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Abstract

The power performance and the wind velocity field of an onshore wind farm are

predicted with machine learning models and the pseudo-2D RANS model, then

assessed against SCADA data. The wind farm under investigation is one of the sites

involved with the American WAKE experimeNt (AWAKEN). The performed simula-

tions enable predictions of the power capture at the farm and turbine levels while

providing insights into the effects on power capture associated with wake interac-

tions that operating upstream turbines induce, as well as the variability caused by

atmospheric stability. The machine learning models show improved accuracy com-

pared to the pseudo-2D RANS model in the predictions of turbine power capture

and farm power capture with roughly half the normalized error. The machine learning

models also entail lower computational costs upon training. Further, the machine

learning models provide predictions of the wind turbulence intensity at the turbine

level for different wind and atmospheric conditions with very good accuracy, which

is difficult to achieve through RANS modeling. Additionally, farm-to-farm interactions

are noted, with adverse impacts on power predictions from both models.
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1 | INTRODUCTION

The efficient extraction of energy from wind is a challenging engineering problem that has been advanced to support more affordable wind energy

production and larger global wind energy consumption.1,2 While improvements in energy extraction are available in many facets of wind turbine

design, such as blade material,3 aerodynamic design,4 turbine control,5 and fault monitoring,6 this work focuses on methods to quantify and, even-

tually, optimize effects due to the deployments of wind turbines in clusters, which are known as wind farms.7,8

Since wind turbines generate power by removing kinetic energy from the wind, the wind available for downstream turbines can have

decreased speed and enhanced turbulence intensity, TI, compared to the upstream wind condition. This phenomenon is referred to as a wind tur-

bine wake.9,10 Turbines downstream of operating turbines experience this reduction of available kinetic energy and produce less power as a

result.11 Thus, the layout of wind farms must be designed in such a manner that turbine-to-turbine wake interactions are minimized. Wakes, how-

ever, are highly three-dimensional, vary with incoming wind conditions, specifically with atmospheric stability, and modify the downstream flow

conditions, such as turbulence intensity.12–14 Though slowing the wind speed impacts turbine power production, the increase in turbulence inten-

sity due to wakes also impacts power production15,16 as well as the fatigue loading on the turbine blades,17 thus impacting turbine reliability.
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Therefore, to optimize the layout of a wind farm, whether for power production, turbine longevity, or an optimal combination of the two, the

propagation of wind turbine wakes must be predicted as well as their impact on power capture. These predictions must be repeated for varying

environmental conditions given the variability of wakes to incoming flow conditions.18,19 The large number of cases that must be predicted to

design a wind farm demands accurate models with low computational costs.

Of the approaches to modeling wind farms, one successful approach is large eddy simulation (LES).17,20,21 While LES can reproduce the com-

plex, time-varying evolution of wind turbine wakes, the computational cost can be prohibitively high.22 Using the Reynolds-averaged Navier–

Stokes (RANS) modeling approach is another popular option to simulate wake propagation in wind farms,23–25 with run times three or four orders

of magnitude faster than LES.22

While LES and RANS models are physics-based, a promising alternative is machine learning (ML) modeling. ML methods are data-driven,

though they can be coupled with physics-based models.26 Fluid dynamics in general, and wind energy in particular, have many applications that

are prime candidates for ML studies.27 For instance, physics-informed neural networks can be used to quickly solve the governing equations for

several fluid flows.26 In atmospheric research, ML has been used for various applications such as turbulence predictions28 and wind forecasting.29

A suite of ML tools has been applied to many elements of the wind energy sector, such as modeling wind turbine wakes30–33 and modeling wind

turbine power capture.34–37 To model the spatial variability of the wind field, most works rely on high-fidelity CFD simulations or light detection

and ranging (LiDAR) measurements.38,39 Prediction of turbine power is also performed in the context of wake steering40 or in optimal input selec-

tion.41 While information regarding the specific layout of a given wind farm and the position of turbines relative to each other can be captured by

ML models, building ML-based modeling approaches that generalize to arbitrary turbine layouts is difficult without injecting physics-based

models.42 Other approaches to generalizing models involve using unique geometric parameters or advanced graph neural network models.43,44

Generally lacking, however, are detailed predictions of individual turbine wind speed and TI using models trained on SCADA data, which are

important to further understanding real farm performance.

With the above in mind, the purpose of this paper is to provide a case study using an experimental site of the American WAKE experimeNt

(AWAKEN)45 to compare the performance of RANS and ML models in predicting the wind field evolution through the wind farm, wake interac-

tions, and power capture for different wind and atmospheric conditions. Specifically, a depth-averaged RANS model is used, called pseudo-2D

RANS (P2D-RANS), which has been tuned and validated on a different wind farm.46 The ML models used will be uniquely generated for the site

under consideration, and the performance of the two approaches will be compared and discussed. Finally, potential power losses associated with

neighboring wind farms will be discussed.

The remainder of the paper is organized as follows. Section 2 gives an overview of the experimental site and the data available for this analysis.

Section 3 discusses the RANS solver used and the development of RANS surrogate models for faster solutions as well as the ML models used. The

models are then assessed against Supervisory Control And Data Acquisition (SCADA) data of the wind farm in Section 4, focusing on the impact of

wakes and farm-to-farm interactions on model accuracy. Section 5 offers concluding remarks on this study. For the interested reader, Appendices A

and B contain details on the selection and tuning of ML models for SCADA-data filtering and modeling wind turbine performance, respectively.

2 | DATA SET OVERVIEW

2.1 | Wind farm under investigation

The wind farm under consideration is the King Plains wind farm in Oklahoma, USA. The wind farm consists of 88 turbines installed over relatively

flat terrain with the layout shown in Figure 1A. Turbine specifications are withheld due to a standing nondisclosure agreement. SCADA data are

available in averages and standard deviations calculated over 10-min periods. Available parameters of note to this project are wind speed

F IGURE 1 King Plains wind farm: (A) layout; (B) raw power curve for a sample wind turbine.
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corrected by the manufacturer's nacelle transfer function, turbulence intensity (TI), turbine yaw angle, wind direction offset from yaw angle, and

power. SCADA data are available for all turbines from 1 December 2020 until 31 December 2021. Figure 1B illustrates raw SCADA data in wind

speed and power for a sample turbine from the farm. Wind speed and power are normalized by rated wind speed and power, which are also with-

held. No meteorological tower is available for the site.

An important feature of this site is the presence of neighboring wind farms. Directly to the south lies a large wind farm at a distance of

approximately 2.25 km that has the potential to induce slow-downs in the westerly turbines of the farm. Additionally, to the west, northwest, and

north lie large farms at distances of 5.5, 16, and 15 km, respectively. Figure 2 illustrates the relative positions of these neighboring farms. The

potential for farm-to-farm interactions will be investigated, as well as any impacts such interactions may have on turbine power production and

model error.

To investigate the climatology of the site, as well as the modifications on the incoming flow field caused by the operation of the turbines,

freestream measurements are necessary. Since there is no meteorological tower for this site, the freestream measurements are estimated by using

reference conditions.11 Using the International Electrotechnical Commission (IEC) standard for defining waked sectors of turbines,47 the reference

wind speed, TI, and wind direction are defined as the average of turbine wind speeds, TIs, and wind directions for all unwaked turbines, rejecting

turbines with points farther than two standard deviations from the mean of the parameter under consideration. With the reference conditions

defined, the climatology of the site can be investigated, as in Figure 3.

From Figure 3A,B, it is observed that reference wind speed and TI both follow fairly typical distributions. Figure 3C demonstrates a daily cycle

in atmospheric stability while Figure 3D shows that south and south-south-east winds tend to dominate, with some winds coming from the north.

Thus, for most of the farm's operating conditions, farm-to-farm interactions are minimized or restricted to a specific sector of the total farm.

These interactions will be discussed later in Section 4.3. In general, the results of this climatology analysis closely follow those of a previous study

at the Southern Great Plains ARM Observatory near the farm under consideration.48

2.2 | SCADA data filtering

In support of building accurate ML models, filtering SCADA data is considered. Since ML models are data-driven, outliers in the data have the

chance to dilute the training data and negatively impact model performance. Additionally, for certain ML models, only specific regions of turbine

operation may be of interest. Thus, the modeling task is simplified by rejecting unneeded regions of turbine operation. This region removal is also

considered.

