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• Introduced an automated method using large language models to extract renewable energy siting ordinances from legal documents.
• Achieved an accuracy rate of 85 % to 90 % in ordinance information extraction using a decision tree algorithm powered by large language models.
• Significantly reduced the manual labor required to maintain an up-to-date energy siting ordinance database.
• Potential to automate similar large-scale policy research across the energy sector.
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A B S T R A C T

The recent growth in renewable energy development in the United States has been accompanied by a simulta-
neous surge in renewable energy siting ordinances. These zoning laws play a critical role in dictating the
placement of wind and solar resources that are critical for achieving low-carbon energy futures. In this context,
efficient access to and management of siting ordinance data becomes imperative. The National Renewable En-
ergy Laboratory (NREL) recently introduced a public wind and solar siting database to fill this need. This paper
presents a method for harnessing Large Language Models (LLMs) to automate the extraction of these siting or-
dinances from legal documents, enabling this database to maintain accurate up-to-date information in the rapidly
changing energy policy landscape. A novel contribution of this research is the integration of a decision tree
framework with LLMs. Our results show that this approach is 85 to 90 % accurate with outputs that can be used
directly in downstream quantitative modeling. We discuss opportunities to use this work to support similar large-
scale policy research in the energy sector. By unlocking new efficiencies in the extraction and analysis of legal
documents using LLMs, this study enables a path forward for automated large-scale energy policy research.

1. Introduction

The energy system is rapidly changing as are the markets and policies
that govern it. In recent years, the United States has seen a rise in wind
and solar renewable energy generation [1,2]. In response, electricity
markets have introduced new market structures and local governments
have developed new regulations to accommodate these novel generators
[3–5]. From 2018 to 2022, the electricity generation from utility-scale
wind and solar sources has increased by 60 and 125 percent, respec-
tively [2]. Over the same period, the number of local zoning ordinances
restricting the development of wind energy systems has also increased
substantially [5,6]. These policies directly affect the quantity of

available, buildable land for renewables and have important implica-
tions for our future energy system [5].
These changes are happening at the same time the United States is

setting ambitious goals for clean energy deployment in an effort to
tackle the climate crisis [7]. Several scientific institutions have recently
charted technical paths to achieve such decarbonization goals while
identifying key opportunities and challenges [8,9]. However, without
accurate data on current local energy policies, these analyses may
represent idealized energy transitions without a realistic representation
of the local legal challenges to deployment of renewable energy assets.
Studies have performed initial assessments of the effect of renewable
energy siting regulations on energy systems at the national scale,
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showing a strong relationship between restrictive siting policies and
renewable deployments in a least-cost economic model [10]. Similar
developments are possible in numerous other legal, economic, and po-
litical domains that surround the energy industry.
In the context of these changes, efficient access to and management

of policy data becomes crucial. Historically, the process of analyzing
energy policy has only been possible through significant manual labor.
For example, the United States Wind and Solar Siting Regulation and
Zoning Ordinance Databases recently introduced by the National
Renewable Energy Laboratory (NREL) [5,11,12] required approxi-
mately 1500 human labor hours to collect siting regulation data from
local zoning codes in the United States. This significant labor require-
ment makes it prohibitively expensive to continually maintain accurate
data in these dynamic times. However, technologies in machine
learning, natural language processing (NLP), and semantic search have
also seen transformative developments in recent years, promising to
enable the automation of these tasks.
The advent of Large Language Models (LLMs) such as GPT-4 has

changed our understanding of what is possible in automated reading
comprehension and text processing [13,14]. Applications of LLMs are
being explored in medicine, law, education, finance, engineering, and
media [15]. Accordingly, there are numerous possibilities for LLMs to
expedite the retrieval and processing of energy policy data from legal

documents. We see this as an ideal testing ground for real-world appli-
cations of LLMs because of the substantial reading comprehension re-
quirements and the otherwise prohibitive cost of maintaining up-to-date
information on the current state of energy policies across the nation.
In this work, we demonstrate how LLMs can be used to retrieve data

on renewable energy zoning ordinances from legal documents. We
introduce a strategy using decision trees to supplement the LLM fast
reasoning skills with subject matter expertise and symbolic logic that
leads to improved accuracy when compared to human effort or alter-
native LLM prompting strategies. Finally, we discuss future applications
of the open-source software used here to enable similar large-scale data
retrieval efforts elsewhere.
The structure of this article is as follows: Section 2 introduces the

experimental methods along with the LLM prompting strategies. Section
3 discusses the results of applying LLMs to a set of ordinance documents.
Section 4 discusses the potential for future opportunities and limitations
of these methods in energy research. Section 5 concludes the article.

