecting faults within a 100% renewable
microgrid. The approach encompasses a systematic offline train-
ing stage for the development of a linear SVM-based fault
detection algorithm. This process covers offline data collection
from the microgrid under study, the extraction of features such
as positive- and negative-sequence components and the total
harmonic distortion of the voltage and current measurements
of the relays, and the design of the linear SVM-based classifier.
During the online implementation, however, different classifiers
can exhibit asynchronicity in detecting the fault inception at
different subcycle-to-cycle period-level delays. To circumvent
this asynchronicity issue, a separate algorithm is developed for
each relay to estimate the fault inception time as close to the
real fault time. The performance of the proposed SVM-based
synchronized fault detection method is evaluated using online
time-domain simulation studies on a microgrid test system. The
results corroborate the reliability of the fault detection scheme
when tested under various fault cases (fault types, locations,
and impedances) and non-fault cases during both grid-tied and
islanded operation modes.

I. INTRODUCTION

The design of a reliable protection system for microgrids
has been a complex and pivotal issue for researchers both
in industry and academia. The presence of distributed energy
resources (DERs) introduces unique and dynamic behaviors in
the event of a fault and commonly used protection schemes
in distribution systems and microgrids face some challenges
[1]. Several protection schemes have been proposed in the re-
cent literature that include communication-assisted differential
protection [2], adaptive directional overcurrent protection [3],
sequence superimposed current-based overcurrent protection
[4], admittance relay-based protection [5], and hybrid tripping
characteristics-based protection [6]. These protection schemes
provide a certain degree of reliability in protecting the mi-
crogrid with mixed DERs, including rotating machine-based
DERs, such as diesel generation sets; gas turbine resources;
and inverter-based resource (IBR) DERs, such as photovoltaic
(PV) grid-following (GFL) IBRs and battery energy storage
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Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.
This work was supported by the Laboratory Directed Research and Devel-
opment (LDRD) Program at NREL. The views expressed in the article do
not necessarily represent the views of the DOE or the U.S. Government.
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paid-up, irrevocable, worldwide license to publish or reproduce the published
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system (BESS) grid-forming (GFM) IBRs [7]. In the emerging
100% renewable microgrids, the additional challenges are:
• Low fault current contributions from the IBRs, constrained
by semiconductor switches and current-limiter logic [8].
• Fault currents fluctuate based on IBRs’ operational status,
due to renewable resource variability [9].
• A lack of established fault models of IBRs, which can vary
depending on the selection of the control schemes and the
fault-limiting logic under balanced/unbalanced faults [10].

These challenges underscore the need for innovative fault
detection methods, particularly in the context of 100% re-
newable microgrids, to ensure the reliability and effective-
ness of the protection systems. With the advent of artificial
intelligence techniques, the focus has shifted to using ma-
chine learning (ML) algorithms for developing more robust
protection systems [11]. Decision tree (DT)-based algorithms
for relays have been proposed using wavelet-based [12] and
differential quantity-based [13] features; however, classical
DT-based methods suffer from high variance and over-fitting
issues. Multi-layer, feed-forward, artificial neural network-
based algorithms have been developed based on instantaneous
voltage and current measurements at relay points for fault
classification and location identification [14], [15]; however,
over-complexities due to a large number of neurons in the
hidden layers and the impacts of limited, sparse, and noisy
data affect the outcome. Other approaches include extreme ML
and random forest algorithms, which use features extracted
via Hilbert–Huang transformations and principal component
analysis from measured voltage and current data [16], [17].
A threshold-based protection scheme based on Kalman filter
residuals and the total harmonic distortion (THD) of measured
current by the relays has been proposed in [18]. Support vector
machine (SVM)-based classifiers have also been extensively
used to detect and localize faults in a microgrid using unique
features extracted from discrete wavelet transformation and
discrete Fourier transformation of the prefault and postfault
voltage and current measurements [19]–[23]. The main chal-
lenge in the existing SVM-based fault detection methods is
that the classifiers (Kernels) are mostly nonlinear and are
trained on post-computed features that are extremely difficult
to implement in real low-cost, microcontroller-based numer-
ical relays [24]. Despite their successful fault detection in
microgrids with mixed DERs, most existing SVM classifier-
based protection schemes are unable to detect faults under the
intermittent behavior of renewable DERs [25]. This article fills
the gap by contributing the following:
• A comprehensive and efficient approach to generating
training data sets capturing the intermittency of renewable
DERs, enabling the training of SVM classifiers that maintain
reliability under varying levels of low-fault current situations
within a 100% renewable microgrid.
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Fig. 1: Support vector machine-based maximum margin classifier.