Starting with region removal, in the SCADA data there are numerous points with negative wind speed or power. Furthermore, the turbine

yaw angle exceeds 360� or falls below 0� for some points. Therefore, the first step is to keep only points with positive wind speed and power and

yaw angle between 0� and 360�. Several options for additional region removal are now available. If the interest is to model turbine behavior in an

ideal state, waked sectors can be removed following the IEC standard.47 If the impact and evolution of wakes are of interest, limiting the study to

region two of the power curve would be effective, since wake impacts are minimal once the wind speed exceeds the rated wind speed and power

production is fixed.42,49 The inclusion of region one, or the region below the cut-in wind speed for the wind turbines, can be used to prevent

F IGURE 2 King Plains and neighboring wind farm layouts.
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boundary issues at low wind speeds, or it can be rejected to avoid including the more random power production in that region. As each region

removal approach has a specific use, the approaches will be discussed in detail when needed.

Even after the rejection of non-physical samples, SCADA data can still have outliers in power that could be due to sensor fault, curtailment,

maintenance, degradation of components, or other causes. For accurate assessments of power capture potential, as well as to avoid inducing pos-

sible model error, several filtering approaches are used to remove these points. Two ML filters previously proposed are implemented exactly as in

the original works: an automatic Gaussian Process (GP) filter,50 referred to as the GP filter, and a k-means clustering filter,51 referred to as the

k-means filter. The GP filter works by iteratively fitting a GP model to the power curve and rejecting points that fall too far from the fitted curve.

On the other hand, the k-means filter works by clustering the data using the k-means clustering algorithm and rejecting points that fall too far

from the cluster centroid by using the Mahalanobis distance to measure the distance between a given point and the cluster centroid. Furthermore,

a simple statistical filter is applied. This filter bins the data into 0.5 m/s wide bins in wind speed. For each bin, the mean and standard deviation of

power is calculated, and points further than two standard deviations from the mean power are rejected. This filter is referred to as the statistical

filter.

Additionally, a novel filter is proposed also using ML following a similar approach to the GP filter. The filter trains an ML model over the data

set to be filtered, using the entire data set. The inputs can be freely selected but the output is fixed as power. Then, the model is used to predict

power for every point in the data set. The absolute difference between true and predicted power is ascribed to each point as an error. For the

entire data set, the mean and standard deviation of error is calculated. Points with an error greater than a given multiple of standard deviations

from the mean error are rejected. The model is then retrained over the cleaned data set and the process is repeated until a maximum number of

iterations is reached or until the number of rejected points falls below a certain threshold. This filter assumes that the ML model is capable of cap-

turing the governing physical phenomena in power production relating the variations of the inputs to the variation in the power output. As such,

points that the model cannot predict with reasonable accuracy can be assumed to belong to different physical phenomena, such as the various

causes of outliers already mentioned. The result of the iterative process is a data set containing points all belonging to the same physical phenom-

ena, to some degree of certainty. This enables future models to learn more precisely the phenomena of interest.

To generate an accurate ML filter, the ML model selected for use in the filter should be capable of accurately predicting wind turbine power.

Furthermore, ML filters need to have their hyperparameters tuned for optimal performance. For this application, a Random Forest (RF) model is

found to be most suitable. For more details on the selection and tuning of this model, the reader is directed to Appendix A where Deep Neural

Network (DNN) and RF models are compared for filtering, with the results being reported in Table A1.

After selecting the RF model and tuning its hyperparameters for optimal performance, it is used in the ML filtering approach, termed hereafter

as the RF filter. All filters are applied to all turbines. Since the purpose is to prepare the turbine data sets for turbine models that will focus on per-

formance during wake interactions, namely, during operations in region two, the turbine data sets are first cleaned using a region removal

F IGURE 3 Climatology for the King Plains wind farm: histogram of reference wind speed normalized by turbine rated wind speed (A) and
reference TI (B) with the kernel density of the estimated PDF superimposed; (C) daily cycle of reference wind speed normalized by turbine rated
wind speed and reference TI with (95%) confidence interval calculated via bootstrapping; (D) windrose of reference wind direction and normalized
reference wind speed.
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rejecting wind speeds outside of region two. A portion of region three is included to give the model the appropriate information to capture the

transition between regions two and three. Wakes are included since eventual turbine models will be trained and probed over regions including

wakes. Statistics on the percentage of each turbine data set that is rejected for each filter are reported in Table 1 and the results of applying the

filters to a sample turbine are shown in Figure 4.

From Figure 4A, it is clear that the statistical filter struggles to reject outliers given the large number of outliers, and thus the large standard

deviations for each bin. Likewise, the k-means clustering filter in Figure 4B also struggles to reject all outliers. For both binning approaches, the

standard deviations per bin are simply too high to allow for accurate filtering. The automatic GP filter in Figure 4C does a better job of removing

outliers far from the power curve but still leaves some outliers near the curve. Finally, the RF filter in Figure 4D does the best job of rejecting the

most outliers but could be too aggressive. Comparing these results with the results in Table 1, this supposition is borne out. The statistical and

k-means filters have lower rejection rates, suggesting that they are not removing enough outliers when cross-referencing with the figure. Com-

pared to the GP filter, the RF has significantly higher rejection rates.

While RF certainly is the most aggressive of the filters, it does the best job of removing outliers, even if it risks removing inliers as well. Since

the data sets available are large, even the larger rejection rates of the RF filter likely do not threaten to reduce the data set size below a usable

level, especially since the median rejection rate is only (15%). Furthermore, since the basic premise of the RF filter is to ensure that all points are

predictable by ML methods to a certain level, it makes sense to use this filter to support ML models. Thus, the RF filter is selected for use.

3 | MODELING

In this section, the process of setting up the P2D-RANS model 46 for the wind farm under examination, as well as the suite of ML models neces-

sary to reproduce farm operations, is considered. First, the RANS approach is discussed, including defining the initial set of environmental condi-

tions to solve using the RANS solver, building surrogate models on top of the RANS results, and using intelligent resampling to improve the

surrogate models. To build an ML modeling approach for the entire farm, however, it is necessary to predict the wind speed and TI at each turbine

from the reference conditions, then predict turbine power from the predicted turbine wind speed and TI. The optimal ML model for each step is

determined via cross-validation analysis across the farm, and the final pipeline is proposed.

3.1 | P2D-RANS simulations and surrogate modeling of the wind farm

To predict the performance of the entire wind farm, and especially to compare the model predictions against real SCADA data, a model must be

able to simulate the farm performance on the input domain, in this case, represented by wind speed, TI, and wind direction, with a relatively high

resolution. When using the P2D-RANS model, the user may set the freestream wind speed, direction, and TI, and then solve the wind field for the

farm. Thus, if the P2D-RANS model is to be assessed against the SCADA data directly, it must solve every case in the SCADA data set. Even

though the computational cost for the P2D-RANS model to solve a single case is relatively low, typically 5 min or less on consumer desktop hard-

ware, these costs quickly compound when many thousands of cases must be solved. Thus, rather than using the P2D-RANS model directly, the

P2D-RANS model will be used to solve a few selected input cases completely. Then, an RF surrogate model will be trained on top of the P2D-

RANS solutions. Thus, farm performance for arbitrary inputs can be simulated using the RF surrogate model at a much lower computational cost

than solving every case directly using the P2D-RANS model.

This approach creates an optimization problem: what is the smallest number of cases in wind speed, wind direction, and TI that should be

sampled by executing P2D-RANS simulations to train an accurate surrogate model? Furthermore, some regions of the input domain experience

greater variability in farm performance than others. For instance, when the wind direction is along the east-west line, the wake interactions are

stronger than when the wind direction is along the north-south direction and more wake interactions occur at a given time, thus causing increased

variability in farm power. These regions will likely require more sampled points to accurately recreate performance using the surrogate model.

Therefore, the number of sampled points as well as their distribution in the input domain both need to be optimized.

TABLE 1 Statistics of rejection rates for all filters applied to all turbines.