2. Methods

To explore the capability of LLMs to assist in the retrieval of
renewable energy siting data from local ordinance documents, we
collect a subset of legal documents from counties represented in the

Fig. 1. a–e, Outline of the LLM ordinance data extraction process. a, Source PDF documents (this manuscript used in the figure for illustrative purposes). b, Raw
machine-readable text extracted from the PDF. c, Text chunks related to siting ordinances extracted by the LLM from the full document text. d, an illustration of an
LLM-powered decision tree framework used to parse structured data from the relevant text. e, Structured data describing siting ordinances output by the decision tree
LLM framework.
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United States Wind Siting Regulation and Zoning Ordinances Database
(hereafter referred to as “the wind ordinance database”) [11] and apply
LLMs (specifically the Microsoft Azure “2023–03–15-preview” deploy-
ment of OpenAI’s GPT-4) to extract structured ordinance data from the
unstructured text. The document parsing methods are split into three
parts, outlined in Fig. 1. First, ordinance documents typically in Portable
Document Format (PDF) are converted to text as described in Section
2.1. Second, the ordinance text relevant to wind energy systems is
identified and extracted as described in Section 2.1. Lastly, the LLM is
used to extract data from the text using a decision tree framework
further described in Section 2.2. Alternative prompting strategies that
we explored but ultimately decided against are discussed in Section 2.3.

2.1. Document text extraction and distillation

The first part of the methods requires conversion of legal documents
from PDF to text. We explored several utilities for PDF-to-text conver-
sion and found that the free software Poppler [16] performed best,
especially when considering the ability to convert ordinances in tabular
format to space-delimited text.
The second part of the methods requires identifying and extracting

only the text relevant to wind energy systems and their corresponding
ordinances. Legal documents on zoning can be hundreds of pages long,
easily exceeding the context window of most publicly available LLMs,
including GPT-4 (4k or 32k tokens at the time of development).
Although the context window of publicly available LLMs is rapidly
increasing, long-windowmodels can still suffer from low accuracy when
requested to extract information from the middle of a large document
[17]. As a result, we found that content distillation was an important
step to improve the accuracy of these methods.
In order to distill the lengthy legal documents, we first perform an

asynchronous semantic search on overlapping chunks of the text,
instructing the LLM to “extract text related to the restrictions of wind
energy systems” (see the code associated with this paper for full details
on LLM prompts). A challenge here is preserving parts of the document
that do not explicitly define the ordinances but that set important
context such as definition of terms. Generally, however, a 100-page
document on all zoning ordinances in a county typically does not have
more than a few pages relevant to wind energy systems. This step distills
the relevant information into a manageable amount of text that can be
used by the LLM. An example of the desired output for a few select
counties can be seen in Table 1.

2.2. Structured data extraction with decision trees

The last part of the method is to extract the discrete siting restrictions
from the legal text relevant only to wind energy systems. The goal here is
to output quantitative data that can be used in analysis such as that by
Lopez et al. [11]. For this study, we chose 13 features that wind energy
systems are commonly required to consider in siting decisions: struc-
tures (participating and non-participating), property lines (participating
and non-participating), roads, railroads, transmission lines, bodies of
water, noise restrictions, maximum system heights, minimum lot sizes,
shadow flicker restrictions, and turbine density restrictions. The siting
ordinances relative to the physical features are typically called setbacks
(e.g., a turbine must be “set back” a pre-defined distance from these
features). For this process to be useful in downstream quantitative
analysis, the output must be concise and machine readable. An example
query might be “what is the setback from participating residences in
Monroe, Wisconsin?” and the output should consist of a numerical value
and a categorical definition e.g., the value would be 1.1 and the cate-
gorical definition would be “maximum tip height multiplier”. In this
example, we know the county and the feature (Monroe; participating
residences) and we can extract the numeric setback value and how to
calculate the final distance value (1.1; a multiple of the maximum tip
height). While this may be an intuitive task for a human, the small set of

