
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Technical Report
NREL/TP-5000-89360
November 2024

WETO Software Stack Best Practices

Rafael Mudafort and Garrett Barter

National Renewable Energy Laboratory

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Technical Report
NREL/TP-5000-89360
November 2024

WETO Software Stack Best Practices

Rafael Mudafort and Garrett Barter

National Renewable Energy Laboratory

Suggested Citation
Mudafort, Rafael, and Garrett Barter. 2024. WETO Software Stack Best Practices.
Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-89360.
https://www.nrel.gov/docs/fy25osti/89360.pdf.

https://www.nrel.gov/docs/fy25osti/89360.pdf

NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy
Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S.
Government.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

Executive Summary
This report outlines a set of best practices to guide the development of software supported by the U.S. Department
of Energy’s Wind Energy Technologies Office. Researchers at the National Renewable Energy Laboratory have
been engaged in an effort to convert this set of software from a loose collection of projects into a cohesive and high-
quality software suite known as the “WETO Software Stack.” This report provides recommendations and practical
suggestions to guide developers of WETO Software Stack components toward the vision of a cohesive and high-
quality suite. The best practices are suggested in the following areas:

• Accessibility: How practitioners obtain and integrate the software into their workflows and processes

• Usability: How practitioners execute the software, create meaningful inputs, and consume the outputs

• Extendability: How improvements and new features are added to existing software projects.

A description and example of a software grading rubric developed for the WETO Software Stack is shown in an ap-
pendix. Another appendix discusses career incentives for the researchers responsible for producing WETO software.

The WETO Software Best Practices are also available online at https://nrel.github.io/WETOStack/software_dev/
best_practices.html. The recommendations and practical suggestions will be periodically updated and expanded, and
the online document will serve as the latest version.

iv

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://nrel.github.io/WETOStack/software_dev/best_practices.html
https://nrel.github.io/WETOStack/software_dev/best_practices.html

Table of Contents
Executive Summary . iv

1 Introduction . 1
2 Summary of Best Practices . 3
3 Accessibility . 5

3.1 Prerequisite Knowledge . 5
3.2 Distribution . 5

4 Usability . 7
4.1 User Interface . 7

4.1.1 Command Line Interface . 7
4.1.2 Input and Output Files . 8

4.2 Error Messages . 9
4.3 Metadata . 9

5 Extendability . 11
5.1 Code Style . 11

5.1.1 The Zen of Python . 12
5.2 Architecture and Design . 12

5.2.1 Software Design Process . 12
5.2.2 Design Patterns . 13

5.3 Version Control . 13
5.4 Collaborative Workflows with GitHub . 14
5.5 Pull Requests . 16
5.6 Continuous Integration: Automating Tests, Compliance, and Delivery 16

Appendix A WETO Software Stack Grading Rubric . 19
Appendix B RSEs: The Engineers Behind Research Software . 23

B.1 RSE Value Recognition . 23
B.2 Career Growth and Trajectory . 23

List of Figures
Figure 1. A representation of the typical life cycle of software extension tasks within the research environ-

ment . 11

Figure 2. A representative workflow among all actors in a software development workflow leveraging
GitHub features . 15

Figure 3. A typical continuous integration pipeline using GitHub features including distinct steps for test-
ing, compliance checking, and deployment . 18

Figure A.1. A screenshot of the software grading rubric developed for the WETO Software Stack and com-
pleted for the FLORIS software. This portion contains the Accessibility and Usability sections. 20

Figure A.2. A screenshot of the software grading rubric developed for the WETO Software Stack and com-
pleted for the FLORIS software. This portion contains the Documentation and Extendability sections. . . 21

Figure A.3. A screenshot of the software grading rubric developed for the WETO Software Stack and com-
pleted for the FLORIS software. This portion contains the Verification and Community Health sections. . 22

v

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

1 Introduction
Wind energy researchers share a passion for increasing the portion of wind energy in the global energy mix. The
U.S. Department of Energy (DOE) supports this mission in several ways, including allocating funding for various
types of wind energy research through the Office of Energy Efficiency and Renewable Energy (EERE) via the Wind
Energy Technologies Office (WETO). Though the traditional output of research is academic publication, software
has become a major focus over the past decade. Software tools in the research environment allow researchers to
describe an idea and quickly increase the scope and scale as they study it further. These tools represent a direct
pipeline from academic researcher to industry practitioner because they are the implementation of ideas described
in academic publications. Given its vital role in wind energy research and commercial development, the broad
research software portfolio supported by WETO—known as the WETO Software Stack or simply WETO Stack—
must maintain a minimum level of quality to support the transition to renewable energy. This report outlines a
series of best practices to be adopted throughout the WETO Software Stack as well as expectations that the
communities interacting with these projects should have of the developers and tools themselves.

The WETO Stack has a unique standing in the field of scientific software. There are varied stakeholders, some of
which include:

• EERE and WETO leadership

• National laboratory leadership

• Associated project principal investigators

• Research software engineers

• Wind energy researchers in academia, including graduate students, postdoctoral researchers, and national lab
staff

• Industry researchers and practitioners

• Commercial software developers

• The general public interested in wind energy.

Since the developers of the WETO Stack are also wind energy researchers, the tools are typically designed in a way
that closely reflects the application in which they are used. In addition, developer expertise and incentive are highly
variable, and often neither is aligned with modern software engineering or computer science.

Given the unique environment in which the WETO Software Stack is produced and consumed, it is critical for model
owners to understand the context of their software. The following questions can be asked in any given software
project to help model owners establish a framework for their software:

• What is its purpose?

• What is its role in the field of wind energy?

• What is the profile of the expected users?

• How long will it be relevant?

• What is the expected impact?

These questions allow model owners to identify the appropriate methods for the design, development, and long-
term maintenance of their software. In addition, the answers provide context for future planners to understand why
particular decisions were made and discern the consequences of changing course.