Filter Min 25th percentile Median 75th percentile Max

Statistical 4.25% 4.94% 5.10% 5.36% 6.65%

K-means 1.77% 3.32% 3.71% 3.98% 4.73%

GP 4.65% 6.07% 6.93% 7.60% 15.10%

RF 9.52% 13.17% 14.55% 15.63% 23.83%

MOSS ET AL. 1249
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As a first step, an initial test subset of the input parameters to be solved with the P2D-RANS model is defined. This subset can be defined

manually or automatically using Latin hypercube sampling (LHS).52,53 Since the interest of modeling is the wake interactions between turbines,

the wind speed domain is restricted to region two only. Any transition between regions two and three is not needed as there is no threat of

boundary issues in the RANS solution. A manual subset of the input parameters is defined with steps in wind speed of 1 m/s width, while TI inputs

are (2.5%), (7.5%), (12.5%), (20%), and (30%), manually selected to give a higher resolution at lower TI values where wake interactions are more

severe. Finally, wind direction is varied between 0� and 360� in steps of 15�. While it is known that wake effects take place within smaller sectors

in wind direction,47 this angular resolution was specifically chosen to give a coarse initial sampling to be improved upon with additional sampling.

By making all possible combinations of the three input parameters, 1320 cases are defined. Furthermore, LHS is performed by setting the limits

on wind speed, direction, and TI to be identical to the manual selection, then sampling 1320 cases randomly in the domain to keep the same num-

ber of points as the manual selection.

To run simulations of the down-selected cases, the P2D-RANS model is implemented exactly as in the original work.46 The model was tuned

using LiDAR measurements at a different wind farm. These tuned parameters, however, are not currently available at the King Plains site. Thus, a

potential source of error is the lack of site-specific tuning for the P2D-RANS, which is applied as-is while adjusting for the specific turbine diame-

ter and rated power. However, given that the terrain at both the training farm and the farm under consideration is relatively flat and that the tur-

bine manufacturer is the same in both cases, any error due to a lack of tuning should be minimal. The lack of tuning is an appropriate allowance

since generating a more accurate model would require more costly simulations, which makes the ML models more compelling from a computa-

tional standpoint. The un-tuned P2D-RANS is thus a good trade-off between computational cost and potential inaccuracy.

The settings of the P2D-RANS model were selected through a sensitivity analysis to provide good accuracy while maintaining reasonable

computational cost. For any given case, however, convergence is not guaranteed. Several cases failed to converge when sampling the manual

and LHS subsets. The P2D-RANS settings were therefore tuned iteratively to achieve convergence for as many points as possible. After this

tuning, 1232 samples of the manual subset and 1225 points in the LHS subset converged during the P2D-RANS solution. While the

P2D-RANS model solves the wind field over the entire farm, only the wind speed one diameter upstream of each turbine is sampled and

recorded, as well as the turbine power, obtained by interpolating the sampled wind speed on the power curve. Since no manufacturer power

curve is available, and to achieve better accuracy, the power curve used was the IEC binning curve47 using RF-filtered data aggregated across

all turbines. As a result, for each simulation, the farm power as well as individual turbine powers and wind speeds are available. The wake loss

calculated using the RANS model over the wind farm as well as the individual turbine wind speeds, from which power can be calculated, for

a sample case is illustrated in Figure 5.

First, the different sampling methods are compared to determine which method provides a better set of input points for the surrogate model.

To investigate this, two RF models are used to predict total wind farm power for the inflow wind speed, direction, and TI. DeepHyper is used to

F IGURE 4 Application of (A) statistical, (B) k-means clustering, (C) automatic GP, and (D) automatic RF filters to a sample turbine.
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optimize the hyperparameters of these models.54 One model uses the manual data subset while the other uses the LHS one. Using five-fold

cross-validation, the manual subset has a percent root-mean-squared error (PRMSE) of 5.319%, a percent mean absolute error (PMAE) of 3.909%,

and an R2 of 0.683. In this case, PRMSE and PMAE are simply the root-mean-squared error and mean absolute error normalized by the

turbine-rated power. By contrast, the LHS subset has a PRMSE of 3.103%, a PMAE of 1.975%, and an R2 of 0.981. This means that the LHS

model generalized better when asked to predict new samples than the manual subset model did. For this reason, when additional sampling is

needed hereafter, LHS is used. To take advantage of all sample points, however, the manual subset and LHS subset are combined, a new RF

surrogate model is optimized, and the same five-fold cross-validation is performed. In this case, the model had a PRMSE of 2.256%, a PMAE of

1.289%, and an R2 of 0.986. Thus, though the manual subset does not generalize well on its own, the surrogate model benefits more from the

addition of the manual samples to the LHS points than it is negatively affected by the addition of those samples.

Now that the surrogate model is defined, the error of the model is investigated to enable intelligent resampling of the input domain and

improvement of the model accuracy. To do this, the surrogate model trained on the manual and LHS subsets is used to predict the farm power for

all the training samples. This farm power is compared against the RANS farm power, and the absolute percent difference between the two is

ascribed to each sample as an error. Then, an additional RF surrogate model is optimized to predict the original model's error from the input

points. This error surrogate model is then probed to generate Figure 6A–D. The error in the power surrogate model is larger when the wind

direction is perpendicular to the prevailing wind directions for the farm, that is when the wind direction is along the east-west line.

In an attempt to reduce the power surrogate model's error, the input domain is resampled by testing additional 1000 cases with the

P2D-RANS model. LHS is used and is allowed to sample over the entire wind speed and TI range. 500 points are sampled between wind directions

of 70� and 115� and another 500 points are sampled between wind directions of 250� and 300�. These additional points are combined with the

initial manual subset and initial LHS subset and a new power surrogate model is optimized and trained. This new model has a PRMSE of 1.495%,

PMAE of 0.959%, and R2 of 0.9947 after cross-validation. Training another error surrogate model on the new power surrogate model and probing

generates the plots in Figure 6E–H. Compared to Figure 6A–D, the peak error is reduced. Additionally, as TI increases, the error bands associated

with wind directions along the east-west line decrease for higher wind speeds. Finally, an error band emerges for all wind directions at low wind

speeds.

The second and final resampling is done with an additional 1000 LHS points. These points are split between two regions. The first region

receives 300 points and allows all wind speeds, TI below 7.5%, and the same wind direction bands as the first resample. The second

region receives 700 points for wind speeds under 5 m/s, all wind directions, and TI above 7.5%. These resampled points are added to all preceding

points and a final power surrogate model is trained, along with a corresponding error model. This final error model results in the plots in

Figure 6I–L. Once again, the error is reduced compared to Figure 6E–H, with the low wind speed band especially showing improvement. The final

power surrogate model has a PRMSE of 1.499%, PMAE of 0.961%, and R2 of 0.9946 from cross-validation, showing that the improvements of

the additional sampling were greatly reduced. Thus, no additional points are sampled, and the current set of points is used.

All samples are used in training despite the third resampling appearing to reduce the accuracy of the surrogate model. This is because, in gen-

eral, ML models improve when trained on larger data sets. While the full set of all sampled points has a lower score, it also includes a higher pro-

portion of points specifically chosen because they represent challenging cases to predict. Thus, it should be no surprise that adding additional

challenging cases could eventually decrease the model's performance. However, since the decrease in the score is very marginal, it seems better

to include additional points rather than stopping after the first resample.

Finally, it is investigated whether modeling the wind farm power directly with a single surrogate model is more or less accurate than modeling

each turbine and then summing across the models to get the total farm power. In this case, since individual turbine power is a result of the P2D-

F IGURE 5 P2D-RANS simulation for a normalized wind speed of 0.73, wind direction of 50�, and TI= 10%. (A) Wind farm velocity field.
(B) Rotor average wind speed for the various wind turbines.

MOSS ET AL. 1251
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RANS simulation, each turbine can be modeled directly with power as a function of the inflow conditions. RF models are used for surrogate

modeling but they are not optimized on a turbine basis, as the improvement from the individual optimization is negligible. Performing five-fold

cross-validation as prior results in a PRMSE of 0.750%, PMAE of 0.392%, and an R2 of 0.9989. The results of all the initial manual and LHS sub-

sets individually, combined, and adding in all the additional samples are summarized alongside the individual turbine results in Table 2. To model

farm power, modeling each turbine individually is the best approach, and will be adopted hereafter.