ordinance text in Table 1 shows the potential for significant heteroge-
neity in how these setbacks are defined in the real world. There are
frequently multiple setback values to choose from, multiple subclasses of
feature within a broader feature category, multiple classes of turbine
based on size and application, and a wide variety of verbiage and
abbreviations.
The strategy we found to work best for extracting ordinance data

from legal documents is an approach using LLMs guided by a decision
tree embedded with knowledge of the subject matter. Using a decision
tree as a programmatic structure, we can break down our larger goal into
many smaller requests (nodes) with logical transitions (edges) between
each request. This is illustrated in Fig. 1: nodes N0-N3 interact with the
LLM using unique prompts and the conversation history. Edges E0-E2
each have callable functions or additional LLM prompts that would
trigger node transitions. Failure of all edge conditions in response to an
LLM output at a node results in a null result (e.g., no relevant text) or can
be flagged for human review. Leaf nodes N2 and N3 result in structured
outputs in json format that can be put into a database. For example, leaf
node N2 might return a wind turbine tip height multiplier setback while
node N3 would return a fixed distance setback.
The LLM-powered decision tree is essentially a pre-programmed

multi-prompt LLM conversation based on subject matter expertise. In
practice, this looks like a series of nodes each containing an LLM prompt
(“does the text define a setback?”) with functions (“is the answer yes?”)
determining transitions between nodes. We also implement branching
logic to handle the various types of ordinances that are recorded in the
original wind ordinance database, including branches for ordinances
with multiple conditions and instructions on what assumptions to make
under this ambiguity (see Fig. 2). The output of this structure can be the
setback text in our desired format (including as structured data) as
returned by a leaf node (e.g., a node with no edges directed away from
it) or an exception raised because no edge transition conditions were
met. In the latter case, depending on where in the tree the exception was
raised, we can assume there is no setback defined or flag the ordinance
for human review. This approach is slower than a single-prompt strategy
because it uses multiple chained prompts per document but is similarly
limited only by the rate limit imposed by the LLM provider. A descrip-
tion of the decision tree algorithm is documented below in Algorithm 1.
This implementation of an LLM-powered decision tree operates

Table 1
Sample text on wind energy siting from ordinance documents. Page count is for
the full ordinance document and sampled text is an LLM-selected excerpt related
to wind energy siting.

County Pages Example of Extracted Wind Ordinance Text

Laramie,
WY

223 The center of the base of each wind tower shall be located no
less than 1.5 (hub height + rotor diameter) from adjacent
unplatted nonparticipating property lines and dedicated
public roads.

Ottawa, MI 16 Medium Wind Energy Turbine (MWET) shall also be subject
to the following:
• Occupied Building Setback: The setback from all occupied
buildings on the applicant’s parcel shall be a minimum of
twenty (20) feet measured from the base of the Tower.

Large Wind Energy Turbine (LWET) shall also be subject to
the following:
• Occupied Building Setback: Each LWET shall be set back
from the nearest Occupied Building that is located on the
same parcel as the LWET a minimum of two (2) times its
Total Height, or one thousand (1000) feet, as measured
from the base of the Tower, whichever is greater.

Monroe,
WI

26 Occupied community buildings:
• The lesser of 1250 feet or 3.1 times the maximum blade tip
height.

Participating residences:
• 1.1 times the maximum blade tip height.
Nonparticipating residences:
• The lesser of 1250 feet or 3.1 times the maximum blade tip
height
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similar to the traditional decision tree algorithm in the machine-learning
literature [18] but uses LLMs to process text at nodes instead of logical
rules. This implementation can also be described as a rudimentary
implementation of neuro-symbolic artificial intelligence [19],
combining the powerful text-processing capabilities of the neural
network with the ability for a subject matter expert to craft a logical
structure for how a human would extract relevant information from a
document.
The decision tree strategy is also similar to the tree-of-thought

approach [20,21] but has some fundamental differences. Most
crucially, in our data retrieval task we do not rely on self-evaluation of
progress by an LLM or a rule-based algorithm. Instead, we rely on
human-developed instruction and logic to guide the edge transitions and
raise exceptions in the case of unrecognized ordinance types. Also, in our
use case we define only a directed acyclic graph, whereas the
tree-of-thought approach allows for backtracking through the graph.
The software used here can accommodate cyclic graphs, but the acyclic
assumption is convenient for this use case and prevents infinite loops.

