
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

  

Technical Report  
NREL/TP-7A40-89587  
November 2024 

Average and Marginal Capacity Credit 
Values of Renewable Energy and 
Battery Storage in the United States 
Power System 

An Pham, Wesley Cole, and Pieter Gagnon 

National Renewable Energy Laboratory 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Technical Report  
NREL/TP-7A40-89587  
November 2024 

Average and Marginal Capacity Credit 
Values of Renewable Energy and 
Battery Storage in the United States 
Power System 

An Pham, Wesley Cole, and Pieter Gagnon 

National Renewable Energy Laboratory 

Suggested Citation 
Pham, An, Wesley Cole, and Pieter Gagnon. 2024. Average and Marginal Capacity Credit 
Values of Long-term Planning for Renewable Energy and Battery Storage in the United 
States Power Systems. Golden, CO: National Renewable Energy Laboratory. NREL/TP-
7A40-89587. https://www.nrel.gov/docs/fy25osti/89587.pdf.  

https://www.nrel.gov/docs/fy25osti/89587.pdf


 

 

NOTICE 

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding 
provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Strategic Programs 
Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


2 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Acknowledgments 
This work was supported by the US Department of Energy under Contract No. DE-AC36-
08GO28308 with Alliance for Sustainable Energy, LLC, the Manager and Operator of the National 
Renewable Energy Laboratory. Funding provided by the US Department of Energy Office of 
Energy Efficiency and Renewable Energy Strategic Analysis Team. 



3 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

List of Acronyms 
CAISO California Independent System Operator 
DOE U.S. Department of Energy 
EGU Energy generating unit(s) 
ELCC Effective load-carrying capability 
ERCOT Electric Reliability Council of Texas 
FRCC Florida Reliability Coordinating Council 
IRA Inflation Reduction Act of 2022 
ISO Independent System Operator 
ISONE Independent System Operator of New England 
MISO Midcontinent Independent System Operator 
MW Megawatt 
MWh Megawatt-hour 
LDC Load duration curve 
NLDC Net load duration curve 
NYISO New York Independent System Operator 
PJM Pennsylvania-New Jersey-Maryland Interconnection 
PV Photovoltaic(s) 
ReEDS Regional Energy Deployment System 
RTO Regional transmission organization 
SERTP  Southeastern Regional Transmission Planning 
SPP Southwest Power Pool 
VRE Variable renewable energy 
 



4 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Abstract 
As deployment of variable renewable energy technologies and storage continue to significantly 
grow in the coming decades, these technologies will play increasingly important roles in 
maintaining the power systems’ resource adequacy. Few analyses so far offer comprehensive 
comparisons of forward-looking average and marginal capacity credits of variable renewable 
energy and storage in the U.S. across a wide range of possible futures. To fill this research gap, 
we estimate the average and marginal capacity credits of solar photovoltaics (PV), onshore and 
offshore wind, and battery storage between 2026 and 2050 across the contiguous U.S power 
system to examine the temporal trends, spatial patterns, and trade-offs between these two 
capacity accreditation approaches. Across technologies, capacity credits of solar PV most clearly 
follow downward trends over time, reflecting the significant rise in solar PV generation share in 
the projected future of the U.S. grid. While battery storages’ generation shares also rise 
significantly over time, their capacity credits remain high due to their capabilities to be 
dispatched strategically during critical periods. On the other hand, capacity credits of wind 
technologies in general follow slight upward trends. There are strong spatial variabilities of both 
average and marginal capacity credits across technologies, with capacity credits of solar PV 
displaying the most obvious spatial patterns with high values concentrating in wind-rich, solar-
poor regions in SPP, PJM, and MISO, suggesting potential resource adequacy benefits of 
interconnection-wide planning for renewable energy deployments. Additionally, except for 
offshore wind, average capacity credits of all other renewable technologies tend to be higher than 
their marginal capacity credits, indicating that existing renewable resources tend to be accredited 
higher than new resources. 

  



5 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

1 Introduction 
The rate of global variable renewable energy (VRE) capacity additions has grown by almost 50% 
since 2022 and the total amount of capacity is on track to increase by 2.5 times by 2030 [1]. In the 
United States, declining capital costs of renewable energy [2–4] and climate policies such as the 
Inflation Reduction Act [5], and state-level renewable portfolio standards [6] have been major 
catalysts for significant growth in deployments of VRE and energy storage in the last few years. 
These policies, when paired with cost declines, are shown in multiple energy systems models to 
continue incentivizing large-scale increases in VRE and energy storage deployments in various 
possible scenarios in the coming decades [7]. In the United States, most new generation capacity 
is expected to be from VRE technologies and battery storage [8]. 

As VRE and energy storage capacities continues to grow, understanding their possible contribution 
to maintaining the power system’s resource adequacy becomes increasingly important. Resource 
adequacy refers to the capability of a system’s supply-side and demand-side resources to maintain 
the system’s electricity services at any given time. Because VRE is inherently variable and 
uncertain, understanding how this growing VRE capacity could contribute to resource adequacy 
can be challenging. Additionally, VRE is spatially dependent, as resource quality can vary widely 
across a given geography. These aspects pose a challenge in appropriately quantifying the 
contribution of VRE, indicated by its capacity credit, to resource adequacy across time, planning 
regions, and technologies. 

