
Why combine machine-learning (ML) and discrete 
choice models?
 Conventional discrete choice models:
 Theory-driven and provide clear subject-matter 

interpretations.
 Widely used in understanding the travel behavior of 

passenger and freight and support policy making.
 Lacking efficient and systematic way to identify non-

linear and interactive effects.
 Machine-learning (ML) methods:
 Often provide better out-of-sample accuracy, but hard 

to extrapolate.
 Often capture complex and non-linear relationship 

among the data.
 Recently become interpretable and transparent 

applying SHapley Additive exPlanations (SHAP).
Research goal:
 Develop a multinomial logit (MNL) model for freight mode 

choice using the insights from ML models.
 Showcase how interpretable ML methods help enhance 

the performance of MNL models and deepen our 
understanding of freight mode choice.

Research Question and Objectives

Develop freight mode choice models for Austin 
 Using 2017 Commodity Flow Survey (CFS) data (sample 

size = 247,073).
 For-hire truck (base), private truck, air, parcel, and rail + 

intermodal truck/rail (rail/IMX).
Compare the performance of two approaches:
 A conventional logit model approach
 Baseline MNL models (‘bMNL’) with mostly linear 

specifications.
 A machine-learning (ML) guided approach
 Advances MNL model (‘aMNL’) using ML and SHAP 

interpretations.
Investigate the results in two aspects:
 Accuracy measures of predicted mode choice.
 Interpretations of the results.

Proposed Workflow

Machine-learning models overview:
 Select ML methods that are
 Suitable for resolving nonlinear relationships in 

mode choice models.
 Seamless connection with SHAP TreeExplainer. 

Selected methods:
 Random forest (RF): builds a large collection of 

de-correlated trees and then averages them. 
 Boosting Trees: combines the outputs of many 

“weak” classifiers to produce a powerful 
“committee”.
 XGBoost: a scalable ML system for tree 

boosting.  
 CatBoost: specialize in categorical data. 

Interpretable Machine-learning Results

Out-of-sample accuracy of 
mode choice models:
 RF and CatBoost have the 

highest accuracy, followed 
by XGBoost.

 Tree-based MLs outperform 
the MNL models.  

 aMNL model has higher 
accuracy than bMNL.

Performance Comparison

Baseline Multinomial Logit Model
Highlights of bMNL model estimation:
 Results from MNL do not capture the intricate relationship 

demonstrated in SHAP.
 Low-impact factors (e.g., some industries) may absorb 

the effects from more influential factors.

Advanced Multinomial Logit Model
Highlights of new findings in aMNL model:
 SHAP results help remove nine low-impact factors.
 Binned specifications of distance and value density help 

reveal nonlinear relationships of mode preferences.

Findings and Recommendations
 Using insights from SHAP, aMNL‘s accuracy surpass that 

of bMNL.
 The estimated aMNL reveals significant and complex 

relationships that are hidden in bMNL.
 The directions of impacts from aMNL and CatBoost are 

often aligned.
 Interpretable ML can be a useful tool to enhance the 

practice of freight behavior analysis and modeling.
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SHAP feature importance (CatBoost)

SHAP dependence plots (CatBoost)

Overall out-of-
sample accuracy

Accuracy measures (Precision, recall and F1-Score)

Performance measures (Precision, Recall, F-1 Scores) by mode:
 ML generate accurate predictions for all modes, while the accuracy of the two truck 

modes are slightly lower. 
 MNL models have larger errors for air and rail/IMX, potentially due to low sample size.

MNL

Variables Mode (for-hire truck as the base)
Air Parcel Private Truck Rail/IMX

Constant -5.05*** 0.472*** 1.395*** -5.49***
Distance (mile) 0.002*** 0.001*** -0.005*** -6.1e-5
Value density ($/lb.) 1.4e-5*** -0.001***
Weight between 150 and 1,500 lbs. -3.211*** 1.798***
Weight between 1,500 and 30,000 lbs. -3.784*** 0.044** 3.352***
Weight between 30,000 and 45,000 lbs. -0.67*** 2.627***
Weight greater than 45,000 lbs. -1.207*** 4.296***
Commodity is bulk -1.107*** -0.78*** -2.094***
Commodity is fuel, fertilizer or other 
chemical 

-0.77*** -0.338*** -1.296***

Commodity is interim product or food -0.98*** -1.312*** -3.077***
Commodity is manufactured goods 0.882*** -0.912*** -1.458***
Information industry 0.126** -0.968***
Manufacturing industry 0.327*** -0.319*** -0.558***
Management industry 0.325*** 0.202* -2.185***
Retail industry 0.558*** 2.459*** 1.08***
Transport and Warehouse industry -2.311***
Wholesale industry 0.493*** -1.403***
Shipping Costs -0.001***
Shipping Time -0.003***
Number of parameters 47
Number of observations 247,073
Log-likelihood -157,515
Adjusted 𝜌𝜌2 0.567

*CMD – Commodity; IND - Industry

Austin mode split
ML

Variables
Mode (for-hire truck as the base)

Red cell highlights removed variables in aMNL
Air Parcel Private Truck Rail/IMX

Constant -5.258*** 0.237*** 1.405*** -6.366***
Distance*(Distance <= 500 miles) 0.004*** 0.004*** -0.005*** 0.001***
Distance*(Distance > 500 miles) 0.002*** 0.001***
(Distance > 500 miles) 2.220*** 0.321*
Value density*(Value density <= $5/lb.) -0.114* 0.012 0.009
(Value density > $5/lb.) -0.301***
Value density*($5/lb.<Value density<= 
$25/lb.)

0.039*** 0.025***

(Value density>$25/lb.) 1.557*** 0.372***
Value density*(Value density <= $1/lb.) -0.223*
Value density*($1/lb.<Value density<= 
$10/lb.)

0.124***

Weight*(Weight <= 150 lbs.) -46.389*** -33.591*** 2.815***
Weight between 150 and 1,500 lbs. -3.329***
Weight between 1,500 and 30,000 lbs. -3.619*** 2.151***
Weight between 30,000 and 45,000 lbs. -0.749*** 1.606***
Weight greater than 45,000 lbs. -1.281*** 3.232***
Commodity is bulk -0.732*** -1.273***

Commodity is fuel, fertilizer or other chemical -0.329*** -0.248*** -0.843***

Commodity is interim product or food -0.642** -0.790*** 0.144*** -2.681***
Commodity is manufactured goods 0.354*** 0.089** -0.847*** -1.049***
Information industry -1.111***
Manufacturing industry 0.155*** -0.375*** 0.519***
Management industry
Retail industry -1.625***
Transport and Warehouse industry
Wholesale industry 0.469***
Shipping Costs -0.001***
Shipping Time -0.003***
Number of parameters 51
Number of observations 247,073
Log-likelihood -145,857
Adjusted 𝜌𝜌2 0.576

*p<0.1, ** p<0.01, *** p<0.001 