• The utilization of classical features, such as positive- and
negative-sequence components and the THD of the voltage and
current waveforms measured by the relays, which facilitates
the implementation on microcontroller-based relays.
• The development of a linear SVM classifier to detect faults,
which can streamline integration into relay logic with fast
detection speed and high accuracy.
• The introduction of a unique differential power-based fault
time estimator, triggered by the SVM-based fault detector.
This additional logic ensures synchronicity among multiple
relays in a microgrid, which is crucial in any data-driven fault
localization algorithm.

This article focuses on the development of an easy-
to-implement and synchronized SVM-based fault detection
method for a 100% renewable microgrid; the fault localization
task is outside the scope of this article. The offline simulation
results in the training stage showcase the reliability of the
detection. The online simulation results on a 100% renewable
microgrid corroborate the efficacy and viability of the imple-
mentation of the detection method.

II. PRELIMINARIES OF SUPPORT VECTOR MACHINE

SVM is a classification algorithm aiming to find the best
hyperplane to separate data classes [26]. It maximizes the
margin between closest data points (support vectors). It han-
dles non-linear data via kernel functions like polynomial,
radial basis function, or sigmoid kernels. SVM effectively
handles high-dimensional data, even when features outnumber
observations. For a two-class problem, the following linear
kernel is commonly used:

y(X) = W⊤X + b, (1)
where X is the training set that includes N input vectors
X1, X2, . . . , XN and Xn ∈ Rp. The corresponding output
targets are t1, t2, . . . , tN with tn ∈ {1,−1]}. y(X) represents
the model output that corresponds to the input data X and the
classification is based on the sign of y(x). For instance, with
Xn ∈ R2, as illustrated in Fig. 1. The red dots and blue squares
represent the data samples for classes 1 and -1, respectively.
It is common to observe that data samples from two classes
may overlap as shown in Fig. 1. The SVM method introduces
the margin, described as the minimum distance between the
decision boundary and any of the samples. Define a slack
variable as ξn = |tn − y(Xn)|. The classification of a dataset
considering ξn can be written as tny(Xn) ≥ 1 − ξn, n =
1, 2, . . . ,N. For the example in Fig. 1, if a red dot is located
on the W⊤Xn + b = 1 margin, then ξn = 0. If a red dot
is located between W⊤Xn + b = 0 and W⊤Xn + b = 1
margins, then 0 < ξn < 1. If a red dot is located on the
W⊤Xn + b = 0 margin, then ξ = 1. If a red dot is located
between W⊤Xn+ b = 0 and W⊤Xn+ b = −1 margins, then

ξ > 1. A similar pattern applies to the blue squares.
SVM aims to maximize the separating region between

W⊤Xn + b = 1 and W⊤Xn + b = −1 margins as well
as accounting for the mis-classified points through the slack
parameters by minimizing the following optimization problem:

C
N∑

n=1

ξn +
1

2
||W||2, (2)

where C > 0 provides a trade-off between the slack variables
and the separating region. The Lagrangian is defined as

L(W, b, a) =C
N∑

n=1

ξn +
1

2
||W||2 −

N∑
n=1

µnξn

−
N∑

n=1

an[tn(W
⊤Xn + b)− 1 + ξn], (3)

where, an > 0 and µn > 0 are the Lagrange multipliers.
Calculating the first derivative of eq. (3) with respect to W, b
and ξn and making them equal to zero renders:

W =

N∑
n=1

antnXn,
N∑

n=1

antn = 0, an = C − µn. (4)

Using eq. (4), eq. (3) can be reformulated as:

L′(a) =
N∑

n=1

an − 1

2

N∑
n=1

N∑
m=1

anamtntmX
⊤
n Xm,

0 ≤ an ≤ C,

N∑
n=1

antn = 0. (5)

From the optimization problem, the training points along with
ai form the support vectors, and optimal b are:

b =
1

NS

∑
n∈S

[tn −
∑
m∈S

anamXnXm], (6)

where, NS is the total number of support vectors, that satisfy
tny(Xn) = 1 (i.e., they correspond to points that lie on the
maximum margin hyper-planes).