Fig. 2. Example of decision tree path for a complex setback rule from the Monroe, Wisconsin Code of Ordinances. Note that for illustrative purposes we only abridged
messages from the full conversation that occurred during the experiment.

Algorithm 1
Decision tree pseudocode.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Input: body of text from the document in question t, target setback feature
f

Function DecisionTree.run(t, f):
node = DecisionTree.InitialNode
while is_not_leaf_node(node):

prompt = Prompter(t, f, node)
response = LLM(prompt)
Edges = GetEdges(node)
for Edgei in Edges:

condition = Edgei(response)
if condition:

node = get_next_node(Edgei)
break

if not condition:
raise Exception(prompt,node, response)

return response
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It is also worth noting that the software we use to implement the
decision tree is sufficiently generic to allow for any callable function to
serve as a node or edge property. More complex problems could easily
implement complex logical functions, neural networks, or nested graphs
to processes edge conditions.
The software that implements the decision tree architecture is open-

source and can be found in the Code and Data Availability section.

2.3. Alternative prompting strategies

We also ran experiments with a Retrieval-Augmented Generation
(RAG) framework [22,23] and single-prompt data retrievals instead of
the multi-prompt decision tree. We found that both strategies were
ineffective for retrieving accurate structured information from a larger
body of legal text. The heterogeneity of ordinance verbiage and setback
values in tabular structures rendered vector comparison in a RAG
framework unreliable. The complexity of the retrieval query also proved
to be too challenging for a single large prompt, especially when the LLM
was faced with ambiguous conflicting information such as with regu-
lations on both small and large wind energy systems or with regulations
that required comparative logic between multiple values. Both experi-
ments were also unable to provide output in consistently
machine-readable quantitative values paired with discrete categories for
the ordinance type (the ability of decision trees to do this is discussed
later in Section 3). In theory, we could augment single-prompt ap-
proaches with additional strategies such as providing the LLM with an
example of successful ordinance extraction to guide its thought process
[24] but given the diversity of possible ordinance examples we decided
this was not tractable. Ultimately, we did not run these strategies on the
full test set of ordinance documents because of poor performance in
development with the training set of documents.

3. Results

We apply the LLM process illustrated in Fig. 1 to the wind ordinance
documents in two sets: 18 documents in the “training” set and 85 doc-
uments in the “test” set. Each document here represents ordinances for a
single county with known restrictions on wind energy systems. Although
the LLM framework is not trained through the direct observation of
numerical data like a traditional quantitative regression model might be,
we find a similar training and test experimental setup useful to ensure
extensibility of our approach. Here, the documents in the training set are
used to develop the LLM approach, which includes development of the
software for text cleaning and the LLM prompting strategies. The soft-
ware and prompting strategies are then frozen and run against the test
set documents. The test set documents are a “ground truth” dataset
compiled by two researchers not involved in the development of the LLM
strategies. The two researchers reviewed all 85 documents separately,
resolved any discrepancies, and produced the most accurate test dataset
possible. Comparable performance of the LLM strategies in both the
training and test sets supports the extensibility of these methods, espe-
cially when considering the heterogeneity of ordinance text in the
training and test documents.
Tables 2 and 3 summarize the results of the analysis on the training

and test sets, respectively. Between the two sets of documents, the

decision tree LLM strategy was found to have an accuracy score of 85–90
%, a precision score of 91–96 %, and a recall score of 75–81 %. The
accuracy, precision, and recall metrics are defined here as:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN + IP
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

