Smart Charge Management

An overview of how fleets can benefit from managed charging

Jesse Bennett

March 2024

Smart Charge Management (SCM)

Next Steps

What other work is under development?

SCM Overview

How does SCM fit in fleet operations?

Value Proposition

Why consider managed charging?

Example Solutions

What examples of SCM currently exist?

ENERGY EXCHANGE · 2024

EV Charging and Temporal Flexibility

- Daily driving needs (VMT) indicate energy needs (kWh)
- EV charging (kW) will typically occur at parking locations with long dwell periods (hr)
- EV charge sessions will typically be shorter than vehicle dwell periods (overnight)
 - Temporal Flexibility = Charge Shifting

https://www.nrel.gov/docs/fy22osti/81595.pdf

Optimizing the cost of electricity

- Some rates include dynamic prices to support bulk system needs
 - <u>Time-of-use (TOU)</u>: peak/off-peak pricing, seasonally scheduled, utility-wide
 - <u>Day-ahead pricing</u>: changes every hour/day based on transmission congestion from load and generation forecasts for each transmission node, (e.g. PJM's LMP wholesale rates)

Optimizing the use of these rates can reduce the cost of energy

Mitigating Equipment Upgrades

- The installation of EVSE may trigger the need to upgrade service equipment
 - Service panels, distribution transformers...
- SCM can mitigate these upgrades by maintaining a power ceiling
 - EVSE can reduce power in response to peak demand and avoid overloading

Managed Charging Opportunities

- Charge session flexibility can be leveraged to avoid installation upgrades, reduce energy costs, and mitigate grid impacts
- Capacity Limitations
 - Power ceiling, dynamic loads
- Energy costs
 - TOU, Demand charges
- Utility Services
 - Demand Response, Dynamic Pricing

https://www.nrel.gov/docs/fy20osti/77438.pdf

NREL's Workplace Charging SCM

- Managed charging solution
 - Employees input desired mileage and dwell period
 - Limit max garage load to less than transformer rating
 - Limit specific service panel circuits to avoid overloads
 - Schedule charging to meet requirements and limit facility peak demand
- Mitigating upgrade costs and demand charges, while meeting the energy needs of all users

Stepowerflex LDF renewables		St powerflex EDF renewables		
Set charging ese preferences will be save charging settings. You can u	preferences d and used as your default update them at any time.	Now charging! 32 Amps	(ff	
	100	2018 Tesla Model 3	Long Range	
Desired Miles	110 miles 120	Space # Actual_02	Est. Completion 1:32 PM	
Charge Duration	n	Current Rate	Cost Estimate	
Departure Time: 8:10 PM	4	\$0.01/kWh	\$0.21	
6 7 hrs 0 8 1	min	Current Co	Current Cost: \$0.06	
Keep Charging (Keep charging until the if the price is \$0.04/kWh	(optional) battery is full only or less.	22 (80 miles	5/21 kWh	
	\$ 0.04 /kWh			
		Actual Amps 35A	Projected Am	
Save Cha	anges			
Save Cha	inges	30A 25A		

Federal Fleet Considerations*

- SCM Objective Function
 - Capacity limitations, energy cost
- OCPP capability/EVSE compatibility
 OCPP power set point send/receive
- Load Coordination/UL approval
 - UL Considerations: 2594, 916, and 60730
 - For both equipment and controls
- Fleet management
 - Manage/coordinate vehicle dwell times

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10186998

*FEMP/NREL is investigating specific SCM requirements with additional details under development

Current Research and Next Steps

- EVs@Scale SCM/VGI Pillar (FUSE)
 - <u>Consortium Website</u> / <u>Year in Review Report</u>
- Field Demonstrations
 - Some utilities are beginning to develop SCM programs, but more pilots are underway
- FEMP One-pager
 - Outline SCM capabilities/procurement needs
- FEMP Pilot Projects
 - Partner with FEMP and NREL to pilot SCM technologies at your site!

SCM Objective Functions Under Investigation

- In addition to site benefits, SCM may also create value for utility companies by mitigating the grid impacts of EV charging at scale
- EVs@Scale is assessing multiple SCM objective functions and their ability to:
 - Mitigate transformer overloading
 - Improve local voltage quality
 - Optimize use of renewables
 - Reduce feeder peak demand
- Although few utility SCM programs currently exist, many are under development

Strategy Name	Objective Function: PEV Charging
TOU Immediate	begins immediately at start of TOU in dwell
TOU Random	randomly distributed within dwell/TOU
Random Start	randomly distributed within dwell
Feeder Peak	distributed within dwell to limit feeder peak
Volt/VAR	provides reactive power support
Volt/Watt	Charging limits to support local voltage
BTM/DER	reduce PV/home/ESS net demand
Day-ahead Pricing	minimize costs per PJM LMP

NREL SCM Testbed

- Testbed designed to characterize OCPP performance for SCM
- Multiple L2 EVSE with SCM signals sent from an OCPP server
- Leveraging the signal: "SetChargingProfile.req" per the OCPP protocol to manage the charging current of the EVSE

Per EVs@Scale Semi-Annual Stakeholder FUSE presentation from 2/28/24

OCPP Control Characterization Tests (Ioniq 5)

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes

NREL/PR-5400-89220