This report provides general and practical guidance for improving the accessibility, usability, and extendability of
the WETO Software Stack in relation to the considerations above. Accessibility is related to how the software is

1

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

obtained and integrated into workflows. Usability is concerned with how practitioners execute the software and cre-
ate and understand inputs and outputs. Extendability addresses how the software projects themselves are developed
further.

The guidance in this report is informed by (1) the authors’ experience in the management and development of the
WETO Software Stack, (2) input from groups producing wind energy software within the national labs, and (3)
external organizations and efforts to define the craft of research software engineering. These best practices aim to
make the collaborative development process efficient and effective while improving model understanding across
stakeholders. It is anticipated that the general adoption of a common framework for software quality along with
a mechanism for measuring progress (Appendix A) will ensure that end users of the WETO Stack can trust it and
accurately assess the risks to workflow integration.

2

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

2 Summary of Best Practices
Accessibility

• Barriers: Determine the barriers to entry for expected users and address accessibility accordingly. Automate
accessibility methods and processes so they are implicit in the software development process.

• Prerequisite knowledge: Identify target user profiles and anticipate their levels of understanding. Accurately
understand the complexity of the systems used to access the software, and evaluate whether this matches the
expected skills in target users. Note technical solutions can be augmented with documentation to address gaps
in prerequisite knowledge.

• Distribution: Provide a streamlined method of installation using common software distribution systems.

Usability

• User interface (UI): UIs should be predictable and adopt existing conventions for the contexts in which they
exist.

• Command line interface (CLI): If a CLI exists, it should be meaningful, predictable, and well documented.
Refer to contextual guidelines and conventions for flags, syntax, and functionality. At a minimum, provide
documentation via the help flag; extended documentation alongside examples and tutorials is helpful.

• Input and output files: Use a common file structure relevant to the type of data produced from a software, and
leverage the existing ecosystem of tools to pre- and post-process input and output files.

• Error messages: Identify an error messaging system that enables communicating to users without encumbering
the development process. Provide useful errors that include data, provide guidance for moving forward, and
help maintainers identify potential bugs.

• Metadata: Providing metadata to users requires minimal effort for developers, and it enables users to more
effectively share and compare data and get help. At a minimum, display version numbers, critical settings, and
dependency info.

Extendability

• Ease of development: How easily a project can be extended is critical to its viability as a long-term DOE-
funded project. Prioritize simplicity in architecture, dependencies, and toolchains. Create a development
environment balancing modern needs with stability.

• Code style: Strive to write code that external developers can easily read and comprehend with minimal preex-
isting context.

• Architecture and design: Adopt an explicit design process where the major ideas are chosen before any code is
written.

• Software design process: Create a parti diagram and list performance requirements for each level of fidelity in
the software. Establish methods to validate the design and implementation given knowledge of how a software
is ultimately used.

• Design patterns: Study existing design patterns and adopt a few, as needed. Refer to existing materials espe-
cially relevant to research software architecture.

• Version control: Craft a version control history that communicates the evolution of changes of the software to
future developers, including the author of current changes. Evolve the software in a logical, linear process with
digestible, easily reviewable changes.

• Collaborative workflows with GitHub: Treat GitHub as the home page of a software project, and develop the
planning and coordination activities as a first-order communication, signaling, and organizational mechanism
for the community of users.

3

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

• Pull requests (PRs): All components of a PR should be considered documentation for future reference and
an aspect of version control. PR reviews should be verbose, thorough, positive, and referential to guiding
documents.

• Continuous integration: Codify software quality by establishing automated systems to check and provide
feedback within the development process. Offload as many manual processes as possible and practical to the
continuous integration system.

4

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

3 Accessibility
Accessibility is concerned with how practitioners are expected to obtain and integrate software into their processes.
The product that is to be obtained is the executable version of the software. In the case of compiled programming
languages, this is a binary executable or library file, whereas interpreted languages typically require distributing the
source code directly.

For guidance on developer accessibility, see Extendability.

The technical approaches to address accessibility depend on the targeted users. To identify methods for improving
accessibility, first identify the expected users and anticipate their barriers to entry. Then, create processes and tech-
nical solutions to minimize these barriers. Finally, automate the processes so accessibility is implicit to the process
rather than dependent on developers remembering to meet these needs.

3.1 Prerequisite Knowledge
Using a computer in a scientific context is a learned skill and requires years of practice to become proficient. Tech-
nical words like “terminal,” “shell,” or “command prompt” are not universally intuitive, and that these three terms
are used interchangeably can lead to further confusion. This is an example of a barrier to entry often encountered by
early-career researchers and experienced practitioners alike. To improve accessibility, it is important to understand
the experience of users and design software to meet their needs.

Following are some examples of common barriers to entry:

• Navigating a “terminal”

• Knowledge of acronyms, jargon, or interchangeable phrases:

– Command line interface (CLI), application programming interface (API), integrated development envi-
ronment (IDE), and so on

– Compile, clone, check out

– Terminal vs. shell vs. command prompt

• Extensions: .exe, . so, . dll , . dylib

• Installation:

– Navigating package managers

– Downloading executable files

– Configuring an environment.

WETO Stack developers should identify target user profiles, including their levels of experience of understanding in
computing environments. Then, design the research software so it matches the expected level of expertise in users.
Note this is often an iterative process, and technical solutions are not always needed to address barriers to entry.
Explanatory documentation is a major resource in addressing ambiguity or inexperience in a particular technology.
Leverage existing tutorials where necessary; for example, a high-level overview of methods to use a terminal in the
context of a specific software project along with an accompanying link to a deep dive into terminal training can be
helpful.

3.2 Distribution
Elements of the WETO Software Stack often depend on third-party libraries, and many of these dependencies are
research software themselves. Therefore, the installation and environment configuration for this type of software
can easily become complex. Mature package managers are a great resource because they have a distribution system
already in place and manage dependencies between software tools. The ecosystem of open source software package
managers has coalesced around a few primary tools listed in Table 1.