where TP are the true positive results (correct values in the top left
quadrant of Tables 2 and 3), TN are the true negative results (values in
the bottom right quadrant of Tables 2 and 3), FP are the false positive
results (values in the bottom left quadrant of Tables 2 and 3), FN are the
false negative results (values in the top right quadrant of Tables 2 and 3),
and IP are the incorrect positive results (incorrect values in the top left
quadrant of Tables 2 and 3). Note that we use the precision and recall
definitions common to binary classification problems, but in the defi-
nition of the accuracy metric we divide by the total number of samples
including IPwhich is more typical of a multi-class classification problem
[25].
Additionally, the decision tree outputs are structured in machine-

readable format and can be used directly in downstream quantitative
analysis. The comparable accuracy between the training and test doc-
uments supports the extensibility of this strategy to a larger set of
ordinance documents.
These results are comparable to small-scale (around 20 counties)

internal validation showing that the original human-developed wind
ordinance database [11] is also between 85 % and 90 % accurate. This
result is understandable when considering the immense number of
human labor hours required for the initial development of the wind
ordinance database (1500 h), the repetitive nature of the work required,
and the repeated identification of fatigue as a common driver in human
errors [26]. In fact, even in the development of the 85-document test set,
ambiguity and fatigue led to disagreement between the two researchers
tasked with development of the "ground truth" dataset. This was
resolved upon lengthy discussion and deliberation between the two re-
searchers, but it highlights the difficulty of this problem. An example of
the decision tree strategy extracting the structure setback data from the
Monroe, Wisconsin ordinance document is shown in Fig. 2. This example
is highlighted because it requires some of the most complex mathe-
matical and logical reasoning found in ordinance documents. The
ordinance states different setback requirements from three types of
structures, with some types of structures having multiple options to
calculate and compare. The LLM shows its work while calculating all
possible effective setback distances and is able to select an appropriate
final value based on the guidance provided. In contrast, experiments
with a single-prompt LLM containing the same guidance returned “the
setback is 3.1 times the maximum blade tip height” without showing its
work. This is a reasonable output, but it is incorrect given the provided
guidance.
An additional benefit of the decision tree method not represented in

the accuracy metrics is the ability for the decision to act as a

Table 2
Results of ordinance retrieval from 18 training documents with 13 ordinance
types (234 total ordinance values). Overall accuracy, precision, and recall were
86 %, 96 %, and 75 % respectively.

LLM Found Ordinance

True False

Ordinance Exists True 61 (26 %) – Correct
11 (5 %) – Incorrect

20 (9 %)

False 2 (1 %) 140 (60 %)

Table 3
Results of ordinance retrieval from 85 test documents with 13 ordinance types
(1105 total ordinance values). Overall accuracy, precision, and recall were 90%,
91 %, and 81 % respectively.

LLM Found Ordinance

True False

Ordinance Exists True 325 (29 %) – Correct
34 (3 %) – Incorrect

42 (4 %)

False 34 (3 %) 670 (61 %)
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classification model in addition to a data extraction utility. One node of
the decision tree requests the LLM to categorize the ordinance based on a
set of archetypes from the original ordinance database (e.g., tip-height
multiplier, fixed distance value, etc.…). The result is that the type of
setback can be easily determined from the decision tree history and can
be output in a machine-readable format. This enables the scalability of
this method to the full wind ordinance database.
A common concern on using LLMs for automation is the stochasticity

of the models. LLMs have several hyperparameters that attempt to
control the variability of the outputs, such as the sampling temperature
[23,27]. During the generation step, the LLM selects the next output
token from several likely options. A temperature of 0 corresponds to
greedy sampling where only the most likely next token will be selected.
A larger temperature causes the model to select the output token from a
probability distribution of the several most likely next tokens. Lower
temperatures are therefore considered more deterministic and better for
focused high-accuracy applications, although in practice this does not
eliminate all stochasticity from the LLM outputs. To explore how the
implicit stochasticity impacts the reliability of the ordinance data
retrieval, we select five counties from our “test” set and run the
LLM-powered ordinance data retrieval 10 times for each county with the
temperature set to 0 (note that we used a temperature of 0 for all the
results in this work). We find that in the structured output dataset, we
see an average 4.8 % variability rate. That is, when we collect the 13
targeted ordinance types for a given county 10 times (a total of 130
collected ordinance values), we see on average 6 values deviate from the
most common value for each ordinance type. However, this can vary
from county-to-county, with Beadle, South Dakota exhibiting a 10.8 %
variability rate, while Palo Alto Iowa exhibited a 0.0 % variability rate.
It may be possible to further reduce this rate by running the model
several times and selecting the most common response, or by attempting
to reduce the number of prompt interactions in the decision tree to give
the LLM less opportunities for variability. Also, this is very likely a topic
of research in the private industry, and future LLMs may exhibit less
variability.
Given that the LLM-powered ordinance data extraction does not