III. MICROGRID MODEL AND DATA COLLECTION

To illustrate the data-driven approach, we consider the
microgrid depicted in Fig. 2. This microgrid is based on
Feeder 2 of the Banshee distribution benchmark system [27].
The original distribution network has one BESS (BESS 1),
rated at 2.5 MVA, and one PV IBR (PV 1), rated at 2 MW,
connected to Bus 1 and Bus 8, respectively. To convert the
network into a 100% renewable microgrid, several additions
have been made: BESS 2 with a rating of 1 MVA at Bus 9, PV
2 with a rating of 0.5 MW at Bus 6, and PV 3 with a rating
of 1 MW at Bus 7. The BESS units are operating with GFM
control, including power tracking for grid-connected mode and
VF power sharing control for islanded mode. The PV units
are operating in GFL control while following three modes: i)
fixed power factor, ii) P-Q dispatch, and iii) volt-volt ampere
reactive control. Both the BESS and the PV IBR systems
respond to abnormal voltages and possess voltage ride-through
capabilities compliant with IEEE 1547-2018 Category III [28].
More details about the ratings of the various buses, loads, and
transformers can be found in [27]. In the data collection stage,
the following steps are followed:
• Step 1 The microgrid illustrated in Fig. 2 is simulated

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 2: The 100% renewable microgrid test system under study.

Fig. 3: Details of the 1, 540 simulations in the offline data collection.

for a total of S times, covering both prefault and postfault
situations. These simulations encompass a wide range of fault
conditions, including different impedances, fault types, and
fault locations. The simulations also account for variations
in load demand; the solar irradiance of the PV IBRs; and
different operational modes of IBRs, including both grid-tied
and islanded configurations.
• Step 2 All relay measurements, namely, vRx

a (t), vRx
b (t),

vRx
c (t), iRx

a (t), iRx
b (t), and iRx

c (t), measured by all relays in
the microgrid are recorded and stored.

In this study, a total of 1, 540 fault simulations are conducted
covering varying fault impedances, types, and locations. An
overview of the types of simulations is shown in Fig. 3.

Fig. 4: The features computed by relay R1 for fault F1 of type BCG
with impedance of 1.4 Ω at t = 0.5s in the microgrid of Fig. 2.

IV. PROPOSED SVM-BASED PROTECTION DESIGN

In this section, the offline training of the SVM-based
classifier is designed based on the collected data mentioned
in Section III. The design phase consists of two main
technical components: “Design of SVM-Based Fault Detection
Classifier” and “Design of Fault Time Estimator.”

A. Design of SVM-Based Fault Detection Classifier
The fault detection algorithm consists of two functionalities:

feature extraction and fault classification.
1) Feature Extraction

Various types of faults in a microgrid generate various types
of signatures/features in the waveform of the voltage and
current measured by the relays. In this work, the following
features are considered:
• Sequence Components of Voltage: The magnitudes of
positive- and negative-sequence components of voltages are:

|V̄ Rx
+ve| := [V̄ Rx

a + αV̄ Rx
b + α2V̄ Rx

c ]/3, (7)

|V̄ Rx
−ve| := [V̄ Rx

a + α2V̄ Rx
b + αV̄ Rx

c ]/3, (8)
where V̄ Rx

a , V̄ Rx
b , V̄ Rx

c are the phasor quantities corresponding
to vRx

a (t), vRx
b (t), vRx

c (t), respectively. Here, α := 1∠120◦.
• Sequence Components of Current: The magnitudes of
positive- and negative-sequence components of the current are:

|ĪRx
+ve| := [ĪRx

a + αĪRx
b + α2ĪRx

c ]/3, (9)

|ĪRx
−ve| := [ĪRx

a + α2ĪRx
b + αĪRx

c ]/3, (10)
where ĪRx

a , ĪRx
b , ĪRx

c are the three-phase phasor quantities
corresponding to iRx

a (t), iRx
b (t), iRx

c (t), respectively.
• THD of Voltage: The THD of phase y of the voltage
waveform is:

HRx
vy

:=

√[∑
h>1

|V̄ Rx
y,h |2

]
/
[
|V̄ Rx

y,1 |2 +
∑
h>1

|V̄ Rx
y,h |2

]
, (11)

where |V̄ Rx
y,h | is the magnitude of the hth harmonic component

of vRx
y (t). As a result, HRx

va
, HRx

vb
, HRx

vc
are the THD of the

voltages in phase a, b, c, respectively.
• THD of Current: The THD of each phase of the current
waveform is defined as:

HRx
iy :=

√[∑
h>1

|ĪRx
y,h|2

]
/
[
|ĪRx

y,1|2 +
∑
h>1

|ĪRx
y,h|2

]
, (12)

where |ĪRx
y,h| is the magnitude of the hth harmonic component

of iRx
y (t). As a result, HRx

ia
, HRx

ib
, HRx

ic
are the THDs of the

currents in phase a, b, c, respectively.
Fig. 4 and Fig. 5 show the change in the features computed
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Fig. 5: The features computed by relay R12 for fault F10 of type AG
with impedance of 10.1 Ω at t = 0.5s in the microgrid of Fig. 2.

Algorithm 1: Algorithm for Fault Time Estimation
Input: Classifier’s output [0 =⇒ no-fault, 1 =⇒ fault]
Output: testf in seconds

wait for classifier’s output, Isvm.
if (Isvm = 1) then

use 1 cycle data of va, vb, vc, ia, ib, ic from buffer
compute dP/dt, and dQ/dt
determine testf when |dP/dt| > τ OR |dQ/dt| > τ

else if (Isvm = 0) then
no operation

end if
return testf

by relay R1 and R12 for fault F1 and F10 of type BCG and
AG with impedances of 1.4 Ω and 10.1 Ω at t = 0.5s in
the microgrid of Fig. 2, respectively. As shown, there is a
significant amount of change in the features before and after
the fault inception. These observations justify the selection of
these features for the classifier, which will be designed next.
The complete set of the features for the relay Rx is:

X feat := [|V̄ Rx
+ve| |V̄ Rx

−ve| |ĪRx
+ve| |ĪRx

−ve| HRx
va

HRx
vb

HRx
vc

HRx
ia HRx

ib
HRx

ic ]⊤ (13)
2) Fault Classification

The main focus of this section is to learn the SVM model
offline using the training data set. The steps are:
• Step 1: From the stored data, as mentioned in Section III,
we compute and define the set of features as discussed in
Section IV-A1. In each simulation for the kth relay, there are
npre number of Xk

feat and npost number of Xk
feat computed

prefault and postfault, respectively; hence, there is a total of
N = S× npre + S× npost number of Xk

feat for the kth relay.
• Step 2: The output target is selected such that tn = −1
and tn = 1 if Xk

feat[n] belong to the prefault and postfault
conditions, respectively. Based on the optimization method of
Section II, the goal is to find the optimized linear classifier (a
hyperplane of order 10) for the kth relay.

We repeat these steps for all the relays. After determining
the SVM classifier for each relay, in an ideal scenario, the
classifier should categorize S × npost instances of Xk

feat as
data from a system with a fault and S × npre instances of
Xk

feat as data from a system without a fault. This should be
satisfied by all the relays associated with their respective SVM
classifiers; however, the accuracy of the classification in the
fault detection in practice might differ from the ideal case,
which is discussed in Section V.

Storing
❑ Inst. voltage (𝑣abc) 
❑ Inst. current (𝑖abc) 

Extract features 

𝑉+ve, 𝑉−ve, 𝑉0, 𝐼+ve, 𝐼−ve,
𝐼0, 𝑉THD

a , 𝑉THD
b , 𝑉THD

c , 

𝐼THD
a , 𝐼THD

b , and 𝐼THD
c

Design fault 
detection 

classifier for 
each relay

Verified on off-line 
stored data using 
standard metrics, 
e.g., precision, recall 
and accuracy.