Capacity credit is a widely used metric in power systems planning to capture what fraction of an 
energy resource’s nameplate capacity can be reliably expected to contribute to meeting demand 
during critical periods and thus maintain the power system’s resource adequacy. Capacity credit 
generally ranges between 0 and 11, with 0 (0%) capacity credit meaning the resource has zero 
contribution to the system’s resource adequacy and 1 (100%) capacity credit meaning all the 
resource’s nameplate capacity contributes to the system’s resource adequacy. Because of the 
importance of capacity credits in grid planning and policy-making at the state-, utility-, and 
regional transmission organization (RTO)-levels [9–13], it is useful to accurately quantify VRE 
capacity credits to avoid under- or over-planning for infrastructure and VRE deployment and thus 
minimize the costs of meeting system’s reliability needs [14]. Quantification of VRE’s capacity 
credits has been an ongoing research topic with different proposed methods resulting in different 
credit values [15]. So far, the effective load-carrying capability (ELCC) has been the a commonly 
recommended method to estimate VRE resources’ capacity credits due to its probabilistic 
treatment of phenomena such as forced outages and VRE generation variability [12,15,16]. ELCC 
can be implemented in two different ways – the average ELCC, which estimates the average 
contribution of an existing generator or generators to system’s resource adequacy, and the marginal 
ELCC, which estimates new resource’s incremental contribution to system’s resource adequacy. 
These two types of ELCC reflect different information (what is the contribution of what already 
exists versus what would be the contribution of something new) and can have very different 
estimates of capacity values for the same resource. Given this, decision makers should ensure they 
are selecting the right metric for the decision at hand [17–19]. For example, using an average 

 
1 It is also technically possible for capacity credit to be greater than 1, if the generator is expected to generate 
beyond its nameplate capacity during critical times, although such a situation is not common and not explored 
further in this report.  
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ELCC to anticipate the contribution of a new resource may overestimate its contribution when that 
resource has a declining marginal ELCC, as has been seen for solar PV [20].    

Calculations of ELCC for VRE and storage has been extensively researched, in both proposed 
mathematical methods to estimate ELCC [21–28], as well as applications of ELCC calculation 
methods in analysis of real-life power systems [15,16,29–33]. However, few studies explore wide-
scale ELCC of both solar PV and wind across large power systems [15,16]. Ssengonzi et al. [15] 
calculate ELCC for solar PV and wind resources across regions in the U.S. with different levels of 
VRE penetrations. They show the consistent declining trends of ELCC at higher levels of VRE 
penetrations corresponding with lower capacity factors across regions and technologies. Bromley-
Dulfano et al. [16] calculate solar PV and wind ELCC across five regions in the Western 
Interconnection and find strong spatial variabilities for both solar PV and wind ELCC. They also 
emphasize the role of storage in increasing ELCC and decreasing spatial variability.  

While studies that quantify multi-regional VRE ELCCs offer valuable insights into spatial 
variability of VRE contributions to resource adequacy to aid long-term planning, they share a few 
key gaps that this report can address.  

First, prior studies focus on estimating average ELCC, not marginal. To date, we have found no 
analysis that compares the applications of average and marginal ELCCs across time and regions 
in interconnection-wide power systems. A more narrow comparison of  average and marginal 
ELCCs has been performed from Aagaard and Kleit [34], which uses an analytical economic 
model to compare the impacts of average and marginal ELCCs of solar PV and fossil fuel resources 
on a hypothetical capacity market. They find that using marginal ELCC as a metric to measure the 
capacity values of the resources results in less market distortion than using average ELCC. In this 
work, we build on the nascent literature that compares marginal and average capacity credits by 
comprehensively examining marginal and average capacity credits of VRE and battery storage 
under a wide range of scenarios at high temporal and spatial resolutions.  

Second, few studies focusing on application of capacity credits in power system planning have 
explicitly quantified the capacity credits of energy storage [35–37]. As its capital costs are 
declining [38,39], energy storage has increasing potential to contribute to system’s resource 
adequacy, which makes quantification of their capacity credits more useful for power system 
planning. To contribute to this strand of literature, this study offers a more comprehensive analysis 
of average and marginal energy storage capacity credits under a wide range of scenarios across the 
contiguous U.S power system.  

Finally, studies that quantify capacity credits of VRE over a long-time horizon, considering the 
possible evolutions of the future grids, are rare (e.g., [40]). Given the future changes in electricity 
demand, costs, resource availabilities, policies, and decarbonization targets, it is helpful to 
comprehensively capture how VRE capacity credits would change over time in response to the 
changes in the grids’ infrastructures as well as to changes in deployment of VRE in other regions. 
We expand on previous works that explore forward-looking VRE capacity credits by examining 
capacity credits of a wide range of classes of VRE and storage across the U.S over the next few 
decades. 
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As discussed above, this study fills research gaps in the literature on the application of VRE and 
energy storage ELCC on the power systems to inform long-term planning. We use the Regional 
Energy Deployment System Model (ReEDS), a capacity expansion model, to estimate the average 
and marginal capacity credits of solar PV, wind, and battery storages at a high temporal and spatial 
resolution across the U.S. power system. Specifically, we use the outputs of the 2023 Standard 
Scenarios [41], simulated using ReEDS2, as a source for this report’s capacity credits. As explained 
more in the following methodology section, the ReEDS model estimates capacity credits using a 
load duration curve method (instead of calculating probabilistic ELCC). Previous studies have 
shown that the VRE ELCC values calculated using approximation-based method can capture 
ELCC values calculated using probabilistic method [15,27,42,43], with mean absolute error of less 
than 0.05 [15]. Using this simplified method of calculating ELCC allows us to quantify a wide 
range of VRE’s and storage’s average and marginal capacity credits across time and space, as well 
as examine how these capacity credits vary under different levels of VRE deployment, driven by 
uncertainties in future policies, costs, and resource availabilities. The wide range of sensitivities 
from the Standard Scenarios help us quantify the robustness of our results under future system 
uncertainties. To support more future long-term forward looking ELCC analysis, we also report 
and make available these approximated ELCC values as a publicly available dataset.  

2 Methodology 
2.1 Regional Energy Deployment System (ReEDS) Model 
The Regional Energy Deployment System (ReEDS) Model is a mathematical linear programming 
model of the U.S. power sector developed by the National Renewable Energy Laboratory (NREL) 
[44–46]. ReEDS minimizes total system costs by optimizing new capacity deployment of energy 
generating units (EGUs) and transmission lines, dispatch of new and existing EGUs, retirements 
of existing EGUs, and inter-regional electricity flows at each model year. ReEDS includes a wide 
range of system-level and EGU-level constraints, including resources availability, clean energy 
policies, and the EGU’s engineering and economic characteristics. Like many other macro-scale 
capacity expansion models [47–50], ReEDS runs myopically in sequential timesteps for a fixed 
planning horizon period. ReEDS is used to generate outputs for the 2023 Standard Scenarios [41], 
which we use to analyze the temporal and spatial patterns of average and marginal ELCCs of solar 
PV, wind, and battery storage. 