5

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

Table 1. Common Package Managers in Research Software With Supported Operating Systems and Descriptions

Package Manager Operating System Description

Python Package Index (PyPI) Any Source and binary distribution package
manager for Python software

Conda Any Package, dependency, and environment
management for any language

Conda-forge Any A community-led collection of recipes,
build infrastructure, and distributions for
the conda package manager

Homebrew (brew) macOS, Linux The Missing Package Manager for macOS
(or Linux)

Spack macOS, Linux Package manager for supercomputers
supporting any language and distributable
product

APT Linux A user interface that works with core
libraries to handle the installation and
removal of software on Debian and
Debian-based Linux distributions

Fortran package manager (FPM) Any Fortran-specific executable and library
package manager

The process for including a package in a package management system varies, but all are designed to integrate with
automated systems to prepare and distribute the package automatically upon a given event. The practice of releasing
a software package after a tagged release (see Version Control) or requisite set of changes is called “continuous
distribution,” a component of “continuous integration.” See Continuous Integration: Automating Tests, Compliance,
and Delivery for details. Tools for this level of automation are ubiquitous, and a practical choice is GitHub Actions
(see Collaborative Workflows with GitHub).

6

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://pypi.org
https://docs.conda.io/en/latest/
https://conda-forge.org
https://brew.sh
https://spack.io
https://en.wikipedia.org/wiki/APT_(software)
https://fpm.fortran-lang.org/index.html

4 Usability
Usability is concerned with how practitioners are expected to execute the software, including creating inputs and
managing outputs. Though the content and promise of a particular software will bring users to it in the first place, the
ease of usability is responsible for keeping them engaged with the software. In this context, consider any user inter-
faces including messaging back to the user through errors as the “touch points” that should be optimized. Developers
should recall their own experience in using software including outside of the research environment. Contemporary
software consumers will generally choose the path of least resistance to accomplish a task even at the cost of access
to a more advanced feature.

4.1 User Interface
The UI is any mechanism through which users interact with the software, typically by providing inputs and receiving
outputs. Examples of UIs include the following:

• Graphical user interface (GUI)

• Web-based front ends

• Input and output files

• Command line interface

• Library APIs.

WETO Software Stack UIs should be well defined and predictable. They should adopt the conventions that already
exist in the environments and contexts in which they’re used. Most importantly, all user interfaces should be well
documented.

4.1.1 Command Line Interface

The command line interface, or CLI, is one type of front-end for software. It is the method by which a software is
executed via a computer’s terminal. WETO software should in general adhere to the following conventions and prin-
ciples for CLIs. However, these are guidelines and can be skipped when context is clear or another option improves
usability.

• Adopt command line syntax requirements from https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
V1_chap12.html

– Guideline 1: Utility names should be between two and nine characters, inclusive.

– Guideline 2: Utility names should include lowercase letters (the lower character classification) and digits
only from the portable character set.

– Guideline 3: Each option name should be a single alphanumeric character (the alnum character classifi-
cation) from the portable character set. The −W (capital-W) option shall be reserved for vendor options.
Multi-digit options should not be allowed.

– Guideline 4: All options should be preceded by the “−” delimiter character.

– Guideline 5: One or more options without option-arguments, followed by at most one option that takes
an option-argument, should be accepted when grouped behind one − delimiter.

– Guideline 6: Each option and option-argument should be a separate argument, except as noted in Utility
Argument Syntax, item (2).

– Guideline 7: Option-arguments should not be optional.

– Guideline 8: When multiple option-arguments are specified to follow a single option, they should be
presented as a single argument, using <comma> characters within that argument or <blank> characters
within that argument to separate them.

7

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html

– Guideline 9: All options should precede operands on the command line.

– Guideline 10: The first −− argument that is not an option-argument should be accepted as a delimiter
indicating the end of options. Any following arguments should be treated as operands, even if they begin
with the − character.

– Guideline 11: The order of different options relative to one another should not matter, unless the options
are documented as mutually-exclusive and such an option is documented to override any incompatible
options preceding it. If an option that has option-arguments is repeated, the option and option-argument
combinations should be interpreted in the order specified on the command line.

– Guideline 12: The order of operands may matter and position-related interpretations should be deter-
mined on a utility-specific basis.

– Guideline 13: For utilities that use operands to represent files to be opened for either reading or writing,
the − operand should be used to mean only standard input (or standard output when it is clear from
context that an output file is being specified) or a file named −.

– Guideline 14: If an argument can be identified according to Guidelines 3 through 10 as an option, or as a
group of options without option-arguments behind one − delimiter, then it should be treated as such.

• Adopt these minimum GNU conventions for command line interface flags

– A short version with one dash and a long version with two dashes

– −v / −−version to show version information

– −h / −−help to display help information

– −i / −−input for input file specification

– −o / −−output for input file specification

– −V / −−verbose to include additional output in terminal

– −q / −−quiet to suppress terminal output

• Use context-specific switches

– Unix terminal: − or −−

– Windows command prompt: /

– Python: − or −−

For Python software, using the standard argparse library automatically creates many of the flags listed. Extended CLI
documentation alongside tutorials and explanations of the software is helpful to attach meaning to the functionality
available via the CLI.

4.1.2 Input and Output Files

The ecosystem of tools for processing data files is vast and mature. Therefore, input and output files should adopt
a common file type and syntax relevant to the field and context of the software itself. For example, large datasets
generated by computational fluid dynamics software are often exported in HDF5 format because robust libraries are
available to export the data and load them into post-processing tools. Similarly, input files should retain a ubiquitous
human-readable format such as YAML because this allows users to generate input files programmatically using
standard libraries. Input and output files required by WETO software should adhere to the following conventions and
principles:

• Simple, clear, and predictable structure

• Expressive and concise

8

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://docs.python.org/3/library/argparse.html
https://www.hdfgroup.org/solutions/hdf5/
https://yaml.org

• Easy to produce and consume using ubiquitous software tools

• Minimal data consumption; for large datasets, option to split into smaller files or binary format

• Typical and predictable data types.