Implemented and 
tested on microgrid

Relay

Microgrid

Fig. 6: Workflow of the proposed data-driven learning and scheme.

B. Design of Fault Time Estimator
The classifier detects the fault inception using the steady-

state phasor quantities that causes a subcycle-to-cycle period-
level delay in detection from the true fault inception time.
And for the same fault inception time, different relays might
detect the fault at different times. The delay in fault detection
could result in the relay experiencing nuisance operations
when coordinating with neighboring relays. To circumvent
this asynchronicity issue, a separate algorithm is developed
for each relay to estimate the fault inception time as close
as possible to the real fault time. This algorithm requires
using some instantaneous quantity, unlike the case of the fault
detection classifier design. Here, the two candidates are the
rate of change of active power, dP/dt (in p.u./s), and the rate
of change of reactive power, dQ/dt (in p.u./s), measured at
each relay. For relay Rx, the instantaneous active power and
instantaneous reactive power in p.u. are formulated as:

PRx(t) :=
vRx
a (t)iRx

a (t) + vRx
b (t)iRx

b (t) + vRx
c (t)iRx

c (t)

SRx
rated

,

QRx(t) :=
vRx
bc (t)i

Rx
a (t) + vRx

ca (t)iRx
b (t) + vRx

ac (t)i
Rx
c (t)√

3× SRx
rated

,

where, SRx
rated is the kVA rating of the line where the relay

Rx is employed. Both the active and reactive power stay
fairly constant before the fault under a specific loading and
generation in the entire microgrid, and therefore the trajectory
of dP (t)/dt and dQ(t)/dt will be fairly linear and the values
will be close to zero; however, both quantities will drastically
change their trajectory from the fault time. By observing the
trajectories and checking the time instant when any of these
two trajectories cross a preassigned upper and lower threshold
limit, the fault time, testf , can be estimated as close as possible
to the true fault time, tf . To avoid nuisance fault time estima-
tion, this algorithm of threshold checking will be activated
only when the detection algorithm successfully detects the
fault. The fault time estimation algorithm will consider only
the previous one cycle of the instantaneous voltage and current
waveforms to compute dP (t)/dt and dQ(t)/dt for threshold
checking. This is shown in Algorithm 1.

V. RESULTS

The overall workflow of the proposed scheme is shown in
Fig. 6. Firstly, the performance of the offline training of the
SVM-based classifier in the fault detection is evaluated based
on the 1, 540 fault scenarios, as mentioned in Section III.
In this assessment, the presence of a fault is considered as
the relevant element, and the confusion matrix is computed
based on it with the true positive, false negative, false positive,
and true negative to determine the metrics such as accuracy,
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TABLE I: Performance of the SVM-based fault detection method on
offline training data. Grtd = grid-tied, Isld = islanded.

Precision [%] Recall [%] Accuracy [%]
Relay

Grtd Isld Grtd Isld Grtd Isld
R1 97.44 97.31 95.07 96.03 94.63 95.01
R2 97.89 97.22 95.12 96.52 94.58 95.12
R3 97.13 97.72 94.96 96.11 94.79 94.97
R4 97.25 97.11 95.07 95.96 94.88 94.87
R5 97.69 97.43 95.11 96.03 94.66 95.06
R6 97.56 97.63 95.26 96.05 94.37 95.12
R7 97.81 97.56 94.93 96.11 94.33 95.21
R8 97.52 97.87 95.33 96.16 94.38 95.30
R9 97.22 97.19 95.03 95.91 94.23 94.98
R10 97.88 97.37 95.18 95.96 94.99 95.11
R11 97.44 97.79 95.01 96.11 95.12 95.13
R12 97.51 97.27 94.93 95.02 95.17 95.18

Relevant elements

TP FP

FN TN

Retrieved elements

Precision =

Recall =

+
Accuracy =

Fig. 7: Definition of precision, recall and accuracy (TP: True Positive,
FN: False Negative, FP: False Positive, TN: True Negative).