3.2 | Machine learning modeling of the wind farm

ML modeling of wind farm performance from reference conditions encompasses three different models for each turbine. First, a unique ML model

is used to predict each turbine's wind speed from the reference wind speed, direction, and TI. Then, another ML model is used to predict turbine

TI using the reference wind conditions along with the predicted turbine wind speed. Finally, the last ML model predicts turbine power from

predicted turbine wind speed and TI. By chaining these models together, many levels of turbine interactions can be detected.

First, the model for turbine wind speed must be selected. Common machine learning models, namely the Gaussian process (GP), support vec-

tor machine (SVM), deep neural network (DNN), and RF models, are considered again here. The DNN models are built using Keras with the Ten-

sorFlow backend55 while the GP, SVM, and RF models all use Scikit-Learn,56 all in Python. The wind speed models are trained on raw SCADA

data. The data is not filtered since the filtering methods require either statistical similarity of the data set or a definition of nominal behavior, such

as a power curve, which can be used to detect outliers. Yet in the case of the wind speed measurement, wake interactions increase wind speed

variability and make statistical filtering unfeasible. On the other hand, nominal behaviors are not easy to define for wind speed at the individual

turbine level. Thus, the data is left unfiltered.

F IGURE 6 Predicted surrogate model error for models trained on the manual subset and first LHS subset (A–D), trained on initial data with
first resample (E–H), and trained on initial data with first and second resample (I–L), varying TI at 2.5% (A, E, I), 7.5% (B, F, J), 12.5% (C, G, K), and
20% (D, H, L).

1252 MOSS ET AL.
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Five-fold cross-validation is applied to all 88 turbines and the average PRMSE, PMAE, normalized mean absolute error (NMAE), and R2 for

each turbine is calculated. PRMSE and PMAE are identical to the quantities defined for the surrogate model training in Section 3.1, while the defi-

nition of the NMAE is detailed in Appendix A. From this analysis, the RF model is found to perform best. For the exact scores of the models, the

reader is referred to Table B1 in Appendix B.

Subsequently, turbine TI is predicted from reference wind speed, direction, and TI, as well as the local predicted wind speed. For training, the

real local turbine wind speed is used to avoid mixing error sources. When applied to farm simulations, however, this local wind speed will be

predicted by the wind speed model. Five-fold cross-validation is applied to all 88 turbines and the average PRMSE, PMAE, NMAE, and R2 for each

turbine is calculated. Across the farm, the minimum, 25th percentile, median, 75th percentile, and maximum of each of these metrics are reported

in Table B2 in Appendix B for the GP, SVM, DNN, and RF models, as for the wind speed models previously. Once again, the RF model is selected

as the best-performing model.

To develop models to predict turbine power from local turbine wind speed and TI, which will be provided by the wind speed and TI models

discussed above, the data being used are filtered as discussed in Section 4.1. Before selecting an ML model for power by cross-validation across

the farm, the RF and DNN models are optimized using DeepHyper, taking advantage of the fact that power data can be aggregated across all tur-

bines and a single, optimal model be defined. After optimizing both the RF and DNN models, five-fold cross-validation is applied across the farm

using the GP, SVM, RF, and DNN models. The results of the cross-validation are reported in Table B3 in Appendix B.

From this analysis, the effects of filtering are clearly seen, as the scores in Table B3 are much lower than in Table A1. Secondly, the RF is no

longer clearly the best model, as in some cases, the SVM outperforms the RF. For instance, the minimum MAE and NMAE of the SVM are smaller

than those of the RF. For some turbines, however, the SVM struggles to predict, as shown by its higher maximum scores compared to the GP and

RF models. Additionally, the RF median performance is always better than the SVM. Thus, the RF model is selected to ensure better overall per-

formance and to avoid individual turbines having a much higher error compared to the farm overall. In summary, to predict farm performance from

reference wind conditions, RF models will be used first to predict turbine wind speed, then turbine TI, and finally turbine power. For reference,

Table 3 lists the hyperparameters of the machine learning models used. The settings optimized by DeepHyper are listed but do not necessarily

represent the absolute optimal hyperparameters for each instance, given that DeepHyper does not use a deterministic solver to optimize the set-

tings. Thus, while the given hyperparameters are accurate, there is no guarantee that running DeepHyper again would produce identical results.

4 | MODEL APPLICATION

With the P2D-RANS-based surrogate model and the RF models defined above, the developed modeling approach is now applied to the King

Plains wind farm and the accuracy of the models is investigated. Of particular interest is whether the accuracy of the models is sufficient to cap-

ture the effects of farm-to-farm interactions.

4.1 | Farm power predictions

To start, the RANS surrogate model and RF models are used to predict total farm power for all timestamps in the reference-condition time series,

and the predicted power is compared to the real power. Statistical parameters, such as RMSE, MAE, NMAE, and R2, are computed and reported

in Table 4, with RMSE and MAE being normalized by the rated power of the farm, that is, the rated power of the turbines times the number of tur-

bines, and reported as PRMSE and PMAE. Additionally, the linear regression between true and predicted values for each case is illustrated in

Figure 7. It is noticed that there is a large number of points for both the RANS and ML approaches where the model overestimates the farm

power, especially when the farm power is zero. Since the reference conditions time series used to produce this analysis were not filtered, these

points likely correspond to curtailment conditions that were removed during filtering. Thus, given the environmental conditions, the models

TABLE 2 Five-fold cross-validation results for P2D-RANS surrogate models.

Method PRMSE [%] PMAE [%] R2 [-]

Manual subset 5.319 3.909 0.693

LHS subset 3.103 1.975 0.981

Manual + LHS 2.256 1.289 0.986

First resample 1.495 0.959 0.9947

Second resample 1.499 0.961 0.9946

Individual turbines 0.750 0.392 0.9989

MOSS ET AL. 1253

 10991824, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/w

e.2874 by N
ational R

enew
able E

nergy L
ab, W

iley O
nline L

ibrary on [17/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



reproduced ideal turbine behavior rather than derated behavior. To better assess the model accuracy, the time series of reference conditions are

restricted to only those points where every turbine is considered to be an inlier according to the GP filter. The GP filter is chosen instead of the

RF filter because the RF filter is too strict, reducing the time series to fewer than 2000 points. The GP is a good balance of including points and

TABLE 3 Hyperparameters of machine learning models used. Note that entries marked by an asterisk were not optimized by DeepHyper and
used either setting found to produce good results by a manual sensitivity analysis in the case of the DNN models or the default settings in the
case of the RF models.

Model use/type Layers Neurons Depth Estimators

DNN / Filter 6 280

RF / Filter 7 275

RF / RANS Surrogate, Manual Grid 92 54

RF / RANS Surrogate, LHS Grid 81 26

RF / RANS Surrogate, Manual + LHS Grid 12 27

RF / RANS Surrogate, First Resample 16 40

RF / RANS Surrogate, Second Resample 17 188

DNN / WS Model* 5 150

DNN / TI Model* 5 150

DNN / Power Model 8 175

RF / WS Model* 100 N/A

RF / TI Model* 100 N/A

RF / Power Model 7 1900

TABLE 4 Error analysis comparing total farm power prediction accuracy using the RANS surrogate model and RF models for unfiltered and
filtered data.

Method PRMSE [%] PMAE [%] NMAE [%] R2 [–]

Unfiltered

P2D-RANS 16.00 7.737 20.97 0.719

ML 16.48 6.730 18.21 0.702

Filtered

P2D-RANS 5.319 4.191 11.60 0.955

ML 2.619 1.894 5.27 0.989

F IGURE 7 Predicting total farm power from unfiltered time series of reference conditions using (A) RF models and (B) RANS surrogate model
and comparing with SCADA data.

1254 MOSS ET AL.
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removing probable derated points. The RF models are trained on data sets excluding the points to be tested, ensuring that the result is an accurate

assessment of the model over new data. Table 4 reports the error metrics after outliers are removed and the regression results are reported in

Figure 8.

