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Abstract—The nonlinear, nonconvex AC optimal power flow
problem is of growing importance as the nature of the power grid
evolves. This problem can be difficult to solve for interior point
methods. However, the advent of optimization algorithms over
smooth Riemannian manifolds presents an alternative approach.
The nonlinear, nonconvex constraints in the AC power flow
problem form an embedded submanifold of Euclidean space.
In this paper, the authors explore the performance of Rieman-
nian optimization algorithms for the ACOPF problem where
the optimization is performed directly on the AC power flow
manifold. They demonstrate that these are viable computational
alternatives to interior point methods. This is done by using Julia
and the packages PowerModels.jl and Manopt.jl.

Index Terms—Optimal Power Flow, Nonlinear Programming,
Manifold Optimization, Numerical Optimization

I. INTRODUCTION

With the aging transmission infrastructure and turn towards
renewable power generation, there is a need for higher fidelity
models of power systems. In particular, significant interest has
arisen in using full alternating current (AC) physics in power
systems design, analysis and operation [1]. At the core of many
operational optimization problems is the optimal power flow
(OPF) problem. However, using AC power flow equations in
an OPF problem results in a nonlinear, nonconvex optimization
problem. Such problems are normally solved with an interior
point algorithm such as that implemented in Interior Point
OPTimizer (IPOPT) [2]. The ACOPF problem can be difficult
for these solvers [3], particularly as the size of the power
system increases. This is likely due to the challenging linear
algebra problem (known as a saddle point problem) required
in interior point methods [4], [5].

However, the recent development of optimization on smooth
manifolds [6] presents an alternative approach. These methods
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exploit differential geometry, which generalizes calculus to
non-Euclidean settings [7], and Riemannian geometry, which
extends the Euclidean notions of angles and distances to
smooth manifolds [8], to solve optimization problems on
manifolds. These approaches are applicable since the AC
power flow constraints form an embedded submanifold of
Euclidean space [9], which we call the power flow manifold.
In this paper, we contribute to the literature by demon-
strating that Riemannian optimization applied to ACOPF is
a viable computational alternative to interior point methods
through a set of computational experiments. Specifically, we
present implementations and results that show some of these
algorithms can produce similar quality solutions as IPOPT,
where solution quality is measured by the terminal objective
value and maximum constraint violation. To show this, we
use the Julia programing language [10] and the packages
PowerModels.jl [11] and Manopt.jl [12].

The remainder of this paper is organized as follows: in
section II, we briefly describe the needed Riemannian geom-
etry. Then, in section III, we generally describe Riemannian
optimization algorithms while also defining the components
not found in standard optimization algorithms. In section
IV, we describe the algorithms and computational tests we
performed before giving our results in section V. Finally, we
give our conclusions and discuss future work in section VI.

II. RIEMANNIAN MANIFOLDS

For the purposes of this paper, we consider a smooth
manifold M to be given by

M = {x ∈ Rn : q(x) = 0}, (1)

where q : Rn → Rm is infinitely differentiable, m < n and
Dqx, the Jacobian of q evaluated at x, is of full-rank for all
x ∈ Rn. This case is known as an embedded submanifold of
Euclidean space.

Given a point x ∈ M, consider any smooth curve γ : I →
M where I ⊂ R contains zero and γ(0) = x (see [7] for
the definition of a smooth curve). The tangent space TxM is
defined by

TxM := {v ∈ Rn : v = γ′(0)}. (2)
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This can be thought of as the set of all possible velocity vectors
at the point x for any path on the manifold. For a submanifold
of Euclidean space, the tangent space at x coincides with the
kernel of the Jacobian:

TxM = {v ∈ Rn : Dqxv = 0}. (3)

That is, the tangent space TxM is the tangent (hyper-)plane
of the manifold at the point x.

The tangent bundle is the disjoint union of all tangent spaces

TM = {(x, v) : x ∈ M, v ∈ TxM}. (4)

A smooth manifold M becomes a Riemannian manifold
when paired with a Riemannian metric gx : TxM× TxM →
R. The Riemannian metric generalizes the notion of the
Euclidean inner product so that geometric notions such as
angles can be given on general smooth manifolds. In our case,
we take gx to be the standard Euclidean inner product

gx(u, v) = ⟨u, v⟩x :=
n∑

i=1

uivi (5)

where u, v ∈ TxM. The subscript x here is used to emphasize
the fact that the vectors are restricted to the tangent space of
the manifold at the point x.