precision, and recall. Table I shows the relay-wise performance
of the offline-trained SVM classifier in detecting the fault.
For instance, the precision across all the relays indicates
that the SVM classifier is correct in predicting the fault
approximately 97% to 98% of the time. The recall in all the
relays concludes that the SVM classifiers find all cases of
the fault with 94%–97% efficiency. The accuracy in all the
relays concludes that approximately 94–96% of the time, the
SVM classifier is correct in the fault classification overall.
This corroborates the fact that the trained SVM-based classifier
performs with high reliability in detecting faults. For instance,
Fig. 8 and Fig. 9 show the instantaneous voltage and current
waveform measured at relay R2 under fault F1 of type BC
with impedances 1.8 Ω during islanded mode and fault F10
of type CG with impedances 8.9 Ω during grid-tied mode,
respectively. It is observed that during both the cases the
proposed SVM-based classifier is successful in declaring the
fault situation occurred at t = 0.6 s.

Moreover, the performance of the SVM-based fault detec-
tion and the fault time estimation algorithm is evaluated on
new test scenarios. A MATLAB/Simulink-based time-domain
simulation with a simulation time step of Ts = 50µ s of
the microgrid shown in Fig. 2 with the proposed SVM-based
fault detection scheme is conducted. In total, 750 cases are
simulated covering various fault types, locations, impedances,
and modes of microgrid operation. A relay-wise performance
of the proposed SVM classifier with new datasets in run time
is shown in Table II. The results illustrate that the SVM
classifier-based fault detection method demonstrates a robust
performance, characterized by high reliability exceeding 97%.

As mentioned in Section IV-B, once the fault detection
block detects a fault, the fault estimation algorithm starts
estimating the fault time based on the previous one cycle of
data from the instance of detection. For instance, Fig. 10 and
Fig. 11 show the performance of the fault time estimation

TABLE II: Performance of the fault detection method.

R1 R2 R3 R4 R5 R6

97.87% 97.73% 99.06% 99.06% 98.67% 99.06%
R7 R8 R9 R10 R11 R12

98.67% 99.33% 98.81% 98.93% 98.81% 99.06%

Fault 
Occurred

Fault 
Detected

Fault 
Occurred

Fault 
Detected

Fig. 8: Instantaneous voltage and current waveform measured at R2

under fault F1 of type BC with impedances 1.8 Ω in islanded mode.

algorithm employed in relay R2 under fault F1 and F10
of type BC and CG with impedances 1.8 Ω and 8.9 Ω,
respectively. The fault occurred at tf = 0.6 s, and the fault
detection algorithm of relay R2 detects at t = 0.607 s and
t = 0.61 s, respectively. Based on Algorithm 1, R2 estimate
the fault time as testf = 0.6008 s and testf = 0.6004s,
respectively; hence, it can be concluded that the fault time
estimation algorithm, after activated by the fault detection
scheme, estimates the time quite close to the real fault time. A
relay-wise performance of the fault time estimation algorithm
with the new datasets in run time is shown in Table III.

VI. CONCLUSION

This article proposes an SVM-based supervised machine
learning algorithm for detecting faults by the relays employed
in a 100% renewable microgrid. A systematic approach of
the offline training stage for modeling a linear SVM-based
fault detection algorithm is described covering the offline
data collection stage-to-stage extraction of features, from the
measurements of the relays to the design of the linear SVM-
based classifier. Moreover, to circumvent the asynchronicity
issue, a separate fault time estimation algorithm is developed
for each relay before employing it in the online validation
stage. The validation and results of the proposed SVM-based
synchronized fault detection method using an online time-
domain simulation study on a 100% renewable microgrid
corroborate the enhanced reliability in detecting fault. While
tackling the challenges of 100% renewable microgrid, the
proposed SVM-based method with derivative of active and
reactive power addresses the critical challenges of asyn-
chronicity in detecting the timing of the exact fault occurrence
and coordination between neighboring relays, which serves as
the foundation of data-driven based protection. Comparative
analysis of the proposed SVM-based protection system with
traditional protection systems for such 100% renewable mi-
crogrid is considered as a important task for future.
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