Predicting using filtered points, that is, predicting points where all the turbines are performing nominally, greatly improves the error metrics

of the models. While the RANS surrogate model performs better for the unfiltered set by a relatively small margin, the ML approach performs sig-

nificantly better over the filtered set. This is indicative of an important feature of ML modeling: the model will generally reproduce the behavior

of the training set. Since the RF models were trained on filtered data, they reproduce nominal turbine behavior. The RANS surrogate model, how-

ever, could be considered a more general or average performance model, since it lacks tuning of the wake profiles to this specific farm. Thus, con-

sidering unfiltered data, the RANS surrogate model performs better reproducing average behavior than the RF models reproducing nominal

performance even for underperforming points. This highlights the importance of filtering so that the training set has only points characteristic of

the desired behavior to be reproduced by the models.

4.2 | Turbine power predictions

To further investigate the model performance, the models are used to predict power for individual turbines. For the ML approach, each turbine

data set filtered using the RF filter is used. Each set is split into a training and testing set such that the training set has 80% of the total points and

the testing set has an equivalent distribution of waked and unwaked points to the total set as well as an equivalent distribution of power. The RF

models are trained on the training set and then used to predict power for the testing set to ensure the model is being assessed over new data. For

the RANS surrogate model, the same splitting approach is used, and the models predict power for only 20% of the available filtered turbine data.

While this step is unnecessary for the RANS surrogate model as the test is already a blind test, this ensures that the same number of points are

used in the ML and RANS analysis, thus keeping the two comparisons consistent. RMSE, MAE, NMAE, and R2 scores are calculated for each

modeling technique for all the considered data as well as the waked and unwaked sets separately. Again, RMSE and MAE scores are normalized

by turbine-rated power and reported as PRMSE and PMAE. These scores are reported in Table 5 while Figure 9 illustrates the results of the

regression analysis.

The task of predicting the performance of an individual turbine from reference conditions alone is a far more difficult task than that of

predicting the performance of the entire farm. Once again, the RF models outperform the RANS surrogate model by a significant margin. Addi-

tionally, considering the RANS surrogate model, it seems that the overall performance is somewhat an average between waked and unwaked

performances, with waked conditions being substantially more difficult to predict. For the RF models, however, the change in metrics from all,

to waked, to unwaked is much smaller. The PRMSE score changes almost negligibly, less than (1%) from case to case. This suggests that the

RF models can better capture the features describing waked behavior from the data than the RANS surrogate model can reproduce these fea-

tures. In other words, the variability caused by wakes can be included into the RF models, whereas the RANS surrogate model struggles to

reproduce this behavior accurately. This also shows that the inputs selected for the RF models contain the necessary features for both waked

and unwaked performance.

F IGURE 8 Predicting total farm power from filtered time series of reference conditions using (A) RF models and (B) RANS surrogate model
and comparing with SCADA data.

MOSS ET AL. 1255
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4.3 | Farm-to-farm interactions

As noted before, this specific site has a high likelihood of farm-to-farm interactions. These interactions could impact the reference conditions.

Since the reference conditions are used as inputs to the RANS surrogate models, the assumption is that the RANS freestream inputs map to the

reference wind conditions of the farm. Under farm-to-farm interactions, however, this assumption may not be valid due to increased variability in

inflow conditions. While the RF models may be able to extract this increased variability as a feature in the data and accurately reproduce it, the

RANS models do not have this capability. To investigate this further, the farm-to-farm phenomenon is investigated first in the context of

the SCADA data and then in the context of induced error in predictions of the RANS surrogate and RF models.

TABLE 5 Accuracy scores for RANS and RF models predicting individual turbine power for all conditions, waked conditions, and unwaked
conditions.

PRMSE [%] PMAE [%] NMAE [%] R2 [–]

RANS All 13.11 8.855 22.097 0.83228

Waked 14.04 9.681 25.793 0.80209

Unwaked 11.52 7.585 17.250 0.87260

RF All 9.696 6.374 15.907 0.90822

Waked 9.728 6.509 17.343 0.90501

Unwaked 9.647 6.166 14.024 0.91072

F IGURE 9 Predicting individual turbine power from reference conditions using the RANS surrogate model (A–C) and the RF models (D–F) for
all conditions (A, D), waked conditions (B, E), and unwaked conditions (C, F) and comparing with SCADA data.

1256 MOSS ET AL.
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4.3.1 | Impact of farm-to-farm interactions from SCADA data

First, to highlight intra-farm variability and possible farm-to-farm variability, the following analysis is applied. For each turbine, SCADA data is

selected where the reference wind speed is between 7.5 and 8.5 m/s, and the reference TI is between 7.5% and 12.5%. Bins are defined in the

reference wind direction running from 0� to 360�, each 45� wide. This is to ensure that the turbines are operating in region two and have the right

wind speeds and atmospheric stability to experience strong wake interactions. For each turbine, the average wind speed is calculated. Then, for

each wind direction bin, the percent difference between the turbine's average wind speed and the median of the averaged wind speeds is calcu-

lated for all the turbines. The results are illustrated in Figure 10.

Supposing that the site is free of farm-to-farm or topographic effects on the freestream flow, the first turbines to interact with the freestream

flow should have higher than median wind speed, while the turbines downstream should see a decrease in wind speed, eventually experiencing

wind speed lower than the median wind speed. Thus, if upstream turbines experience wind speed that is lower than the median wind speed, then

the freestream flow has likely experienced induced variability. The subplots that highlight behavior expected of undisturbed freestream conditions

are Figure 10B,C,F. In all these cases, the turbines with higher wind speed tend to fall further upstream while turbines experiencing reduced wind

speed fall further downstream. The remaining subplots all show some evidence of farm-to-farm interactions.

In Figure 10A,E, turbines on the north row between 0 and 5 km east are all registering median or lower than median wind speed despite being

the first row exposed to the freestream. In Figures 10D,H, the front row—now on the south—turbines behave similarly. In both cases, turbines

east of the 0 km line tend to have a positive wind speed differential while those west of the line tend to have a negative wind speed differential.

All the turbines should ideally be experiencing unperturbed freestream, thus the variability in wind speed can be attributed to freestream variabil-

ity. Finally, Figure 10G continues the trend of upstream turbine variability, with the turbines north of the 0 km line and west of the �5 km line

tending to have positive wind speed differentials while turbines south of the 0 km line tend to have negative differentials. In all cases of likely

freestream modification, it is not clear what exactly the source of the modifications is, but given the magnitude of the wind speed differentials,

farm-to-farm interactions in the directions noted are certainly a possible explanation.

An objection may be raised to the above analysis that some panels such as Figure 10A,E could be reporting flow speedups on the sides of the

wind farm due to flow redirection around the farm rather than farm-to-farm interactions. This would explain why turbines or even the middle of

the first row. If this was the case, then the behavior in question would be due purely to effects within the considered farm. To check if this is the

case, the P2D-RANS model is used to simulate the farm for wind from the north with a wind speed of 8 m/s and TI of 10% to match the bins

examined as closely as possible. The variation of the wind field with respect to freestream is simulated. Additionally, for each turbine, the percent

difference of the turbine wind speed from the median turbine wind speed across the farm is calculated. The results of this analysis are reported in

F IGURE 10 Average power for each turbine binning with reference wind speed between 7.5 and 8.5 m/s, reference TI between 7.5% and
12.5%, and reference wind direction between the following: (A) 0� and 45�, (B) 45� and 90�, (C) 90� and 135�, (D) 135� and 180�, (H) 180� and
225�, (G) 225� and 270�, (F) 270� and 315�, (E) 315� and 360� (arrow pointing along bin center, wind moving from tail to tip).

MOSS ET AL. 1257
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Figure 11. Note that, to focus on variability in turbines impacted directly by the freestream flow, percent variations in the turbines smaller than

�8% are saturated.

Comparing Figure 10A,E with Figure 11, it is clear that the RANS simulation does not reproduce the variability across the row of freestream

turbines that exists in the real data. The freestream turbines have an almost constant wind speed. Additionally, any small variability in the free-

stream turbines can be easily attributed to speedups due to the wakes of neighboring turbines, which are also seen to cause larger speedups in

some select middle-row turbines. Thus, it is concluded that the variations in wind speed in the SCADA data are most likely due to topographic or

farm-to-farm effects rather than intra-farm effects.