provide perfect accuracy, and that it exhibits variability in output even
with the same input ordinance document, it is crucial to understand how
the model might fail and what the consequences might be. Below, we
further describe the three failure modes we observed in the training and
test results.
The first failure mode is a false positive where the LLM identifies a

regulation that is not present. In our initial tests we found that the LLM
can “hallucinate” fictional regulations. This was primarily during ex-
periments using the LLM to reformat massive bodies of text. The LLM
appeared to perform poorly when requested to output a large body of
text that was a highly faithful reproduction of the input prompt. This
problem was mostly eliminated by explicitly instructing the LLM to not
add additional text, by only using the LLM to extract small chunks of
relevant text from the larger document, and by implementing a heuristic
N-Gram similarity check [28] to further prevent large-scale hallucina-
tions. In the final experiments, this failure mode occurred between 1 and
3 % and appeared to be primarily due to the LLM mistaking a real
regulation as applying to an erroneous feature (e.g., assuming that a
setback applied to structures and property lines even though it only
applied to structures).
The second failure mode is a false negative where the model fails to

retrieve an ordinance that was present in a document. A major cause of
this error type was when the PDF conversion process outputted poorly
formatted text. The LLM also sometimes failed to recognize text as
relevant to the question, although this was rare. In training, this was the
most common error mode occurring about 9 % of the time, almost
double each of the other two failure modes. However, when applying the
LLM to the larger test set, the false negative rate decreased to 4 % which
was only slightly more common than the other two failure modes. We
observed more false negatives in the training set versus the test set

primarily due to errors in Ottawa, Michigan and Lawrence, South
Dakota. The LLM failed to identify eight ordinances from these two
counties, nearly half of the false positives from the 18-county training
set. It is not immediately clear why these documents were uniquely
difficult for the LLM, as the ordinance values successfully made it
through the text extraction and distillation. The LLM may have incor-
rectly distinguished the difference between participating and non-
participating structure and property lines, or it could simply be due to
the stochastic nature of the LLM that these ordinances were difficult to
parse. Based on the results from the test set, it appears that these
counties may be outliers and that in a larger set these false negatives are
rare. Nevertheless, this serves to illustrate that parsing documents using
LLM’s is an intrinsically stochastic process that may result in errors that
are difficult to attribute.
The last failure mode occurred when the LLM found an ordinance,

but it was not the correct ordinance for the request. As an example,
many ordinance documents specify regulations for different types of
residences and for different sizes of turbines, which can sometimes
confuse the LLM especially when the text formatting is not intuitive.
Anecdotally, there were also several cases where researchers did not
initially agree on the correct interpretation of the ordinance text, so
clearly this failure mode is not limited solely to LLMs.
In all failure modes, the frequency of such errors is relatively small,

but persistent. We posit that an LLM-driven approach to collecting large
amounts of structured data from unstructured text will never be guar-
anteed to be perfectly accurate given the heterogeneity of legal text and
the tendency of LLMs to make simple mistakes. However, we also want
to note that a human-driven approach will have similar errors and based
on the limited internal review described above it seems that the LLM and
human error rates are comparable. Energy developers should still work
with licensed attorneys to ensure their projects adhere to local ordi-
nances. This is discussed further in the next section.
The impact of these LLM errors on downstream energy analysis can

be estimated based on previous studies, which show that more severe
wind energy siting restrictions reduce wind deployment in a least cost
electricity system [10]. In this context, false negatives in ordinance
detection would artificially increase the expected wind deployment
while false positives would artificially decrease the expected wind
deployment. However, when looking at the magnitude of cause and
effect reported by Mai et al. [10], we see that the siting regimes in
question have large bounds: the Open Access siting regime has 6.7x
greater technical potential available than the Limited Access regime. So,
while errors in ordinance detection will affect the estimated technical
potential, errors at rates reported in Table 3 are minimal compared to
the uncertainties in future siting regimes being considered. This is, of
course, only one potential application of the siting ordinances data, and
other applications should perform their own assessments of whether the
error rates in Table 3 are consequential.