For a function f : M → R, the Riemannian gradient of f
is defined as the unique vector field gradf on M such that
for all (x, v) ∈ TM, we have

Df(x)[v] = ⟨gradf(x), v⟩x (6)

where Df is the differential of f [7]. For a submanifold of
Euclidean space, it can be shown that

gradf(x) = Px(∇f̂(x)) (7)

where f̂ is any smooth extension of f to Rn, ∇ denotes the
standard Euclidean gradient and Px : Rn → TxM is the
orthogonal projection and is given by the matrix

Px = I −Qx, Qx = Dqx(DqxDqTx )
−1DqTx . (8)

The definitions given here can be generalized to abstract
manifolds which are not simply a subset of Euclidean space.
For the full mathematical details, see [7] and [8]. For a more
optimization oriented explanation, see [6].

III. RIEMANNIAN OPTIMIZATION

In this section, we briefly describe the additional needed
concepts to solve the optimization problem

min
x∈M

f(x) s.t. h(x) ≤ 0. (9)

We limit ourselves to those concepts needed for algorithms
that use only first-order information (that is, gradients and
Jacobians) since we apply only those methods in this paper.

Before discussing a general framework for Riemannian
optimization, we need to introduce two things: retraction and
vector transport. (The following definitions are taken from [6].)

A retraction is a smooth map R : TM → M : (x, v) →
Rx(v) such that for each curve γ(t) = Rx(tv) we have γ(0) =
x and γ′(0) = v.

From an optimization perspective, the main use of a retrac-
tion is to ensure that new iterates are on the manifold. To
see this, consider an iterate xk ∈ M and search direction
sk ∈ Txk

M. In the Euclidean setting, we generally set
xk+1 = xk+αksk for some αk ∈ R. Such an iterate is almost
surely not on the manifold. However, using the retraction, we
can set

xk+1 = Rxk
(αksk) (10)

so that we have guaranteed xk+1 ∈ M. The notion of a
retraction is a generalization of the exponential map [6], [8].

A vector transport on M is a smooth linear map T :
TM

⊕
TM → TM : (u, v) → Tu(v) such that, for all

x ∈ M and for all u, v ∈ TxM, there exists a retraction R
where Tu(v) ∈ TRx(u)M and T0(v) = v. The notion of a
vector transport is a generalization of parallel transport [8].

In an optimization algorithm, vector transport allows us to
move vectors from one tangent space to another tangent space.
For example, many optimization tasks require computing the
difference ∇f(xk+1)−∇f(xk). On a manifold, this difference
is not defined since gradf(xk+1) ∈ Txk+1

M and gradf(xk) ∈
Txk

M. Instead, we use the vector transport and compute the
difference as

gradf(xk+1)− Tαksk(gradf(xk)) (11)

where xk+1 satisfies (10).
A generic (first-order) Riemannian optimization algorithm

iterates a three-step procedure:
1) Determine search direction sk. This often uses a vector

transport Tu(v). For example, Riemannian conjugate
gradient takes

sk = −gradf(xk) + βkTαk−1sk−1
(sk−1) (12)

for some βk ∈ R.
2) Determine step size αk. Since ϕ(α) = f(Rxk

(αsk)) is
a function from R to R, we can directly use Euclidean
line search techniques to determine αk.

3) Set xk+1 = Rxk
(αksk). As previously stated, the

retraction Rx(u) guarantees that the new iterate is on
the manifold.

IV. TEST SETUP

A. Retraction

The retraction we chose is taken from [13]. The basic idea
is to search for the manifold using the normal vector to the
tangent space. This is often called the orthographic retraction
in the literature.

We now outline the procedure. For a point xk on the
manifold, a search direction sk and step size αk, we set

y0k = xk + αksk. (13)

and perform the iteration

yℓ+1
k = yℓk −DqTxk

(Dqxk
DqTxk

)−1q(yℓk) (14)
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until ||q(yℓk)|| is sufficiently small at which point we set

xk+1 = yℓk. (15)

It is clear that for αk = 0, we recover xk immediately.
Further, defining

L = DqTxk
(Dqxk

DqTxk
)−1

and differentiating (14) gives

dyℓ+1
k

dαk
= (I − LDqyℓ

k
)
dyℓk
dαk

. (16)

By induction, we have

dyℓ+1
k

dαk
= (I − LDqyℓ

k
) . . . (I − LDqy0

k
)sk. (17)

Upon setting αk = 0, this reduces to

dyℓ+1
k

dαk
= P ℓ+1

xk
sk = sk (18)

where we have used the fact that sk ∈ Txk
M and the fact that

P ℓ
xk

= Pxk
. It follows that this is a retraction.