Considering the variability effects and farm-to-farm effects, the impact of atmospheric conditions is investigated. Since Figure 10D,H seem

likely candidates for farm-to-farm interactions, the data is restricted to reference wind directions between 157.5� and 202.5�, thus making a bin

45� wide and centered on 180�. Three TI bins are used on reference TI, restricting it to the following regions: (2.5%–7.5%), (7.5%–12.5%), and

(12.5%–17.5%). Four bins are used in reference wind speed, restricting it to the following regions: 3–5 m/s, 5–7 m/s, 7–9 m/s, and 9–11 m/s. For

each bin, the average wind speed is calculated at each turbine, as well as the percent difference from the median average wind speed for all tur-

bines. The result is reported in Figure 12.

From Figure 12, the variability in freestream turbines in the southerly rows is highest in panel (B). The magnitude of the variability appears to

decrease with increasing reference wind speed as well as with increasing reference TI. For the highest TI bin, the variability due to changes in ref-

erence wind speed is nearly negligible. For the highest wind speed bin, however, the variability due to changes in the reference TI still has a

noticeable impact on the freestream turbines' variability. This behavior is strongly typical of wind turbine wakes.11,12,14

To summarize, the wind farm under consideration is bordered by neighboring wind farms that pose a strong possibility of farm-to-farm inter-

actions. Moreover, when the reference wind direction aligns the neighboring farms and the King Plains farm, the upstream turbines exhibit strong

variability in incoming wind speed. This variability decreases in magnitude with increasing reference wind speed and increasing reference TI. Per-

forming RANS simulations under identical inflow conditions, however, does not reproduce the variability. For this reason, the variability is likely

due to effects external to the wind farm rather than internal effects creating speedups along the edges of the farm. Though the freestream could

be modified by topographic effects, given the relatively flat terrain and the magnitude of the variability, the variability is likely due to freestream

modifications caused by farm-to-farm interaction.

4.3.2 | Impact of farm-to-farm interactions on model accuracy

Now that the occurrence of farm-to-farm interactions has been established and investigated, the impact on model predictions is considered. First,

the farm power prediction results from Figure 8 are considered. The reference conditions are binned in wind speed bins 1 m/s wide and wind

direction bins 10� wide. For each bin, the RANS and RF NMAEs are calculated. Figure 13 plots the results, as well as the RANS NMAE minus the

RF NMAE, given as ΔNMAE.

Considering Figure 13A, clear spikes are difficult to discern for the RF model. On the other hand, the RANS surrogate model has compara-

tively large spikes in error around reference wind directions of 90� and 270�, corresponding to the wind directions with the highest intra-farm

wake interactions. Taking the difference in the NMAEs highlights the fact that these spikes are primarily present in the RANS result. This suggests

that the RF models are better at capturing the higher variability due to increased wake interactions. Additionally, in the region between reference

wind directions of 90� and 270�, the difference is almost always positive and tends to lie between 0% and 10%. This corresponds to the region

with the expected strongest farm-to-farm interactions. This could indicate that the RF models do a better job of capturing or correcting both the

impact of farm-to-farm wake interactions on the reference conditions as well as on the variability within the farm.

F IGURE 11 RANS simulation of the wind farm for wind from the north at 8 m/s with a TI of 10%.

1258 MOSS ET AL.
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To investigate how the RANS and RF model errors vary with wind direction at the turbine level, each model predicts local turbine power for

the reference conditions time series, as in Figures 9A,D. The data are binned into wind direction bins 45� wide from 0� to 360�. For each bin,

for each turbine, the NMAE between true and predicted power is calculated. Across the farm, the percent difference between a given turbine's

NMAE and the minimum NMAE of the bin for all turbines is calculated to isolate the variability of error within the farm. The minimum NMAE of

each bin is also indicated as the background color of each subplot. Finally, for each bin, the percent error in total power prediction is reported as

ΔP, given in Equation (1). These results are all reported in Figure 14.

ΔP¼ΣN
i Pi,SCADA�ΣN

i Pi,pred
ΣN
i Pi,SCADA

, ð1Þ

F IGURE 13 Bin NMAE of farm power predictions for RF (A) and RANS (B) models as well as the RANS NMAE minus the RF NMAE for each
bin (C).

F IGURE 12 Percent deviation from median wind speed for SCADA data between reference wind directions of 157.5��202.5�. Reference
wind speed is binned using the following intervals: [3 m/s, 5 m/s) (A, E, I), [5 m/s, 7 m/s) (B, F, J), [7 m/s, 9 m/s) (C, G, K), and [9 m/s, 11 m/s)
(D, H, J). Reference TI is binned using the following intervals: [2.5%, 7.5%) (A–D), [7.5%, 12.5%) (E–H), and [12.5%, 17.5%) (I, J). All bins have
SCADA data available except panel (A).
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where N is the number of turbines and Pi is the sum of the power for the ith turbine for the respective bin.

The results in Figure 14 show that the minimum NMAE between the models tends to be either similar or the RF tends to have lower mini-

mum NMAEs. Thus, differences in the model accuracy are due to variations across the farm and not in the minimum NMAE of the models. In gen-

eral, turbines with higher NMAE compared to the farm minimum are more waked. The notable exception occurs in Figure 14H, where turbines on

the west edge of the farm on the south row have a much higher NMAE than those along the east side.

The RF model, however, slightly reproduces this trend but is much more consistent in Figure 14P across the southern row. The RF generally

has much more consistent NMAEs across the farm, with wake-associated peaks typically having a much smaller magnitude than their RANS coun-

terparts. Once again, this suggests that the RF model does a better job of reproducing wake-induced variability. This is confirmed with the ΔP

metric, which indicates the RANS surrogate model tends to underestimate power compared to the SCADA for each bin between 8% and 27%,

suggesting the RANS wake model is predicting slowdowns that are too large. On the other hand, the RF models fluctuate between positive and

negative ΔP but with a magnitude always equal to or lower than 2%, demonstrating a much more accurate capture of wake-induced power

variations.

It appears that possible farm-to-farm interaction is causing the NMAE variability in the southern row for the RANS surrogate model in

Figure 14D without causing the same in the RF case in Figure 14P. This is further investigated by subtracting the RF NMAE for each turbine for

each bin from the corresponding RANS NMAE. This analysis highlights the fact that the RANS surrogate model does not recreate waked behavior

as accurately as the RF models (see Figure 15). Furthermore, between Figure 15D and 15H, the southern row of the farm switches from nearly

constant across the row to a larger difference in NMAEs toward the west edge of the farm. This indicates that the RF is predicting those turbines'

power more accurately. Supposing farm-to-farm interactions, this result could indicate that the RF models can still capture farm behavior despite

inflow variability not captured by the reference conditions, while the RANS surrogate model cannot.

Finally, to investigate the impact of farm-to-farm interactions on power predictions for a specific case, following an approach previously used

to test farm-to-farm model performance,57 the RANS and RF models are used to predict power for all turbines for a constant wind speed of

8 m/s, TI of 10%, and varying wind direction between 140� and 220� in 1� steps. For each wind direction, the RANS and RF models predict

F IGURE 14 Bin NMAE of turbine power predictions for RANS (A–H) and RF (I–P) models, reference wind direction between the following:
(A, I) 0� and 45�, (B, J) 45� and 90�, (C, K) 90� and 135�, (D, L) 135� and 180�, (H, M) 180� and 225�, (G, N) 225� and 270�, (F, O) 270� and 315�,
(E, P) 315� and 360� (arrow pointing along bin center, wind moving from tail to tip). The subplot color indicates the minimum NMAE for the
subplot.
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turbine powers. Additionally, the SCADA data is binned in non-overlapping bins in reference wind direction 5� wide, with reference wind speed

restricted between 7.5 and 8.5 m/s and reference TI between 7.5% and 12.5%. For each turbine, the average power is calculated from the SCADA

data for each bin. Conversely, for the two models, average turbine power is calculated for each turbine using the predicted powers for each wind

direction but weighting the powers by the frequency of occurrence of the wind directions in the SCADA data for the bin under consideration.

Thus, for each bin, average turbine powers are computed from SCADA data, RANS predictions, and RF predictions. Furthermore, two clusters of

turbines in the south row are defined, illustrated in Figure 16A.