2.2 The 2023 Standard Scenarios 
The 2023 Standard Scenarios, released in early 2024, have 53 scenarios that can be broken down 
to three sets of scenarios with three different electric sector CO2 trajectories–current policies, 95% 
CO2 emission reduction by 2050, and 100% CO2 emission reduction by 2035 (Figure 1). There 
are 18 scenarios under the current policies and the 95% CO2 emission reduction by 2050 targets, 
and 17 scenarios under the 100% CO2 emission reduction by 2035 target as we do not consider the 
no nascent technology scenario under this decarbonization trajectory. The scenarios under each 
decarbonization target include the mid-case scenarios which capture central assumptions in capital 
and fuel costs, resource availability, moderate electricity demand growth, and current federal and 
state policies as of September 2023. Additionally, each set of scenarios also include various 

 
2 The model version used for the 2023 Standard Scenarios is available publicly at https://github.com/NREL/ReEDS-
2.0/tree/97a43f62039d5c3132a31fd2b5d7b708d24156d5. 

https://github.com/NREL/ReEDS-2.0/tree/97a43f62039d5c3132a31fd2b5d7b708d24156d5
https://github.com/NREL/ReEDS-2.0/tree/97a43f62039d5c3132a31fd2b5d7b708d24156d5
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sensitivity scenarios that diverge from the mid-case scenarios, capturing a wide range of 
parameters that drive system investments and operation, such as advanced generator performance 
assumptions, low and high fuel prices, low and high electricity demand, reduced renewable 
resources, etc. Details about the 2023 Standard Scenarios can be found in [41]. We use these 
scenarios because they capture a wide range of potential futures for the U.S. electricity system, 
allowing us to examine VRE and storage capacity credit across a wide range of conditions. 

 
Figure 1: Breakdown of the 2023 Standard Scenarios. 

2.3 Estimation of Average and Marginal Capacity Credits 
Outputs from 2023 Standard Scenarios are used to quantify average and marginal capacity credits 
for solar PV, wind, and battery storages. Average capacity credits measure the average 
contribution that each existing resource can contribute to the system’s resource adequacy in each 
region. It is equal to the total regional firm capacity divided by the total regional installed capacity 
for that technology. A resource’s firm capacity refers to the portion of its nameplate capacity that 
can be available at the system’s most critical periods (typically the high peak periods) to provide 
electricity services to maintain system’s resource adequacy. Marginal capacity credits measure the 
incremental contribution that each new resource can contribute to the system’s resource adequacy 
in each region. Some ISOs/RTOs might prefer the marginal capacity credits method because they 
argue that the value of the capacity of a resource at the margin would send accurate price signals 
to the capacity markets, and thus would incentivize investments in longer duration storage, and 
more balanced investments among wind and solar PV [20]. Others, on the other hand, might prefer 
the average capacity credits method as they argue that it would compensate resources’ value to 
system’s reliability more fairly by taking into consideration their total contribution [51]. Here we 
discuss how the average and marginal capacity credits are quantified in ReEDS. 

2.3.1 Capacity Credits of VRE 
In this analysis, we calculate the average and marginal VRE capacity credits using an 
approximation method. Average capacity credits for each existing VRE resource and marginal 
capacity credits for each new VRE resource class are calculated at 11 ReEDS transmission regions 
(hereafter referred to as “regions”)  – California Independent System Operator (CAISO), Electric 
Reliability Council of Texas  (ERCOT), Florida Reliability Coordinating Council (FRCC), 
Independent System Operator of New England (ISONE), Midcontinent Independent System 
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Operator (MISO), the Northern Grid, New York Independent System Operator (NYISO), 
Pennsylvania-New Jersey-Maryland Interconnection (PJM), Southeastern Regional Transmission 
Planning (SERTP), Southwest Power Pool (SPP), and the Western Connection (Figure A. 1). The 
overall process to calculate capacity credits in ReEDS is mapped out in Figure A. 2, while an 
illustration of this method is shown in Figure 2 [14]. 

Figure 2:  Visualization of how average and marginal capacity credits (or capacity values) are 
approximated in ReEDS. Illustration taken from [14] 

Average Capacity Credits of VRE 
Average capacity credit for each existing VRE resource is calculated using seven years (2007-
2013) of hourly historical load and VRE normalized generation profiles. A load duration curve 
(LDC) is established in each region by sorting the region’s seven years of hourly load from highest 
to lowest. Similarly, a net load duration curve (NLDC) is then established in each region by sorting 
the region’s seven years of hourly net load (load minus hour corresponding forward-looking model 
projected VRE generation, which is calculated by multiplying installed capacity by the normalized 
generation profile) from highest to lowest. The total average capacity value for all existing VRE 
resources in the region is determined as the difference between the LDC and NLDC during the 
peak 10 hours (darker blue area in Figure 2). This total VRE firm capacity during the peak 10 
hours is then allocated to each VRE resource based on their generation share during those 10 hours. 
Each resource’s average capacity credit is then calculated as its weighted firm capacity 
contribution value divided by its installed capacity. For example, if the net load duration curve is 
reduced by 100 MW during these top hours, and a 50 MW resource contributed 20% of the 
generation that led to that reduction, then that resource would get 20% of 100 MW = 20 MW of 
peak reduction value, for a capacity credit of 20 MW / 50 MW = 0.4, or 40%. 