4. Discussion

The results of this paper support the use of LLMs in the continued
maintenance of national-scale wind siting ordinances. However, the
software used in this work may also enable similar national-scale data
retrieval for analysis of utility rate structures [29], challenges in trans-
mission siting [30], and other impacts of state-to-state variation in
socio-political context [31]. The following paragraphs discuss the
applicability and limitations of such strategies with respect to the lessons
learned from the work presented here.
First, the challenge presented by maintaining a national database of

wind siting ordinances is an ideal task for automation by LLMs because it
is based on reading comprehension that has historically required sig-
nificant human effort and is prone to errors from human fatigue.
Although LLMs have developed rudimentary data analysis skills, their
primary value proposition is still rooted in text-based reading compre-
hension. That is why we focus on the application of LLMs to policy data,
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which is typically stored in unstructured text. Still, even though the
results presented here are promising, a significant remaining challenge
is handling heterogeneity and unexpected ordinance structures in new
documents. The decision tree framework implemented here relies on a
pre-programmed prompt tree developed by subject matter experts for
the wind ordinances in the 18 document “training” set. We found that
the documents in the training set were sufficiently diverse to enable
model to successfully parse the 85 document “test” set, but it is a near
certainty that there will be never-before-seen ordinance definitions in a
nation-wide survey that would present unique challenges to the decision
tree. Adaptive prompting strategies to handle unforeseen challenges
may be the focus of future research. Alternatively, the decision tree can
be configured to flag these unique regulations for human review while
still reducing the majority of the document review burden.
Applications of LLMs are discussed here as tools for policy research

and not as certified legal counsel. LLM outputs are best used in appli-
cations that are not safety-critical and have no risk asymmetry. That is,
even if we engineer a process in which LLMs can be highly accurate, we
should always ensure that inaccurate LLM responses will not result in
severe real-world consequences. Users of the ordinance database should
take steps to minimize the impacts of inaccurate values, and developers
designing a wind plant should still consult the local zoning codes with
help from the appropriate legal counsel. The value of such national-scale
data comes from the ability to perform comparative analysis across re-
gions, to maintain an understanding of national trends in renewable
energy policy, to identify opportunities for effective future renewable
energy policies, and to act as an initial screening tool for development
opportunities. The distributed nature of the problem is important to
highlight here: a single incorrect ordinance resulting from an inaccurate
LLM response (or from human effort) will not invalidate the larger
research and analysis effort. Indeed, based on the results presented here,
we should expect the LLM-driven process to result in occasional errors.
However, based on a limited investigation of the wind ordinance data-
base by Lopez et al. [11], we assert that the LLM approach has similar
accuracy to a manual human-driven collection process. This should not
be surprising given the significant human fatigue resulting from the
repetitive reading task that can lead to errors [26].
When considering the efficiency benefits of the LLM-driven process,

we can compare the efforts outlined in this paper to the initial manual
effort by Lopez et al. [11], which we have previously stated required
1500 labor hours to collect and would require a similar effort to
manually update. The work presented here required approximately 500
labor hours, including time for experimentation, software development,
validation, and the writing of this manuscript. We estimate that scaling
this work to all counties in the United States would only require 10–20%
of the original development effort (50–100 h) along with approximately
$6000 in LLM service costs (calculated from Azure GPT-4 rates as of
April 2024). A similar number of labor hours (50–100 h) would be
required to repeat the national assessment for subsequent updates. Note
that this only includes the document processing. The automated
retrieval of such documents from the internet is still in development and
could double this estimate. In summary, although the initial LLM
framework development was considerable, we estimate that it would
require much less human labor for a regularly updated and maintained
process. This follows the general motivation for automation: the initial
software development can be costly and much more expensive than a
small manual effort, but there is typically a point at which automation
becomes much more cost effective for a sufficiently large and repetitive
task.
Regarding data privacy, it is worth noting that the application of