Following are file types with well-developed libraries for input/output in popular language ecosystems:

• JSON - JavaScript Object Notation; a common data structure used in web applications and in various comput-
ing environments

• YAML - YAML Aint Markup Language; not entirely but basically a human-readable version of JSON

• CSV - Comma separated values

• VTK - Visualization Tool Kit; a variety of file types and readers for different types of data

• HDF5 - Hierarchical Data Format; used for large, complex, heterogeneous datasets; HDF includes libraries for
reading and writing HDF files

• Plot3D - Data type for 3D structured grid data

• CGNS - CFD General Notation System

• Markdown - A markup language for text documents

• reStructured Text - A markup language for text documents.

4.2 Error Messages
Messaging to practitioners from within a software can be immensely helpful. At the same time, the infrastructure
for communicating messages can be burdensome to put into place. It is important to find a balance of appropriate
levels of messaging while also ensuring the messages themselves are up to date with the software features and
implementations. Too much messaging results in information overload, and critical messages can be lost in noise.
In addition, messaging is another developer responsibility and can be overlooked among the many responsibilities
during the development cycle.

Useful error messages have the following characteristics:

• Expect the reader does not have the context of the author

– Include a stack trace in all messages

– At minimum, include the calling function name

• Anticipate the needs of the reader

– What will they be thinking about when this error is shown?

– What will they need to do next?

• Include information that will help project maintainers understand the context of the problem

– Include metadata where relevant; see Metadata

– Include the value of data that are found invalid.

4.3 Metadata
Tracking metadata in software projects is a simple way to provide clarity to all users. This greatly improves usability
and has the added effect of improving the debugging process. This information can be provided to the user in any
structured output from the software. For example, output data files, reports, images, and so on can all include a

9

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://yaml.org
https://en.wikipedia.org/wiki/Comma-separated_values
https://examples.vtk.org/site/VTKFileFormats/
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsupport.hdfgroup.org%2Fdocumentation%2Fhdf5%2Flatest%2F_h5_d_m__u_g.html%23subsec_data_model_structure&data=05%7C02%7CStar.Brunton%40nrel.gov%7C796e05bc455e45c122f208dd0b132024%7Ca0f29d7e28cd4f5484427885aee7c080%7C0%7C0%7C638678898948247388%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=KtkkBUGPOaoU0G%2F91k0Pbaszs7q2crsOFlQNeb9lXZQ%3D&reserved=0
https://github.com/nasa/Plot3D_utilities
https://cgns.github.io/WhatIsCGNS.html
https://www.markdownguide.org/getting-started/
https://docutils.sourceforge.io/rst.html

snapshot of the metadata. The objective is to communicate information on the state of the software (version and
runtime), the state of the computing environment, and any user decisions.

The following fields are minimum metadata to include:

• Version number in semantic versioning format (MAJOR.MINOR.BUGFIX, i.e. v3.2.1)

• Execution time

• Compile info, if applicable

– Compiler vendor

– Compile time

– Compiler settings

• System information such as operating system (OS) and relevant hardware (i.e., accelerators) vendor

• Relevant settings enabled.

10

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://semver.org

5 Extendability
Extendability is concerned with how improvements such as new features, bug fixes, and general maintenance are
added to an existing software project. This covers both the technical aspects and the management of multiple devel-
opers and development efforts happening concurrently.

The life cycle of WETO Software Stack projects typically follows a pattern of funding, development, and release,
resulting in a recurring development workflow depicted in Figure 1. The “Maintenance” tasks are usually optional
and implicitly embedded in future development efforts. Therefore, it is critical to the life of all WETO Stack projects
to prioritize extendability so future funding opportunities are attractive to stakeholders and general maintenance and
infrastructure upgrades can be introduced with minimal overhead.

Research
& development

Verification

General use

Optional: Maintenance

Figure 1. A representation of the typical life cycle of software extension tasks within the research environment

This topic is closely tied to the need for communicating elements of design, and the objective is to ensure developers
can easily approach the project with minimal overhead required to align their computing environment, scope the
work, implement the changes, and verify the results.

A guiding principle on extendability is to use ubiquitous infrastructure. Mature and ubiquitous tools and libraries
come with formal and community-based documentation, ecosystems of tools such as IDE extensions, and insti-
tutional or cultural knowledge of their use and nuances that can be difficult and time consuming to create for spe-
cialized infrastructure. Common build systems such as CMake with the GNU or LLVM toolchains should be used
instead of the newest projects. Popular programming languages (Python, C++, Fortran) are more approachable than
specialized languages (Rust, Julia, Elixir) and enable a wider developer base. Software project managers should
strive to create a development environment balancing the need for modern tooling, modern developer expectations,
and stability.

5.1 Code Style
In the software development community, the word “grok” is often used (see usage in Hacker News, Lobsters, Stack-
Overflow) to suggest a high degree of understanding. This word is described by its creator as follows: (Source:
Wikipedia).

Grok means “to understand”, of course, but Dr. Mahmoud (...) explains that it also means, “to drink”
and a hundred other English words, words which we think of as antithetical concepts. “Grok” means all
of these. It means “fear”, it means “love”, it means “hate” – proper hate, for by the Martian “map” you
cannot hate anything unless you grok it, understand it so thoroughly that you merge with it and it merges
with you – then you can hate it. By hating yourself. But this implies that you love it, too, and cherish it
and would not have it otherwise.

That such a word exists and is widely used in software development illustrates the high value of clear and under-
standable code. The WETO Software Stack should avoid complexity where possible and favor readability over
writability. Strive to create software that can be easily grokked by developers who do not have the current context,
and remember that often these developers are domain experts rather than computer scientists.