Marginal Capacity Credits of VRE 
For assessing marginal capacity credit of VRE in each region, a new NLDC – NLDC(δ) is 
established for the region. NLDC(δ) is the difference between the NLDC and the region’s hour 
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corresponding additional generation of the new VRE resource. The total marginal capacity credit 
of a new VRE resource in the region is determined as the difference between the NLDC and the 
newly established NLDC(δ) (lighter blue area in Figure 2). Each VRE resource class is assessed 
independently, allowing for a marginal value by technology and resource class to be calculated. 
The resource’s marginal capacity credit is its marginal capacity value divided by the marginal 
amount of capacity added. For example, if a new 100 MW solar plant reduces the net peak load 
in the top 10 hours by 10 MW, then that solar plant would have a marginal capacity credit of 0.1 
or 10%. In the case that the top 10 net peak load hours had shifted to nighttime, then adding new 
solar would not reduce the net peak demand, and its capacity credit would be 0. 

Between solve years, ReEDS updates the average and marginal capacity credit for each VRE 
resource to calculate the resource’s contribution to providing planning reserve requirements. 
Therefore, average and marginal capacity credits impact deployment decisions in the next solve 
year. 

2.3.2 Capacity Credits of Battery Storage 
While average capacity credit for battery storage is calculated the same way as average capacity 
credit for VRE (as the ratio of firm capacity over installed capacity), the way the firm capacity is 
calculated differs. The capacity value of battery storage is characterized by the increase in storage 
energy capacity (duration) that is needed to serve peak demand. To calculate this necessary energy 
capacity of the battery that can receive full capacity credit, the net load maximum is obtained by 
subtracting the battery power rating capacity from the peak load. The battery then must be 
discharged when the load exceeds this net load maximum and so this discharge is used to calculate 
the energy capacity required for the battery to receive full capacity credit. This process is repeated 
in each region and season over a wide range of battery power ratings (in 100-MW increments) to 
obtain a power-energy curve that allows us to estimate the marginal capacity credit for additional 
battery storage. With storage, the width of the net peak demand period is a major driving factor 
for determining its firm capacity. This is shown in Figure 3.  
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Figure 3: Example illustrating how marginal capacity credit is determined for two-hour batteries of 
100 MW (b), 200 MW (c), and 300 MW (d) power capacities. Illustration taken from [37]. 

In Figure 3 (b), a 2-hour 100 MW battery can reduce peak demand by its power capacity (100 
MW) over a 1-hour period, with 100 MW energy left over. Its capacity credit is therefore 100%. 
In Figure 3 (c), an additional 2-hour 100 MW battery can be dispatched in concert with the 
remaining energy in the first 2-hour battery to, together, reduce peak demand by its power capacity 
(100 MW), achieving capacity credit of 100%. Figure 3 (d), however, shows that adding a third 
2-hour 100 MW battery cannot reduce peak demand by its power capacity (100 MW), because to 
do so it would need to have a duration of 5 hours. Therefore, in this case, the marginal capacity 
credit assigned to this battery would be 40% (2-hour/5-hour). In the case of the average capacity 
credit, the three batteries would have a combined capacity credit of 240 MW/300 MW = 0.8 or 
80%, while the marginal capacity credit is the capacity credit of the next battery, or 40%. 

More details on how ReEDS models marginal battery storage capacity credits with examples can 
be found in the ReEDS documentation [45] and Frazier et al. [37]. 

2.4 Method Limitations 
Our method has a few methodological and data limitations that future modeling work can 
potentially address. First, to quantify capacity credits, we calculate approximation of ELCC instead 
of estimating the actual probabilistic ELCC. Our approach approximates ELCC using the 10 
highest net peak load hours, which might not capture the times that the power system experiences 
the most stress, for example during extreme weather events that seriously impact system’s resource 
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adequacy or drive increases in outage rates [52]. Additionally, our approximated ELCCs are 
calculated at the transmission regions where the resources are deployed, therefore, might be 
undervalued when the resources export energy to other regions to contribute to resource adequacy 
elsewhere. Because of these and other assumptions in our approximation based ELCC method, our 
resulting capacity credits can yield different values compared to the probabilistic ELCC methods. 
Given the large number of scenarios as well as high temporal and geographical resolutions we 
consider in this work, the approximation method is still our preferred approach, relative to the 
probabilistic ELCC approach, which requires a more complex process and is significantly more 
computationally costly. However, given its limitations, future work would ideally explore methods 
that use more robust probabilistic quantification of ELCC in long-term planning models. Second, 
due to limited hourly weather data availability, we use seven years of weather and load data from 
2007 to 2013, which is more than 10 years old. Since the resulting capacity credits calculated from 
different weather year data could be different, future works could extend the weather data to cover 
a longer time frame and/or to incorporate more recent or projected data to capture more recent 
climate change driven extreme weather events, into approximating ELCC.  

3 Results 
Across the 53 Standard Scenarios, we first discuss the how average and marginal ELCCs of solar 
PV, wind, and battery storage change over time between 2026 and 2050, as the power grid evolves. 
We then discuss the spatial patterns of average and marginal capacity credit of these technologies 
across the U.S. power system. 

3.1 Average and Marginal Capacity Credit Trends over Time 

3.1.1 Average Capacity Credits 
Figure 4 compares average capacity credits of solar PV (including utility-scale solar PV and 
distributed solar PV), onshore and offshore wind, and battery storage of 4-hour and 8-hour duration 
between 2026 and 2050 across 53 Standard Scenarios for all regions in the U.S power system. In 
each panel, for each modeled year, the range of average capacity credits of each technology across 
all regions and scenarios are graphed in a box and whisker plot. Values inside the box are between 
the 25th and 75th percentiles, while the whiskers show values below and above these quartiles. The 
dots outside of the whiskers are outliers. 
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Figure 4: National average capacity credits across technologies, 2026-2050. 

The average capacity credits of solar PV (Figure 4, panel 1) in general gradually decreases 
between 2026 and 2050. In half of the cases, average solar PV capacity credits range between 11% 
and 36% with a median of 21% in 2026 and decline to between 1.6% and 6.5% with a median of 
3.5% in 2050. Between regions and scenarios, average solar PV capacity credits differ widely, 
reflecting the regions’ wide range of load shapes and resource availabilities. The maximum non-
outlier average solar PV capacity credits also decline across time from 72% in 2026 to 17% in 
2050. This downward trend in average solar PV capacity credits is largely due to the significant 
rise in solar PV deployment and solar PV generation shares across the nation over time (Figure 
A. 7, panel 1). These increased solar PV generation shares result in decreases in net loads during 
hours of high solar PV generation, driving a gradual shift of peak net load hours to hours with little 
solar PV generation, as also consistently shown in previous studies [14,15,33].  