B. Vector Transport

For the embedded submanifold case we are considering,
there is an obvious vector transport. This is given by simply
taking the orthogonal projection of a vector into the necessary
tangent space. In particular, for any retraction R, we define

Tu(v) = PRx(u)v (19)

where x ∈ M, u, v ∈ TxM and PRx(u) is given by (8).
Clearly, this satisfies the first condition to be a vector

transport. Then, since Rx(0) = x, we have

T0(v) = PRx(0)v = Pxv = v (20)

where we have used the fact that v ∈ TxM. It follows that
this is a vector transport.

C. Direction and Line Search Algorithms

To handle the inequality constraints, we use the two meth-
ods from [14]. These are Riemannian augmented Lagrangian
(RAL) method and Riemannian exact penalty (REP) method.
These methods both require the solution of unconstrained
subproblems. For these we test out several different algo-
rithms: Riemannian gradient descent (RGD), Riemannian con-
jugate gradient descent (RCG) and Riemannian quasi-Newton
method (RQN). For all cases we used the default line search
algorithm, which in the case of RGD and RCG was the
Riemannian Armijo condition (called ArmijoLinesearch in
Manopt), and in the case of RQN was the Riemannian Wolfe-
Powell conditions (called WolfePowellLinesearch in Manopt).
We implemented the retraction and vector transport algorithms
as described in Section IV. Otherwise, we used the algorithms
as implemented in Manopt.jl version v0.4.41 [12].

The Manopt documentation provides a thorough discussion
and set of references to their implemented algorithms. As
a result, we only briefly discuss some references on the

algorithms we selected. The generalization of gradient descent
to the Riemannian case is fairly straight forward. It is discussed
in [6]. Note that for embedded submanifolds given by (1),
RGD reduces to projected gradient descent [13].

There are numerous coefficient updates for the conjugate
gradient descent algorithm many of which have been general-
ized to the Riemannian setting. We used the default coefficient
first proposed by Fletcher in [15]. This is generalized to
Riemannian manifolds in a straight-forward manner [16].

The RQN algorithm is a Riemannian generalization of the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [13]. It
was proposed and analyzed in [17] and allows simpler line
searches and vector transports than other implementations
without significantly affecting the efficiency of the algorithm.

D. AC Optimal Power Flow Formulation

Our AC optimal power flow model is constructed by version
v0.19.9 of PowerModels.jl [11] which is a Julia [10] package
which leverages the domain-specific language JuMP [18] for
optimization. The detailed formulation of the problem is given
in the PowerModels documentation. In brief, we used the stan-
dard polar-coordinates for voltage and Cartesian-coordinates
for power form of the AC power flow. All equality constraints
imposed by this model form our manifold (that is, the function
q in (1)). See equations 8-10 in the ACOPF model in the
powermodels.jl documentation.

E. Test Problems

Our test problems are drawn from version 23.07 of the
pglib-opf repository [19]. We chose cases from the repository
with fewer than 300 buses so that the optimization completed
in a reasonable amount of time.

V. RESULTS

Fig. 1 gives the relative difference in terminal objective
value for each tested algorithm. This value is computed as∣∣∣∣f(xro)− f(xipopt)

f(xipopt)

∣∣∣∣ , (21)

where ro subscript indicates Riemannian optimization solution
and the ipopt subscript indicates the IPOPT solution. Omitted
values indicate that the algorithm failed to terminate in a
reasonable amount of time.

Fig. 2 gives the maximum constraint violation for the tested
algorithms as well as IPOPT. For the manifold methods,
the equality constraints always had small residuals (typically,
smaller than 10−11) so that the maximal constraint violation
is nearly always for an inequality constraint. Again, values are
omitted when the algorithm failed to terminate.

Fig. 3 gives the number of iterations performed prior to ter-
mination. For IPOPT, this is the number of iterations reported
by the optimizer output. For the Riemannian algorithms, this
is the number of iterations performed by the unconstrained
subproblem optimizer. Once more, failure to terminate is
indicated by omitted values.

We now discuss the solution quality of the specific algo-
rithms before concluding with a few comments about the
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Fig. 1. Relative difference in objective function compared to IPOPT value.
Values are omitted when the algorithm failed to terminate.

iteration counts. The RAL and REP with RGD subsolver
perform reasonably well with RAL-RGD outperforming REP-
RGD. These two methods terminate for all but one case (REP-
RGD did not terminate for case5 pjm). For roughly half the
tests, RAL-RGD has a relative objective difference on the
order of 10−6 and in all but one case is within 1% of the
IPOPT objective function whereas REP-RGD differences tend
to be higher (∼ 10−3) with one poor solution (case240 pserc).
For both RAL-RGD and REP-RGD, the constraint violations
are also small being on the order of 10−5 in the majority
of tests. These are larger than the IPOPT values which are
between 10−8 and 10−5. Note also that when REP-RGD does
sometime produce solutions with significant (greater than 1)
constraint violation.