The designers of the Python programming language consider readability a primary priority, and the most famous of
the many Python language-development documents is PEP 8, which proposes a style guide for Python code. PEP 8 is
summarized into 19 aphorisms (20 including one that’s implied) and is referred to as “The Zen of Python.” Much of
the WETO software portfolio is Python-based, so these guiding principles directly apply. However, these principles
are programming language agnostic and eloquently describe the paradigm for developing extendable software.

11

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://hn.algolia.com/?q=grok
https://lobste.rs/search?q=grok&what=stories&order=newest
https://stackoverflow.com/search?tab=newest&q=grok&searchOn=3
https://stackoverflow.com/search?tab=newest&q=grok&searchOn=3
https://en.wikipedia.org/wiki/Grok
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0020/

5.1.1 The Zen of Python

In an interactive Python interpreter (REPL, or run-execute-print-loop), typing

import this

prints the Zen of Python:

The Zen of Python , by Tim P e t e r s

B e a u t i f u l i s b e t t e r t h a n ug ly .
E x p l i c i t i s b e t t e r t h a n i m p l i c i t .
S imple i s b e t t e r t h a n complex .
Complex i s b e t t e r t h a n c o m p l i c a t e d .
F l a t i s b e t t e r t h a n n e s t e d .
S p a r s e i s b e t t e r t h a n dense .
R e a d a b i l i t y c o u n t s .
S p e c i a l c a s e s aren ' t s p e c i a l enough t o b r e a k t h e r u l e s .
Al though p r a c t i c a l i t y b e a t s p u r i t y .
E r r o r s s h o u l d n e v e r p a s s s i l e n t l y .
Un l e s s e x p l i c i t l y s i l e n c e d .
I n t h e f a c e of ambigu i ty , r e f u s e t h e t e m p t a t i o n t o g u e s s .
There s h o u l d be one −− and p r e f e r a b l y on ly one −− o b v i o u s way t o do i t .
Al though t h a t way may n o t be o b v i o u s a t f i r s t u n l e s s you ' r e Dutch .
Now i s b e t t e r t h a n n e v e r .
Al though n e v e r i s o f t e n b e t t e r t h a n * r i g h t * now .
I f t h e i m p l e m e n t a t i o n i s ha r d t o e x p l a i n , i t ' s a bad i d e a .
I f t h e i m p l e m e n t a t i o n i s eas y t o e x p l a i n , i t may be a good i d e a .
Namespaces a r e one honking g r e a t i d e a −− l e t ' s do more of t h o s e !

5.2 Architecture and Design

“If you think good architecture is expensive, try bad architecture.”

— Brian Foote and Joseph Yoder in Clean Architecture: A Craftsman’s Guide to Software Structure and
Design1

In the development of any complex system, the design and its implementation are either explicit or implicit. Ex-
plicit design involves identifying relationships between modules, composition of data structures, and flow of data
prior to writing code, whereas an implicit design evolves during the process of writing new code. For the WETO
Software Stack, an explicit design process is critical to allowing projects to grow beyond a single developer, and the
consequence of an implicit design process is the common case of technical debt.

5.2.1 Software Design Process

Primarily, an explicit design process involves identifying the fundamental principles of a particular design — how it
is expected to function in various aspects. This process should result in two statements:

1. The parti, a description of the fundamental, driving design intent as a brief text (one or two sentences) or a
simple diagram

2. A list of requirements that the parti and its implementation should satisfy.

The parti is the abstract objective, and the list of requirements are the criteria to verify the implementation satisfies
the parti. In other words, these are the tests for the design. Upon establishing this information, it should be codified
into a design document and style guide that are made publicly available to all developers such as in online documen-
tation.

1Martin, Robert. 2017. Clean Architecture: A Craftsman’s Guide to Software Structure and Design. Prentice Hall.

12

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://en.wikipedia.org/wiki/Parti_(architecture)

There are various levels of fidelity to consider when designing a software system:

• Level 0: Syntax and code style

• Level 1: Function scope, function signatures

• Level 2: Module composition

• Level 3: System composition.

Each should be addressed individually but referring to one another. For example, having a major design driver to
limit complexity at Level 3 can be negated if complexity is allowed at Level 0. However, the definitions of complex-
ity at these levels are entirely different and should be directly defined.

“Architecture is a hypothesis that needs to be proven by implementation and measurement.”

— Tom Gilb in Clean Architecture: A Craftsman’s Guide to Software Structure and Design2

Though having an explicit design process is important, it is not required to adhere to a chosen design at all cost.
Throughout the development of a software, the architecture and design should be regularly revisited and reevaluated
given the new knowledge acquired during implementation. How a software is ultimately used and the problems faced
cannot be known at design time, so developing a process for design validation is required.

5.2.2 Design Patterns

The software engineering community has created a wide range of design patterns to address specific design prob-
lems. These are often used as a reference for creating a specific architectural design, and they often focus on fidelity
levels 1 and 2. Multiple design patterns can even be pieced together to create a high-level monolithic architecture.
The benefits of adopting an existing design pattern are as follows:

• The methods to describe the design pattern to new developers are already established.

• Teams can work with the architecture in the abstract to develop their concrete customized implementation.

• Ecosystems of third-party tools exist to leverage some of the common design patterns.

• Some patterns can be easily replaced by others in situ.

Though software architecture and software design patterns are entire fields of knowledge, many resources exist to
teach common methods. Following are a few in-depth references specifically relevant to WETO-supported research
software:

• Clean Architecture: A Craftsman’s Guide to Software Structure and Design

• IDEAS-ECP HPC Best Practices Webinar: Software Design Patterns in Research Software with Examples
from OpenFOAM

• Architecture of Open Source Applications Volume 1 and Volume 2

5.3 Version Control
Version control, typically with git, is a tool for tracking the evolution of a project change by change establishing a
history of changes. Each change, called a “commit,” is itself a version of the software, and, collectively, the changes
provide a snapshot of thought processes and progression of work.