Regions and periods with lower solar PV generation shares have wider ranges of and in general 
higher average solar PV capacity credits (Figure 5, panel 1). The relationship between levels of 
solar PV penetration and average capacity credits can be captured in a fitted quadratic regression 
with R2 = 57% (Figure A. 9). Average solar PV capacity credits vary across a wide range between 
0% and 50% at low solar PV generation shares, even though the highest capacity credits still 
steadily decline (Figure 5, panel 1). The low capacity credit values, even for low PV generation 
shares, are typically due to winter peaking conditions, where peaks often occur after sunset, or in 
lower irradiation areas such as the Northeastern United States and the Southwest Power Pool. For 
conditions where solar PV reaches or exceeds about 50% generation share, its capacity 
contribution is generally low, and its range of average capacity credits narrows significantly to less 
than 5%. This is driven by both a decline in the marginal capacity credit (shown later) and large 
solar PV installed capacity with high solar shares. There are very few occasions when average 
solar PV capacity credits are higher than 72% in 2026 and higher than 40% in 2050 (around 0.2% 
of the time). These high average solar PV capacity credit outliers happen in several regions with 
relatively rich wind resources but poor solar PV resources in SPP, NYISO, and PJM (Figure A. 
15). In these cases, these regions have relatively small amounts of solar with low solar generation 
shares, but the existing solar provides a high level of peak reduction. 
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Figure 5: National average capacity credits vs. generation shares across technologies. The x-axes 

are the ratios of solar PV generation, onshore wind, and offshore wind over total system 
generation, and ratios of 4-hour and 8-hour battery capacities over total system capacity. 

Across the 53 Standard Scenarios, average solar PV capacity credits’ downward trends are 
consistent except for the low demand growth scenarios (Figure A. 3) where capacity credits stay 
relatively constant between 20% and 27% (utility-scaled solar PV) and between 13% and 16% 
(distributed solar PV). The low demand growth results in relatively low deployment of solar PV 
and non-increasing solar PV generation shares over time, which drive relatively high firm capacity 
and non-decreasing average capacity credits. In all other scenarios, this decreasing trend in average 
solar PV across time is consistent across different solar PV classes (Figure A. 4). 

On the other hand, the average capacity credits of both onshore and offshore wind follow upward 
trends between 2026 and 2050 across scenarios (Figure 4, panels 2 and 3). Average onshore wind 
capacity credits start off much lower than solar PV but quickly increase after 2028. This trend can 
be attributed to poor alignment between performance of onshore wind and peak load. 
Correspondingly, compared to solar PV, onshore wind has higher range of penetration levels in 
the early years, which remain relatively non-increasing over time (Figure A. 7, panel 2). Across 
regions and scenarios, average onshore wind capacity credits range from 5% to 21% with median 
of 11% in 2028 and gradually increase to reach a range from 12% to 32% with median of 21% in 
2050, which is in the similar range with actual calculated average capacity credits of onshore wind 
from planning authorities [2]. Unlike solar PV, onshore wind’s firm capacity grows steadily over 
time (Figure A. 10, Figure A. 12), reflecting the increasing values of existing onshore wind over 
time as solar shifts net peak demand periods to windier time periods and as wind technologies 
improve with higher towers and larger rotor areas which can better capture wind resources at lower 
wind speeds. 

Like solar PV, onshore wind average capacity credits differ greatly across regions and scenarios 
and also share a negatively correlated relationship with generation shares (Figure 5, panel 2), 
which can be depicted in a fitted convex quadratic regression with R2 = 58% (Figure A. 9). 
Average onshore wind capacity credits can have a wide range and can be very high at between 
60% and 100% at generation shares of less than 10%. However, they decline quickly after reaching 
30% penetration, at which level all average onshore wind capacity credits are lower than 40%. 
Despite decreasing in response to higher level of generation shares, average onshore wind capacity 
credits grow over time in all scenarios, reflecting narrowing and relatively stable ranges of 
generation shares of onshore wind over time (Figure A. 7, panel 2). This behavior is due to onshore 
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wind deployment leveling off in later years (Figure A. 13). Average onshore wind capacity credits 
of over 70% are extremely rare and only occur in a few regions with rich solar PV resources and 
relatively poor wind resources in CAISO, or in regions with relatively poor wind resources in PJM, 
NYISO, and ISONE under scenarios where onshore wind deployment and generation shares are 
relatively low such as low demand growth and reduced renewable resources scenarios (Figure A. 
16). Across classes, average onshore wind capacity credits fluctuate more compared to solar PV 
(Figure A. 5) with fluctuations occur the most often in 100% CO2 emission reduction by 2035 
scenarios. 

Compared to onshore wind, average offshore wind capacity credits fluctuate more over time 
(Figure 4, panel 3). They gradually decline in the short term between 2028 and 2036 due to sharp 
increase in offshore wind deployment (Figure A. 13) and generation shares (Figure A. 7), driving 
steady increase in offshore wind firm capacity (Figure A. 10). Between 2036 and 2050, offshore 
wind deployments halt and its generation shares stagnate, resulting in increasing ranges of average 
offshore wind capacity credits, and constant levels of offshore wind firm capacity between 2036 
and 2050. In half of the cases, average offshore wind capacity credits range between 0% and 7% 
in 2026, sharply rise to between 13% and 38% with median of 27% in 2028 and widen the range 
to between 11% and 44% with median of 30% in 2050. Overall, average offshore wind capacity 
credits also have a negatively correlated relation with generation shares, although offshore wind 
has much lower generation shares compared to onshore wind and solar PV (Figure A. 7) due to 
much lower deployment that is highly concentrated in only a few regions with good ocean wind 
quality in CAISO, NYISO, ISONE, and PJM (Figure A. 14). Generation shares of offshore wind 
are unlikely to exceed 32%, below which average offshore wind capacity credits can have a wide 
range, mostly between 5% and 60%, even though the highest capacity credits steadily decline as 
generation shares increase within this range.  