Given the location of the wind farm to the south, the westerly cluster is expected to experience farm-to-farm interactions for certain

wind directions. To verify this, the median power of each cluster is calculated for each wind direction bin, and the ratio of the east and west

cluster medians is plotted in Figure 16B. Additionally, the median ratios for the clusters are calculated and plotted for the two models. Finally,

the power loss due to farm-to-farm interactions is investigated. Ideal power is defined using the power curve and assuming a freestream wind

speed of 8 m/s. The total SCADA power, as well as the total predicted RANS surrogate and RF powers, are compared to the ideal power,

summing across all the turbines in both clusters, and the percent difference is plotted in Figure 16C, with positive values indicating a lower

power than ideal.

Interpreting Figure 16B, it is clear from the SCADA data that freestream modification is occurring due to farm-to-farm interactions. The

impacted turbines are producing as much as 50% less power than the unimpaired turbines. As expected, the RANS surrogate model does not cap-

ture any of this variability. Of course, the RANS simulates the farm performance by assuming a clean inflow, so it should not be a surprise that it

does not recreate variability. Interestingly, the RF models do recreate a similar trend in variability to the SCADA data but have a much larger mag-

nitude of variability, indicating that in some cases the impacted turbines produce as much as 100% less power. When variability between the clus-

ters is low, such as for wind directions before 160�, the models are both similar in performance to the SCADA data. When the freestream is being

modified, the models perform almost equally poorly, though in opposite ways. Care needs to be taken in defining inflow conditions in cases such

as this one where strong inflow modifications are occurring.

Considering Figure 16C, power losses of up to (15%) occur in the SCADA data due to farm-to-farm interactions. The RANS, of course, pre-

dicts powers much closer to the ideal powers. The RF models, on the other hand, actually predict power increases over the ideal case. Thus, even

though the RF models can recreate some variability trends that are more typical of reality than the RANS predictions, there can still be errors in

the magnitude of the predicted powers. Since the previous analysis has shown that the RF models outperform the RANS surrogate model gener-

ally in turbine and farm power, this analysis highlights how model performance can vary when small regions are considered.

From this analysis, it is clear that both models have room for improvement. Neither model accurately matches the SCADA variability, with

one under-predicting and one over-predicting the magnitude. Furthermore, neither model accurately predicts the actual power loss due to farm-

to-farm interactions. Thus, though the models are suited to predicting farm performance for the entire farm, as previously shown, even under

farm-to-farm interaction cases, they are not currently capable of investigating farm-to-farm interaction effects in a localized manner. Further

improvement of the freestream condition definitions may help with this, with future work perhaps even coupling ML and RANS models to more

accurately characterize freestream modifications and the resulting power variability or losses.

F IGURE 15 RANS bin NMAE for predicted turbine power minus RF bin NMAE, reference wind direction between the following: (A) 0� and
45�, (B) 45� and 90�, (C) 90� and 135�, (D) 135� and 180�, (H) 180� and 225�, (G) 225� and 270�, (F) 270� and 315�, (E) 315� and 360� (arrow
pointing along bin center, wind moving from tail to tip).
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5 | CONCLUSIONS

In this paper, a comparison of machine learning (ML) models and the pseudo-2D RANS model46 to simulate operations of the King Plains wind

farm, which is a site of the American WAKE experimeNt (AWAKEN), has been presented. This wind farm is composed of (88) turbines installed on

relatively flat terrain in Oklahoma. Interactions with neighboring wind farms are also very likely, given large installments of turbines at a short dis-

tance from the farm under consideration. SCADA data is available for just over one year from December 2020 to December 2021. Several

methods of filtering the SCADA data have been considered, including automatic ML filters, and a filtering method using a Random Forest

(RF) model for turbine power. After filtering the data, ML models have been used to predict local turbine wind speed and turbulence intensity (TI)

for specific inflow conditions, turbine power is then predicted from the local wind speed and TI. Performing a comparative analysis across the

farm, the RF algorithm has been selected for each model used. When possible, models are optimized using the DeepHyper package. Chaining

the RF models allows individual turbine power to be predicted from approximated inflow conditions.

To generate predictions with the RANS model, an initial subset of inflow conditions in wind speed, wind direction, and TI has been sampled

by solving each combination of inflow conditions with the RANS model. An RF model is then trained on top of the RANS results to create a surro-

gate model for farm power capture. Another RF model has been trained to predict the error of the power surrogate model given specific inflow

conditions. With this model, the input domain has been intelligently resampled to reduce error in the surrogate model. This resampling procedure

has then been applied until the power surrogate model no longer benefits from additional points simulated with the P2D-RANS model. Individual

surrogate models have been trained for each turbine. Thus, from user-supplied inflow conditions, the surrogate models can predict turbine power

performance without requiring additional RANS simulations.

Once the ability to simulate farm performance for generic inflow conditions has been established for both RANS and ML approaches, a series

of analyses have been performed to evaluate model performance. First, both models have been used to predict the total farm power, i.e. the sum

of power across all turbines, for a time series of inflow conditions. Removing points with derated turbines and comparing the predictions against

SCADA data, the RANS surrogate model has entailed a normalized mean absolute error (NMAE) of 11.6% while the RF models have an NMAE of

5.3%. Subsequently, the models have been used to predict individual turbine power for all inflow conditions. Keeping only SCADA points with

nominal performance and calculating scores across all turbines, the RANS surrogate model and RF models have produced scores of 22.1% and

15.9% NMAE, respectively.

Investigating the model error further, the NMAE for the RANS surrogate model and RF models have been compared for the filtered time

series on total farm power, considering model error a function of inflow wind speed and wind direction. RF error is found to be relatively constant

across wind directions while the RANS error increases when the wind direction is perpendicular to the prevailing wind direction for the farm and

intra-farm wake interactions are maximized. Furthermore, considering the NMAE errors for both models at the turbine level as a function of wind

direction, it is seen that turbines under waked conditions typically have higher errors than turbines that are unwaked. While this trend is repeated

in both models, the difference in errors is much greater for the RANS surrogate model than the RF models.

Finally, to consider the potential effects of farm-to-farm interactions, the difference in NMAEs for each model at each turbine is considered

as a function of wind direction. The RANS surrogate model has had a worse performance for all wake conditions but can perform worse at specific

turbines that may be experiencing farm-to-farm interactions. Finally, for a specific inflow wind speed and TI, the ratio of median power between

clusters of turbines for SCADA, RANS, and RF powers has been considered to highlight localized farm-to-farm interactions. The RANS surrogate

model has no capability to reproduce the flow variability while the RF model reproduces twice as much variability as the SCADA data.

F IGURE 16 (A) Selection of east (red) and west (blue) turbine clusters, (B) the ratio of median cluster power between east and west for
different models varying wind direction, and (C) ΔP for the sum of averaged turbine powers for each bin compared with the ideal power. The
shaded region is one standard deviation interval.
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Additionally, neither RANS nor RF accurately predicts the power loss due to farm-to-farm interactions. This suggests that though the RF model is

adept at predicting performance across the farm, both the RF models and the RANS surrogate model break down when trying to predict farm-

to-farm interactions with accurate estimates.

From this analysis, it has been concluded that the RF models are better to recreate turbine performance under waked conditions, especially

wakes within the farm. Farm-to-farm wakes, on the other hand, are difficult to predict and quantify related effects on power capture. Thus, not

only does the RANS wake model have room for improvement, but both models can improve performance under variable inflow conditions. Future

work could consider modifications to the freestream inputs or even coupling of RANS and ML to advance the model capabilities for complex and

variable inflow conditions.
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APPENDIX A: MODEL SELECTION AND TUNING FOR ML FILTERING

This section considers the selection and tuning of the ideal ML model for use in the ML filter. Since the application of the models is power predic-

tion, the goal of filtering is to isolate turbine performance from off-design performance. Thus, the inputs to the models used in filtering should be

selected to focus on turbine performance. From the available SCADA data, wind speed and TI are selected. Yaw angle or wind direction should

not be included because wake effects are captured by decreases in wind speed and increases in TI. Adding yaw angle or wind direction begins to

add farm layout information to the model by correlating power changes to wind direction and implying the existence of upstream turbines. The

model would thus be capturing both turbine performance and layout-induced variations. This is not desired for filtering, thus yaw angle and wind

direction should not be used as inputs. Additionally, the misalignment between the turbine rotor and the incoming wind, termed yaw

misalignment, is not considered an input. Though this parameter has a marked impact on power production, not all SCADA data available contain

this parameter. Thus, the method is made more general by not considering it as input. In this case, the effect of excluding yaw misalignment as a

filtering input is small since the turbines are, on average, very aligned, with 75% having a yaw misalignment of 2 ∘ or less. Finally, the filter should

reject points with large power variability caused by high yaw misalignment.