LLMs to zoning ordinance documents presents no data privacy or in-
tellectual property challenges. All policies analyzed in this document are
publicly available and contain no sensitive information. It is still
somewhat unclear how text submitted in LLM prompts may be used by
LLM providers, and policies vary from provider to provider (e.g., OpenAI
and Google may have different policies on data privacy with respect to

their LLMs). Applying LLMs to sensitive information is possible with
some technology providers, but such applications add additional chal-
lenges to the application of this new technology.
Lastly, we believe that great care should be taken in the application

of LLMs to any real-world challenge. We describe our experimental
setup in Section 2 for testing the LLM strategies on documents that are
hidden from the primary developer. We plan to implement a sampled
validation procedure when working with the full set of ordinance doc-
uments and recommend similar validation exercises be performed when
applying LLMs to new problems. These models are black boxes with little
transparency behind their decision-making processes even when asked
to show their work. Applying an LLM as an analysis tool to a pre-existing
body of text reduces the likelihood that the model will generate fictional
responses (e.g., “hallucinations”), but it is still possible. In this work, we
found that we could greatly reduce the risk of fictional responses by
stating that the model was only allowed to return text from the original
legal document, by reducing the amount of text we expected the model
to output, and by always explicitly providing an option for the model to
provide a negative answer (e.g., “there is no such ordinance in the
provided text”).

5. Conclusion

The effort required to collect local policy data at a national-scale is
considerable and many institutions do not have sufficient resources to
successfully execute such work, even if the results would be of signifi-
cant value to the energy industry and research community. The chal-
lenge of ensuring accurate information in a constantly changing industry
presents an additional burden, which may incur similar costs but yield
lesser benefits compared to initial endeavors.
In this work, we present strategies for the automated extraction of

wind turbine setback data from ordinance documents. We show that an
LLM guided by a decision tree framework can reliably extract siting
ordinances from legal documents while requiring little human supervi-
sion or review. The results are not perfectly accurate and the LLMs do
make mistakes when extracting ordinance data. However, based on a
limited investigation of previous ordinance data, we assert that the LLM-
driven approach performs with similar accuracy to a manual collection
process. Accordingly, this work is not appropriate for applications with
zero tolerance for errors. The results are intended primarily for research
purposes and are no substitute for certified legal counsel when designing
and developing a real-world renewable energy project. The true value
proposition of this work is to enable high-quality policy analysis in a
rapidly-evolving sector at an unprecedented scale. At a minimum, the
methods presented here appear to be a viable path forward for main-
taining up-to-date information on national wind siting ordinances with
fair accuracy.
Not explored here is the possibility for LLMs to enable retrieval of

such documents from the internet via automated search. These methods
are still in development and the expanding offerings from the private
sector are also rapidly improving what is possible on this front. How-
ever, we are optimistic that LLMs can assist with the automation of a
significant portion of this task, especially given the strong baseline of
known ordinances in the original U.S. Wind and Solar Siting Regulation
and Zoning Ordinances Databases [11,12].
The software and data used in this work are open-source and available

at no cost in the associated github repository https://github.com/NREL/
elm version 0.0.5 [32]. The ordinance documents used in this report and
the results from the experiments are available here: https://github.
com/NREL/elm/tree/main/examples/ordinance_gpt. The results in this
work can be replicated by downloading the ordinance documents from the
included link and running the “parse_pdf.py” example code. Some vari-
ability is to be expected even with the same LLM model deployment as
described in Section 3. Details of the decision tree structure used to extract
the ordinance values can be found in the followingmodule: https://github.
com/NREL/elm/blob/main/elm/ords/extraction/graphs.py.
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Note that GPT-4 application programming interface (API) was used
in the development of this work. Specifically, the Microsoft Azure
“2023-03-15-preview” deployment of GPT-4 was used. At the submis-
sion of this paper, the GPT-4 API is not freely available to the public and
requires a paid subscription with OpenAI or Microsoft Azure.
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