Across scenarios, most regions have average capacity values equal to 100% for 4-hour battery 
until 2036 (Figure 4, panel 4), which reflects the relatively lower levels of deployment for this 
technology between 2026 and 2034 (Figure A. 13). The battery deployment in later years increases 
due to lower battery costs [38] and increasing VRE deployment. As more batteries are deployed 
4-hour battery start to have average capacity credits less than 100%. Between 2036 and 2050, most 
average 4-hour battery capacity credits range between 66% and 100% although they can be as low 
as below 20% in low demand growth scenarios where solar PV generation shares are low, which 
align with rare occasions of high average solar PV capacity credits. 

There is no deployment of 8-hour battery before 2032 under all but one scenario, resulting in no 
average capacity credits for this technology during this time frame. 8-hour battery has lower 
penetration compared to 4-hour battery due to its higher costs, which result in 4-hour batteries 
being preferred as long as they retain high marginal capacity credits. In later years, 8-hour batteries 
start to be deployed due to their ability to provide firm capacity during longer critical periods. In 
most cases, 8-hour battery has average capacity credits of 100% (Figure 4, panel 5), emphasizing 
the ability of 8 hours of storage to deliver high capacity credits in most situations in the types of 
futures explored here. Average capacity credits of 8-hour battery lower than 20% occur rarely in 
a few scenarios with high hydrogen technology deployment and high electricity demand which 
require high deployment of this technology (over 200 GW), resulting in decrease in its average 
capacity credits. 
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3.1.2 Marginal Capacity Credits 
Figure 6 reports marginal capacity credits of solar PV, onshore and offshore wind, and battery 
storage of 4-hour and 8-hour duration between 2026 and 2050 across 53 Standard Scenarios for 
all regions across the U.S power system. Like Figure 4 above, in each panel of this figure, for each 
modeled year, the range of marginal capacity credits of each technology across all technology 
classes, regions, and scenarios are graphed in a box and whisker plot. Values inside the box are 
between the 25th and 75th percentiles, while the whiskers show values below and above these 
quartiles. The dots outside of the whiskers are outliers. 

 
Figure 6: National marginal capacity credits across technologies, 2026-2050. 

Like average capacity credits, marginal capacity credits of solar PV also follow a downward trend 
across the planning horizon (Figure 6, panel 1). They sharply decline between 2026 and 2030, 
afterward level off at around 2% until 2042, and in most cases no longer have any capacity values 
past 2042 when solar PV reaches significant generation shares (Figure A. 7, panel 1). The fact 
that marginal solar PV capacity credits decline very rapidly as solar PV generation shares increase, 
especially compared to other VRE and battery storage, is due to solar PV’s daytime-only 
generation which prevents its contribution to resource adequacy during non-daytime hours, a 
phenomenon not faced by wind and storage. 

Because capacity credits decline with higher solar PV penetration, marginal solar PV capacity 
credits are generally lower than average solar PV capacity credits. Marginal solar PV capacity 
credits also have narrower spread at lower generation shares compared to average capacity credits 
(Figure 7, panel 1). Even at lower generation shares less than 30%, marginal solar PV capacity 
credits are lower than 10% in most cases, and at 50% generation share, marginal solar PV capacity 
credits are close to zero. In rare occasions that marginal solar PV capacity credits are higher than 
25%, they highly concentrate in a few regions in SPP and MISO where wind resources have been 
more cost-competitive than solar PV resources (Figure A. 15, panel 2). 
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Figure 7: National marginal capacity credits vs. generation shares across technologies. 

Marginal wind capacity credits, while having some fluctuations in some situations, tend more often 
to stay relatively constant over time (Figure 6, panels 2 and 3). Because wind generation is not as 
consistently focused during a contiguous time of the day, as compared to solar, , their capacity 
credits do not decline as sharply with higher generation shares as solar PV capacity credits do 
(Figure 7, panels 2 and 3). Marginal onshore wind capacity credits stay consistently in the range 
between 5% and 21% with median of 12% in 2026 and between 5% and 19% with median of 11% 
in 2050. Maximum marginal offshore wind capacity credits also stay relatively constant across 
time between 37% and 48% while outliers of over 75% are extremely rare and occur mostly only 
in the later period of the planning horizon after 2042. These high values only make up of 0.02% 
of the times, with over 75% of which in regions with low wind resources in CAISO (Figure A. 
16).  

Marginal offshore wind capacity credits follow a downward trend over time (Figure 6, panel 3). 
In the beginning of the planning horizon until 2036, they decline with most values range between 
4% and 21% with median of 10% in 2026 and between 3% and 13% with median of 6% in 2036. 
This initial decrease is due to the sharp increase in offshore wind deployment (Figure A. 13), 
driving increase in offshore wind generation share during this period (Figure A. 7). Between 2036 
and 2050, marginal offshore wind capacity credits level off at between 3% and 12% with median 
of 6% in 2050. During this time, offshore wind deployment and generation shares already level 
off. Marginal offshore wind can reach over 60% in rare occasions in upper MISO and the upper 
Northern Grid under highly decarbonization scenarios with low demand growth assumptions 
which de-incentivizes deployment of offshore wind (Figure A. 17). 

Like average capacity credits, marginal capacity credits of batteries have stable ranges across time 
(Figure 6, panels 4 and 5). Most 4-hour battery’s marginal capacity credits range between 67% 
and 100% with very rare occasions where they are lower than 20% under low demand scenarios. 
8-hour battery has high marginal capacity credits at 80% to 100% most of the times and only 
decrease to below 20% under rare instances requiring high deployment of this technology. Unlike 
solar PV and wind, marginal capacity credits of batteries do not generally decline over time and 
do not decline as greatly with increasing development, largely because they can be discharged 
optimally during critical hours without being constrained by natural resources like solar PV and 
wind. These results emphasize the valuable role of batteries at the margin in resource adequacy, 
even in a grid already with a lot of existing battery resources. 
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3.2 Spatial Patterns of Average and Marginal Capacity Credits 

Figure 8 compares average capacity credits of solar PV, wind, and batteries across eleven ReEDS 
transmission regions in the US. power system (Figure A. 1).  