With the inputs selected, the next step in the ML filter is to select the ML model used. A Random Forest (RF) regression model is used along

with a Deep Neural Network (DNN). Other models considered included a Support Vector Machine (SVM) and Gaussian Process (GP), but these

models were not comparable to the RF and DNN in terms of accuracy and are not reported here. The DNN models are built using Keras with the

TensorFlow backend55 while the GP, SVM, and RF models all use Scikit-Learn,56 all in Python. These models are sensitive to hyperparameter tun-

ing and need to have their individual parameters optimized. To avoid optimizing the models on each turbine, which would be computationally

expensive, the data from all the turbines are aggregated to form a single data set. Combining all the turbines in this manner creates a data set with

over 4,000,000 points, which is too large to efficiently train models for optimization. The data set is therefore downsampled to 20,000 for optimi-

zation, keeping an identical power distribution to the initial data set. The RF and DNN models are then optimized to predict power from wind

speed and TI on this data set using the DeepHyper Python package.54 When optimizing the RF model, the maximum depth of the RF model and

the number of estimators used, the two most important hyperparameters according to the Scikit-Learn documentation, are optimized.56 On the

other hand, the DNN model is to be a fully-connected sequential dense network. The selected parameters to optimize are the number of neurons,

the number of hidden layers, and the activation function used. In each case, the R2 of each model was maximized by the DeepHyper optimizer,

which was allowed to run for 200 iterations. The top three resultant RF models all had a maximum depth of 7. The models had a different number

of estimators, however, at 191, 565, and 73, with only marginal differences in the R2. Taking the average of the number of estimators, the final

RF model has 7 for the maximum depth and 275 estimators. Averaging across the top five results for the DNN search, the optimized DNN model

had 280 neurons, 6 layers, and the exponential linear unit (ELU) activation function.

Now that the RF and DNN models have been optimized to predict turbine power from raw SCADA wind speed and TI, they are to be

compared across all the turbines to select the most accurate model for use in the ML filter. Five-fold cross-validation is used to test each

model on each turbine.58 The root mean squared error (RMSE), mean absolute error (MAE), normalized mean absolute error (NMAE),46 and

R2 scores are averaged across each of the five folds and reported for each turbine. The minimum, 25th percentile, median, 75th percentile,

and maximum of each of these metrics across the 88 turbines in the farm are reported in Table A1. NMAE is calculated according to

Equation (A1). When reporting the errors, the RMSE and MAE are normalized by the turbine-rated power and are reported as percent RMSE

and MAE, or PRMSE and PMAE.

NMAE¼ΣN
i jTruei�Predij
ΣN
i jTrueij

ðA1Þ

From Table A1, it is clear that the RF is the better model, as it outperforms the DNN in every metric. Thus, the ML filter will use the optimized

RF. The filter is set to require points to have an error smaller than three standard deviations from the mean error. The filter retrains on and re-

filters the data set until either 50 iterations are reached or the number of rejected points is smaller than 25 (values chosen via sensitivity analysis).
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APPENDIX B: MODEL SELECTION FOR ML MODELING

Optimal ML models are to be selected for predicting turbine wind speed, TI, and power considering the GP, SVM, DNN, and RF models as candi-

dates. For each output, PRMSE, PMAE, NMAE, and R2 are calculated for each turbine. Across the farm, the minimum, 25th percentile, median,

75th percentile, and maximum of each of these metrics is reported in Tables B1,B2,B3 for wind speed, TI, and power predictions respectively.

RMSE and MAE are calculated as typically and then normalized by the rated wind speed and thus are reported as PRMSE and PMAE.

TABLE A1 Statistics of cross-fold validation applied to all turbines for filtering models.

Metric Model Min 25th percentile Median 75th percentile Max

PRMSE [%] RF 10.37 12.41 12.76 13.15 15.19

DNN 10.98 13.17 13.67 15.05 59.31

PMAE [%] RF 4.66 5.99 6.28 6.73 9.08

DNN 5.00 6.86 7.74 9.34 48.4

NMAE [%] RF 9.846 13.42 14.12 15.37 19.50

DNN 10.34 15.61 17.27 20.65 100.0

R2 [-] RF 0.7956 0.8437 0.8535 0.8611 0.9087

DNN -1.991 0.7982 0.8321 0.8437 0.8974

TABLE B1 Statistics of cross-fold validation applied to all turbines predicting turbine wind speed from reference wind speed, direction, and
TI.

Metric Model Min 25th percentile Median 75th percentile Max

PRMSE [%] GP 6.455 8.182 8.636 9.000 13.55

SVM 6.273 7.909 8.182 8.545 13.64

DNN 7.091 8.545 8.909 9.455 34.82

RF 5.636 6.818 7.182 7.545 11.91

PMAE [%] GP 4.82 6.00 6.36 6.55 9.27

SVM 4.55 5.64 5.91 6.27 8.73

DNN 5.36 6.27 6.64 7.09 31.7

RF 4.18 5.00 5.27 5.55 7.91

NMAE [%] GP 6.22 7.80 8.18 8.61 10.96

SVM 5.85 7.24 7.72 8.06 10.28

DNN 6.96 8.11 8.63 9.11 41.92

RF 5.29 6.47 6.93 7.15 9.28

R 2 [-] GP 0.74 0.88 0.89 0.90 0.93

SVM 0.73 0.89 0.90 0.91 0.94

DNN �2.34 0.87 0.88 0.89 0.92

RF 0.80 0.91 0.92 0.93 0.95
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TABLE B2 Statistics of cross-validation applied to all turbines predicting turbine TI from reference wind speed, direction, and TI, as well as
turbine wind speed.

Metric Model Min 25th percentile Median 75th percentile Max

RMSE [%] GP 2.29 2.78 3.19 3.91 89.06

SVM 2.22 2.79 3.31 3.90 106.09

DNN 2.60 5.50 7.36 10.14 93.48

RF 2.10 2.52 2.89 3.36 86.65

MAE [%] GP 1.52 1.86 1.98 2.17 6.37

SVM 1.44 1.76 1.86 2.04 24.38

DNN 1.80 4.31 5.93 8.00 10.47

RF 1.37 1.64 1.73 1.89 3.92

NMAE [%] GP 11.63 14.89 15.55 16.89 40.14

SVM 10.96 14.01 14.73 15.72 160.96

DNN 14.35 32.95 47.87 62.35 74.63

RF 10.46 13.01 13.58 14.55 24.02

R2 [-] GP �0.15 0.59 0.69 0.74 0.81

SVM �10.38 0.59 0.67 0.73 0.83

DNN �3.76 �1.99 �0.95 �0.16 0.76

RF 0.14 0.68 0.74 0.78 0.85

TABLE B3 Statistics of cross-validation applied to all turbines predicting turbine power from reference wind speed, direction, and TI.

Metric Model Min 25th percentile Median 75th percentile Max

PRMSE [%] GP 2.026 2.483 3.075 3.848 11.25

SVM 1.9806 2.463 2.843 3.723 26.76

DNN 2.723 3.317 9.635 14.00 33.93

RF 1.893 2.202 2.391 2.778 5.500

PMAE [%] GP 1.471 1.711 1.931 2.450 5.411

SVM 1.420 1.644 1.834 2.279 10.54

DNN 1.862 2.410 8.070 10.84 26.35

RF 1.429 1.656 1.798 2.097 4.220

NMAE [%] GP 3.433 3.923 4.419 5.584 13.28

SVM 3.177 3.764 4.168 5.182 25.88

DNN 4.392 5.610 17.789 24.628 62.81

RF 3.192 3.776 4.151 4.803 9.632

R2 [-] GP 0.8994 0.9868 0.9918 0.9947 0.9965

SVM 0.4349 0.9881 0.9930 0.9947 0.9966

DNN �0.5396 0.4555 0.7911 0.9901 0.9933

RF 0.9735 0.9933 0.9951 0.9959 0.9970
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