Version control with git can seem like simply a mechanism to “save” the state of a document, and it is easy to rel-
egate this process to a secondary concern in the development process. However, it carries far more meaning in the
context of software extendability. Because the git system is decentralized, it allows multiple developers to make
changes to a project concurrently. Git also provides a mechanism for resolving differences so multiple changes can
be merged together easily.

2Martin, Robert. 2017. Clean Architecture: A Craftsman’s Guide to Software Structure and Design. Prentice Hall.

13

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://en.wikipedia.org/wiki/Software_design_pattern#Classification_and_list
https://books.google.com/books/about/Clean_Architecture.html?id=uGE1DwAAQBAJ&source=kp_book_description
https://www.youtube.com/watch?v=UWmkj-9SdAI
https://www.youtube.com/watch?v=UWmkj-9SdAI
https://aosabook.org/en/#aosa1
https://aosabook.org/en/#aosa2
https://git-scm.com

In addition to the content of changes themselves, the connectivity between changes over the lifetime of a project is
meaningful. The connectivity between commits is structured as a directed acyclical graph (DAG). Each commit has a
parent, and each parent can have multiple children. This provides a mechanism for easily and accurately rolling back
to the state of the project at any time in history.

To best leverage the power of git to enable extendability, consider the following guidelines:

• It is reasonable to spend time crafting each commit and a sequence of commits.

• Each commit should optimize for readability in both the content of the changes and the message:

– Keep changes within an easily communicated scope.

– Avoid the temptation to mix formatting changes with algorithmic changes.

– More smaller commits are generally better than fewer large commits.

• Practice editing a series of commits to ensure the progress of work is captured accurately.

• Consider whether the commit history is concise and readable to people who are not the authors.

• Become familiar with the following actions:

– Interactive rebase,

– Cherry-pick,

– Squash,

– Edit a commit message.

• Commit messages should be short, and it is a convention to limit them to fewer than 50 characters.

• An additional line can be included as a longer description of the commit beneath the 50-character line. The
second line is typically limited to 70 characters, but it is considered reasonable to use as much space as
needed.

5.4 Collaborative Workflows with GitHub
The processes through which developers interact with a software and other developers is an essential component
of extendability. These processes should generally strive for efficiency while minimizing overhead. Automated
processes are better than manual processes, and objective is better than subjective. The majority of collaborative
software development processes occur on the GitHub platform, and automated processes leverage GitHub’s free
cloud-based resources.

GitHub and git (see Version Control) are tightly connected, but they are different systems and serve different pur-
poses in the development process. Git is a version control system for tracking and merging changes to a software.
GitHub is a platform for orchestrating and coordinating the various processes that happen around the development
cycle. GitHub activities add context on top of the individual changes captured in commits. Whereas commits often
capture low-level information, GitHub activities can map the low-level details to high-level efforts. GitHub provides
extensive training material for git as well as GitHub features.

The primary GitHub features are described next, and a typical sequence of events across these features is dia-
grammed in Figure 2.

• Actions: This is a full-featured cloud computing environment that is typically used for automating software
quality processes such as running tests, compiling software for release and distribution, and compiling and
deploying online documentation.

• Discussions: This is typically the starting point for any collaboration. Create a discussion topic and engage
with other model stakeholders to define the idea and develop a proposed implementation.

14

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://github.com
https://docs.github.com/en/get-started/quickstart/git-and-github-learning-resources
https://github.com/features/actions
https://docs.github.com/en/discussions

• Issues: Document the proposed solution to a problem or implementation of a new feature as outlined in the
corresponding Discussion. Finalize the description and outline test cases to verify the idea.

• Projects: Collect Issues, Pull Requests, and generic cards to establish a relationship across all ongoing works
in progress. This is typically most useful for large development efforts and prioritizing work for upcoming
releases.

• Pull Requests: Pull Requests are a request to accept a change into a branch. This typically happens across
forks of a repository, but it can also happen between branches of the same fork. During the implementation of
an Issue, open a pull request to communicate work is ongoing. This is also the venue for code reviews.

• Releases: Several accepted pull requests can be aggregated to comprise one release, and this is listed in a
project’s GitHub Releases page along with release notes to describe the changes and communicate relevant
details.

MaintainerDeveloperCommunity

MaintainerDeveloperCommunity

loop [Design Discussion]

loop [Implementation & Review]

Create Discussion describing a gap or feature
1

Feedback
2

Feedback
3

Propose implementation
4

Open an Issue to finalize proposal
5

Include Issue in a Project
6

Submit a Pull Request
7

Provide code review feedback
8

Merge Pull Request
9

Figure 2. A representative workflow among all actors in a software development workflow leveraging GitHub features

The combination of git and GitHub provides a powerful mechanism to capture design intent, factors that lead to
particular decisions, and the evolution of a project for future reference. It is important to carefully craft the messages
to avoid washing out information with noise. Consider the following guidelines when engaging on GitHub:

• Descriptions of any activity should be well scoped and easily understandable.

• Pictures really are worth 1,000 words. Include a diagram, plot, screenshot, or picture when it will add clarity.

15

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases

• Prefer actual text over screenshots of text. GitHub is searchable, so text provides more searchable content
whereas screenshots do not. In addition, text-based code snippets can be copied easily by other users.

• Establish a practice of assigning responsibility to a core team member for each Issue and Pull Request to avoid
ambiguity about how these will be addressed.

5.5 Pull Requests
A pull request, or PR, is a request to merge a particular set of code changes into another instance of the software,
typically an agreed upon “main” version. Pull request descriptions should include contextual information regarding
the code change. The objective is to convince reviewers and maintainers the new code is in a good state and that its
inclusion would be a benefit to the project. This typically involves a contextual description of the change, an expla-
nation of why the change is valid, and an overview of the tests added to the test suite to demonstrate and exercise the
new code.

The size and scope of a pull request should be chosen so it is both easy to explain and easy to review. It is common
to create many pull requests in the development of a single feature because this process enables periodically syncing
forks or branches and supports milestones or periodic check-ins throughout development. The primary objective is to
optimize for readability in the pull request description as well as the code changes themselves.