 
Figure 8: Regional average capacity credits across technologies. See Figure A. 1 for map of these 

11 regions. 

Average capacity credits across VRE technologies have strong spatial variability. Median average 
solar PV capacity credits vary from 3% to 13% across transmission regions, while their maximum 
values can vary from 16% to 53% across regions. Average solar PV capacity credits are highest in 
SPP, PJM, and MISO where, in most cases, range between 4% and 24%, 3% and 23%, and 7% 
and 23% respectively (Figure 8, panel 1). SPP, PJM, and MISO have many regions with the best 
wind resources in the nation but lower quality solar PV resources, resulting in low solar PV 
deployments (Figure A. 14) and generation shares (Figure A. 8), which drive high values of their 
existing solar PV capacity. These regions are also the only areas where average solar PV capacity 
credits of over 75% are observed under low demand growth scenarios which have even lower 
deployment of solar PV in these regions (Figure A. 15). 

Average onshore wind capacity credits vary spatially more than solar PV, with median values 
ranging between 11% to 29% and maximum values ranging between 22% and 98% across 
transmission regions (Figure 8, panel 2). Although the spatial patterns of wind capacity credits 
are not as clear as solar PV, average onshore wind capacity credits are highest in regions with 
relatively low wind quality – CAISO, ISONE, and the part of the Northern Grid adjacent to 
CAISO, which have the least amount of onshore wind deployment (Figure A. 14) and firm 
capacity (Figure A. 12).  

Due to resource availability constraints, only five regions out of 11 in our study have offshore 
wind deployments and thus average offshore wind capacity credits (Figure 8, panel 3). Even 
though relatively more spatially concentrated, average offshore wind capacity credits vary greatly 
across regions, with median values ranging from 14% to 47% and maximum values ranging from 
45% to 100%. Unsurprisingly, average offshore wind capacity credits are highest in coastal areas 
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with low wind resources, such as CAISO and SERTP and lowest in coastal regions with high wind 
resources such as ISONE.  

Because deployment and discharge of 4-hour battery is highly correlated spatially with that of solar 
PV (Figure A. 8, panels 1 and 4) to contribute to resource adequacy during critical periods where 
solar PV resources are not available, high solar PV capacity credit areas such as SPP, PJM, and 
MISO also have the highest average capacity credits for this type of battery (Figure 8, panel 4), 
with most values stay above 88%. Additionally, FRCC also observes high average capacity credits 
for 4-hour battery of mostly above 90%. Average capacity credits of 8-hour battery do not have 
clear spatial patterns, probably because 8-hour battery is more likely to dispatched strategically 
whenever the grid is stressed. Therefore, this technology has high average capacity credits in all 
regions (Figure 8, panel 5). 

Figure 9 compares marginal capacity credits of solar PV, wind, and batteries across the same 
eleven transmission regions. 

 
Figure 9: Regional marginal capacity credits across technologies. 

Compared to average capacity credits, marginal capacity credits vary less across regions, even 
though some similar spatial patterns to average capacity credits are still observed. Marginal solar 
PV capacity credits are still highest in wind richest but solar poor regions in SPP and MISO 
(Figure 9, panel 1). Marginal onshore wind capacity credits are also generally higher in the 
western regions in CAISO, the Northern Grid, and West Connect (Figure 9, panel 2). Marginal 
offshore wind capacity credits spread out across regions more compared to average capacity 
credits (Figure 9, panel 3), indicating the potential benefits of deploying offshore wind more 
widely. Finally, 4-hour battery has very even marginal capacity credits spatially, corresponding 
well the relatively even distribution of marginal solar PV capacity credits. These capacity credits 
are also consistently high across regions, suggesting that adding more of this technology in the 
resource mix has high resource adequacy values everywhere.  
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4 Discussion 
In this report, we quantified the average and marginal capacity credits of solar PV, wind, and 
battery storage across the U.S. in a wide range of scenarios that represent many possible future 
evolutions of the U.S power grid. We found different trends over time across technologies and 
between average and marginal capacity credits. Consistent with previous literature, we also found 
negatively correlated relationships between capacity credits and generation shares across all VRE 
technologies. Both average and marginal capacity credits of solar PV follow downward trends 
between 2026 and 2050, driven by the increasing deployment and generation shares of solar PV 
over time. Average and marginal capacity credits of batteries are both consistently high at any 
given time, emphasizing their capability to be dispatched flexibly and strategically to complement 
solar PV to contribute to the system’s reliability during the critical periods when solar PV and/or 
wind resources are unavailable. Of the technologies studied in this analysis, wind is displayed the 
greatest differences between the average and marginal capacity credits. Average capacity credits 
of both onshore and offshore wind increase over time, whereas their marginal capacity credits have 
declining and relatively flat trends, respectively. In later years higher capacity credits can be 
extracted from existing wind resources while lower capacity values can be obtained from new 
wind resources.  

We also found strong spatial patterns for average and marginal solar PV capacity credits, with the 
highest capacity credits tend to occur in regions in SPP, MISO, and PJM with rich wind resources 
but poor solar resources and thus low solar deployment and firm capacity. These consistent spatial 
patterns of solar capacity credits suggest that there might be potential reliability benefits in 
expanding more long-distance transmission capacity between SPP, MISO, and PJM and other solar 
resource rich regions in the west. Spatial patterns for wind and battery storage capacity credits are 
less obvious, largely because compared to solar PV, wind resources are less constrained to specific 
hours within the day, and battery resources can be more flexibly dispatched to serve load during 
critical hours.  