In our tests, both RAL and REP with RCG subsolver
perform poorly. While all cases terminated, the solutions are
of poor quality. The relative objective function differences
are significant: they are typically on the order of 1 or larger
and never less than 10−3. The constraint violation is also
frequently quite large and rarely less than 10−2. It should be
noted that the equality constraints are small: generally on the
order of 10−12 or smaller. Since we are using objective based
methods to enforce the inequality constraints, the large con-
straint violation and the large relative objective difference are
related. Indeed, the RCG based methods frequently terminated
with negative objective values. Since the objective function in
our OPF problems is a polynomial with positive coefficients,
this is only possible if the inequality constraints are violated
(specifically, the generator set points must have negative
values). The fact that both the RAL and REP algorithms
terminated in these conditions is odd and difficult to explain.

Fig. 2. Maximum constraint violation. Values are omitted when the algorithm
failed to terminate.

Fig. 3. Number of total inner loop iterations before termination. Values are
omitted when the algorithm failed to terminate.

The RQN based algorithms clearly performed the best with
RAL-RQN slightly outperforming REP-RQN. However, these
two methods also failed to terminate more than the others.
This is likely due to the increased computational complexity
of the method (and un-optimized implementations with regard
to rectractions, vector transport, and memory allocation) rather
than a failing in the algorithm. Both of these algorithms
consistently produce solutions comparable to IPOPT in terms
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of objective function value and constraint violation. Indeed,
there are several cases where one or both RQN based methods
have smaller constraint violation than IPOPT. Note that REP-
RQN does have one outlier to this success where it produced
a bad solution (case240 pserc).

With regard to iteration count, somewhat surprisingly, the
RAL-RCG and REP-RCG algorithms took the fewest itera-
tions of the Riemannian algorithms. RCG methods do have
super-linear convergence [16], so we would expect them to
take fewer iterations than RGD. However, the RQN methods
also converge super-linearly [17] so, at least naively, we would
expect these methods to have similar iteration counts. It is
possible that the small number of iterations and the poor
performance of the RAL-RCG and REP-RCG are related. For
example, it is possible the RCG algorithm became trapped in
a local minimum early on and the RAL and REP algorithms
failed to drive the penalty parameter high enough to move the
iterates to a feasible point.

Comparing to IPOPT, all the Riemannian algorithms take
significantly more iterations. There are two obvious possible
reasons. First, because the Riemannian methods stick to the
manifold, they have to travel a longer distance from the initial
point to the optimal point since the Riemannian algorithms
cannot travel “through” the manifold. Second, due to the
curvature of the manifold, the Riemannian algorithms may
be forced to take smaller steps. Indeed, we observed that our
retraction failed for step sizes that are too large. The exact
cause for the much larger iteration count is not clear and
requires further investigation.

VI. CONCLUSION

From our computational experiments, we see that RQN, and
to a lesser extent RGD, are capable of producing solutions
of similar quality as IPOPT, at least on cases of fewer than
300 buses. The exact reason for the poor performance of RCG
methods is unclear and should be further investigated. Further,
in all cases, these methods seem to require a significantly
larger number of iterations than IPOPT. The reason for this too
is unclear. It may be that the Riemannian algorithms require
parameter tuning or different line search algorithms.

While these algorithms have proven effective on small scale
test systems, it is important to test them on larger systems
as well. Many computational problems do not appear until
algorithms are used on large scale problems. Such testing
requires a more computationally efficient implementation of
RQN and RGD than used here.

Despite these questions, there are some notable advantages
to this approach. First, since these algorithms search the power
flow manifold, every iterate of the algorithm satisfies the
AC power flow equations to a tight tolerance (on the order
of 10−12). Checking the feasibility of a point (such as that
provided by an early termination) is reduced to a check on
the inequality constraints. This is much simpler than checking
the AC power flow equations.

Second, using computational accelerators (e.g., GPUs) for
interior point methods has proven difficult largely due to the

numerical linear algebra [4] and the poor performance of
current GPU linear solver on these problems [20]. The primary
linear solve in the chosen Riemannian methods is the inversion
of the symmetric positive-definite matrix DqxDqTx as part
of the projection operator given in (8). This is likely to be
a significantly easier numerical linear algebra problem than
the inversion of the saddle point matrix. As a result, these
Riemannian algorithms may be easier to accelerate with GPUs
than the classical interior point methods.
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