Consider pull request titles and descriptions as documentation that will be relevant to future developers. When a
pull request is merged, it can either be combined into one commit (squash and merge) in the destination branch or
included through a merge-commit. The former does not maintain the commit history of the working branch whereas
the latter does. The squash-and-merge approach is often preferred by project maintainers because of its simplicity,
and in this case the title of the pull request becomes the commit message. Because merging the pull request directly
affects the commit history of the destination branch, the review and merge process should also follow the Version
Control guidelines. Finally, the release process through GitHub Releases can automatically construct release notes
from the title of all pull requests merged since the previous release.

Though the details of workflows around defining, designing, and implementing new development efforts should be
identified explicitly following the guidance in Collaborative Workflows with GitHub, pull requests, in practice, are
often a good place to iterate collaboratively on the design and implementation details. Pull request reviews should
have the following characteristics:

• Be very verbose with efficient but specific and complete feedback

• Be constructive rather than destructive; blame (negative) is nearly always irrelevant, and credit (positive) is
nearly always appreciated

• Call out good ideas as well as bad ideas

• Include snippets of code to exercise portions of the changes

• Include plots or graphics showing the impact of the changes

• Refer to precedent or contextual conventions

• Refer to design documentation and style guides.

The GitHub Pull Request Review documentation provides a detailed guide on using the various features to suggest
and integrate code review feedback.

5.6 Continuous Integration: Automating Tests, Compliance, and Delivery
The term continuous integration, or CI, is often used to refer to any of the many automated systems that support
software quality. In its essence, continuous integration refers to the practice of deploying a change in the code di-
rectly into the production or released version. This practice is enabled by constructing a system of quality check
infrastructure that gives maintainers the confidence to accept a change and release immediately. The “continuous”
aspect refers to the automated nature of the quality check systems. Ideally, full continuous integration requires that

16

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/incorporating-feedback-in-your-pull-request

all characteristics and potential impacts of a code change are tested and validated automatically and without human
input, such as the following:

• Requiring new code is covered by unit tests, integration tests, and regression tests

• Checking impacts to computational cost (speed) are within a threshold

• Checking memory impacts are within a threshold

• Validating documentation changes and functionality

• Linting for code syntax.

It can be helpful to break the topic of CI into three general areas:

• Continuous testing (CT)

• Continuous compliance (CC)

• Continuous delivery (CD).

Continuous testing is established by adopting a testing framework and ensuring all new code is well tested. Though
automatically testing the quality of tests may be impractical, it is simple and helpful to automatically check the
quantity of tests to ensure new code is covered. For the sake of a user-friendly CT pipeline, consider grouping tests
into categories that can be run in parallel by the automated system. Also, minimize the time required to execute the
test suite so developers get the automated feedback as soon as possible.

Continuous compliance is related to automatically checking for code style, complexity, existence of docstrings or
other types of documentation, and any other requirements that describe aspects of the code itself. A common method
is to use a linter for the programming language used. Most linters are highly configurable and so can be tailored to
the needs and style of the development team. This step typically happens very quickly, so execution time is usually
not a concern.

Continuous delivery handles how the software is exported to users for consumption. For web-based software, this
involves deploying to a server, whereas modeling and analysis libraries are typically delivered via package managers
or compiled binaries. The continuous aspect of CD refers to the practice of automatically pushing the “released”
product upon any change to the primary branch or via a periodic semi-automated release process.

All aspects of CI contribute to the quality of a software project, and a full ecosystem of open source, freely available
infrastructure is available to address them all. Ultimately, though, the true beneficiaries of CI pipelines are the devel-
opers and maintainers because major portions of quality enforcement and distribution are automated. Without this
infrastructure, code reviews can be prohibitively time consuming and error prone, and the release process can take
hours or days. By committing to the initial investment and regular maintenance, computers handle these detailed and
repetitive tasks.

Given the inherent challenges in managing groups of people with various software development styles and opinions,
establishing the automated systems described here can help align expectations around minimum standards for ac-
ceptance of code while reducing the burden on a project’s “benevolent dictator” or gatekeeper. It is recommended to
establish these processes at the onset of a software project and continuously adjust as needed.

For reference, a typical CI pipeline for a Python package is shown in Figure 3 where the square components are
GitHub Actions steps.

17

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

Figure 3. A typical continuous integration pipeline using GitHub features in-
cluding distinct steps for testing, compliance checking, and deployment

18

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

Appendix A. WETO Software Stack Grading Rubric
Derived from this best practices document, researchers at the National Renewable Energy Laboratory (NREL) have
developed a rubric for grading software projects. The objective is to provide a common mechanism and process for
evaluating the following aspects of WETO Software Stack development efforts:

• Statement of objectives and whether they are met

• Accessibility and usability for the target audience

• Maintenance burden for WETO and the associated national labs

• Impact within the wind energy community.

For reference, a screenshot of the software grading rubric completed for the FLORIS software is shown in Figures
A.1, A.2, and A.3.

This software grading system is intended to be used by model owners, national lab program managers, and WETO
program managers. For model owners, the rubric is a tool for self-evaluation to identify where resources should be
allocated within their projects. For national lab program managers, the rubric provides a method for coordinating
the various software within a given topic area. At the highest level, WETO program managers use the rubric to get a
broad overview of the quality of software projects as they relate to each other and the entire portfolio.

The software grading rubric is structured as a set of criteria categorized into software quality topics in a Microsoft
Excel spreadsheet. Each criterion is assigned a rating or designated as “not applicable.” A dark-to-light color gra-
dient rating system corresponds to low, medium, and high levels of satisfaction for that particular criterion. Since
the priorities and needs of a particular software change as a function of the maturity level, current funding, target
audience, size of the user base, and level of impact, a priority level is associated to each criterion to function as a
weighting of importance.

The topic areas currently included are:

• Accessibility

• Usability

• Documentation

• Extendability

• Verification

• Community Health.