The values in this analysis do not solely determine which capacity credits would be best to use 
under any scenarios but may be helpful to grid planners and utilities seeking to understand the 
ranges and trends between average and marginal capacity credits. This may assist with efficient 
capacity markets design. While the Federal Energy Regulatory Commission approves of both 
approaches [53,54], the differences between average and marginal capacity credits could mean 
substantially different capacity payments to resource owners and drive very different long-run 
market signals, resulting in different future deployments. Across all VRE technologies except 
offshore wind, we found that average capacity credits are generally declining more gradually, thus 
are generally higher than marginal capacity credits across the planning period, implying that more 
capacity payments can be credited to existing VRE plants than new VRE plants at almost any time.  

For solar PV, average capacity credits are most likely to be higher than marginal capacity credits 
(around 90% of the time). In the rare scenarios when marginal solar PV capacity credits are higher 
than average solar PV capacity credits (around 10% of the time), they are most likely to occur in 
regions with low solar irradiation in SPP, MISO, PJM, and several small regions in the northern 
US. This is also true for scenarios where there are no average capacity credits, but marginal 
capacity credits are non-zeros. Due to having low solar irradiation, these regions under these 
scenarios do not have or have little existing solar PV and thus higher capacity credits for new solar 



21 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

PV, sending market signals to incentivize new deployment there. Onshore wind in general also has 
higher average capacity credits compared to marginal capacity credits, however, it is less clear in 
which regions marginal capacity credits are most likely to be higher than average capacity credits 
for this technology. Accrediting solar PV and onshore wind resources with average capacity credits 
could be argued as providing resource owners and developers equitable and fair compensation 
which incentivizes more long-term investments of these technologies. In principle, marginal 
capacity credits might be more aligned with efficient capacity market design, where capacity prices 
better communicate the value of adding another generator. 

Marginal capacity credits of offshore wind are generally higher than its average capacity credits 
(around 78% of the time). Only less than 22% of the time are marginal offshore wind capacity 
credits are lower than their average capacity credits. This phenomenon is observed only in coastal-
proximity regions in the east coast and west coast in ISONE, NYISO, PJM, SERTP, and CAISO, 
which are the only transmission regions where offshore wind resources are deployed. This spatial 
pattern of offshore wind capacity credits suggests there might be resource adequacy benefits in 
developing more offshore wind in non-ocean water bodies, such as in the Great Lakes. 

5 Conclusions 
Driven by economic incentives and energy policies, deployment of renewable resources and 
storage are expected to continue to grow significantly in the coming decades, making an 
understanding of their contribution to power system’s resource adequacy increasingly important. 
To inform long-term capacity planning, we estimated the average and marginal capacity credits of 
solar PV, onshore and offshore wind, and batteries over time across multiple possible futures of 
the power system, using the outputs from the 2023 Standard Scenarios simulated by the ReEDS 
Model.  

We found declining trends over time in both types of capacity credits for solar PV, constant trends 
for batteries, increasing trends for average wind capacity credits, but declining trends for marginal 
wind capacity credits. Across regions, capacity credits of solar PV display clear spatial patterns, 
with high values concentrated in wind resource rich but solar resource poor regions in SPP, MISO, 
and PJM, while spatial patterns of wind and battery capacity credits are less obvious. These strong 
spatial variabilities suggest that the power system can benefit from planning for solar PV and wind 
development widely at the interconnection-scale. Additionally, across VRE technologies, average 
capacity credits are in general higher than marginal capacity credits. Because of this, resource 
developers and utilities might find average capacity credits preferrable as this approach provides 
more stable and higher returns to their clean energy investments. 
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Data Availability 
2023 Standard Scenarios datasets of average and marginal capacity credits are available at 

https://doi.org/10.7799/2466151 
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Appendix A. Additional Figures 
 

 
Figure A. 1: Map of the 11 transmission regions where capacity credits are calculated in ReEDS. 

 
Figure A. 2: Process of calculating ELCC for VRE in ReEDS. This calculation is applied to the 

hours with the most risk for loss of load (top 10 hours). 
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A.1 Capacity Credits by Technology Class 
 

 
Figure A. 3: National average capacity credits across technologies by scenarios, 2026-2050. 
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The different resource classes reflect different resource qualities based on the annual average 
global horizontal irradiance (for solar PV classes) or wind speed (for wind classes) that determine 
these resources capacities. 

 
Figure A. 4: National average solar UPV capacity credits by class across scenarios, 2026-2050. 
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Figure A. 5: National average onshore wind capacity credits by class across scenarios, 2026-2050. 
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Figure A. 6: National average offshore wind capacity credits by class across scenarios, 2026-2050. 

  



30 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

A.2 Generation Shares of Technologies 
 

 
Figure A. 7: Generation shares (solar PV and wind) and ratio of installed capacity over peak 

demand (batteries), across time. 

 
Figure A. 8: Generation shares (solar PV and wind) and ratio of installed capacity over peak 

demand (batteries), across transmission regions. 
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Figure A. 9: Fitted quadratic regressions of generation shares (for solar PV and wind), installed 

capacity-peak demand ratios (for battery storage) vs. average capacity credits. 
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A.3 Firm Capacity 
 

 
Figure A. 10: Firm capacity of technologies across time. 

 
Figure A. 11: Firm capacity of technologies across transmission regions. 
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Figure A. 12: Firm capacity of technologies across time by scenarios. 
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A.4 Installed Capacity 
 

 
Figure A. 13: Installed capacity of technologies across time. 

 
Figure A. 14: Installed capacity of technologies across transmission regions. 
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A.5 Spatial Patterns of Average and Marginal Capacity Credit Outliers 
 

 
Figure A. 15: Highest average (left) and marginal (right) solar PV capacity credits across the US. 

 

 
Figure A. 16: Highest average (left) and marginal (right) onshore wind capacity credits across the 

US. 

 

 
Figure A. 17: Highest average (left) and marginal (right) offshore wind capacity credits across the 

US. 

 

 
Figure A. 18: Lowest average (left) and marginal (right) 4-hour battery capacity credits across the 

US. 
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Figure A. 19: Lowest average (left) and marginal (right) 8-hour battery capacity credits across the 

US. 
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