In this system, most software projects will have a range of scores, and low or high are not necessarily good or bad.
Instead, they are a holistic measure of software maturity and quality across the portfolio.

19

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

Figure A.1. A screenshot of the software grading rubric developed for the WETO Software Stack and
completed for the FLORIS software. This portion contains the Accessibility and Usability sections.

20

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

Figure A.2. A screenshot of the software grading rubric developed for the WETO Software Stack and com-
pleted for the FLORIS software. This portion contains the Documentation and Extendability sections.

21

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

Figure A.3. A screenshot of the software grading rubric developed for the WETO Software Stack and com-
pleted for the FLORIS software. This portion contains the Verification and Community Health sections.

22

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

Appendix B. RSEs: The Engineers Behind Research Software
Research software exists in a unique environment where the majority of users and developers share expertise within
a specific field, and funding mechanisms are often tied to results from using the software rather than to the software
itself. Because of these nuances of the research software environment, the incentives to create high-quality software
are often misaligned with the career incentives for the engineers creating the software. Without the appropriate
incentives, the best practices listed in this report will not gain adoption, and the WETO Software Stack will suffer in
all of the areas listed. For the sake of the WETO software portfolio and the researchers working in these groups, it is
important to directly consider the needs and expectations of the people responsible for designing and implementing
research software projects.

The term research software engineer (RSE) is defined by the UK-RSE Society as follows:

A Research Software Engineer (RSE) combines professional software engineering expertise with an
intimate understanding of research.

While all modern research typically involves using research software, it is common for researchers to focus skill
development on either the research domain or the computational considerations involved in implementing the re-
search in software. The research environments in academia and government labs are often structured to incentivize
academic publication, so the resulting teams are commonly made up of mostly domain researchers and a minority of
research software engineers. The domain researchers inform the needs of the research software and are the primary
users. The RSEs design and develop the software systems as well as manage various information technology (IT)
responsibilities for the group such as creating computer-based workflows, managing data, constructing web-based
research artifacts, and training colleagues on best practices in research computing.

In this context, note the difference between computer science and software engineering (both descriptions taken from
Wikipedia):

• Computer science is the study of computation, information, and automation. Computer science spans theo-
retical disciplines (such as algorithms, theory of computation, and information theory) to applied disciplines
(including the design and implementation of hardware and software).

• Software engineering is an engineering-based approach to software development. A software engineer is a
person who applies the engineering design process to design, develop, maintain, test, and evaluate computer
software. The term programmer is sometimes used as a synonym, but may emphasize software implementation
over design and can also lack connotations of engineering education or skills. Engineering techniques are
used to inform the software development process, which involves the definition, implementation, assessment,
measurement, management, change, and improvement of the software life cycle process itself.

B.1 RSE Value Recognition
Writing code and designing software systems are entirely different things, and the latter must be recognized relative
to the value it adds to the research process. Software design and software architecture are complicated topics covered
in text books, courses at top universities, and academic publications. The process of creating a software system
given various requirements is a design process. It involves stating requirements, iterative design, and validation
and verification of the design. It can take years to fully accomplish a design objective, and at the same time the
landscape of computers and software development is constantly changing. In addition, software is rarely created by
one person, so RSEs must manage multiple contributors making changes simultaneously while also striving to meet
the needs of the project. Therefore, consider it a best practice within the context of the WETO Stack to recognize the
contributions and value of RSEs within the labs. Avoid trivializing software design as “programming.” Many RSEs
have engineering or science degrees, so treat their work as engineering or science.

B.2 Career Growth and Trajectory
In addition to acknowledgment of work and value added, it is important to provide meaningful career guidance to
RSEs to both serve their personal goals and ensure the projects have well-rounded contributors. RSEs should have
some level of domain experience; that is, they should use as well as develop their software. RSEs should know the

23

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

https://society-rse.org/about/
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Software_engineering
https://www.amazon.com/s?k=software+design&i=stripbooks&crid=2L9GNOIMWHMFD&sprefix=software+design%2Cstripbooks%2C166&ref=nb_sb_noss_2
https://web.stanford.edu/~ouster/cs190-winter23/
https://www.researchgate.net/search.Search.html?query=software+architecture&type=publication&subfilter%5BpublicationType%5D=article%2Fbook&subfilter%5BstartYear%5D=2022

context in which their software exists. They should be experts in the implementation and very good in the usage. A
characteristic career trajectory within the national lab environment may progress along the following phases:

1. Implement models, develop tests and documentation

2. Co-author analyses, improve modeling, inform work plans

3. Lead author analyses, guide future development efforts, write work plans

4. Propose new work, seek funding to expand the software project

5. Inform center-wide software culture and practices.

In general, the amount of code written by an RSE should peak around Phase 2 or Phase 3 and then taper off. The
responsibility for creating software should not be entirely removed, but the majority of involvement in software
development should be code review, design, and project planning. As in any career advising, the details should be a
discussion between the RSE, their direct manager, and the center or lab leadership.

24

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications

	 Executive Summary
	1 Introduction
	2 Summary of Best Practices
	3 Accessibility
	3.1 Prerequisite Knowledge
	3.2 Distribution

	4 Usability
	4.1 User Interface
	4.1.1 Command Line Interface
	4.1.2 Input and Output Files

	4.2 Error Messages
	4.3 Metadata

	5 Extendability
	5.1 Code Style
	5.1.1 The Zen of Python

	5.2 Architecture and Design
	5.2.1 Software Design Process
	5.2.2 Design Patterns

	5.3 Version Control
	5.4 Collaborative Workflows with GitHub
	5.5 Pull Requests
	5.6 Continuous Integration: Automating Tests, Compliance, and Delivery

	Appendix A WETO Software Stack Grading Rubric
	Appendix B RSEs: The Engineers Behind Research Software
	B.1 RSE Value Recognition
	B.2 Career Growth and Trajectory

