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ABSTRACT: The Co-Optimization of Fuels and Engines (Co-Optima)
is a research and development consortia funded by the U.S. Department
of Energy, which has engaged partners from national laboratories,
universities, and industry to conduct multidisciplinary research at the
intersection of biofuels and combustion sciences. Since 2016, the Co-
Optima team has examined high-quality bioblendstocks, and their
properties, as design variables for increasing efficiency in modern engines
while decarbonizing on-road light- and heavy-duty vehicles. The
objective of this analysis is to combine and expand upon research into
Co-Optima multi-mode bioblendstocks, which blend with petroleum
gasoline to form high efficiency fuels for combustion in both spark
ignition and advanced compression ignition engines. Consequently, the
economic and environmental impacts of deploying 10 different multi-
mode bioblendstocks derived from renewable and circular resources are quantified. Each bioblendstock is evaluated across several
variables including (1) target blend levels of 10, 20, and 30 vol %, (2) years from 2030 to 2050, (3) crude oil benchmark prices, (4)
vehicle lifetime miles, and (5) incremental vehicle costs. A Monte Carlo simulator is developed using a refinery optimization model
and life-cycle analysis tool from prior Co-Optima research to sample marginal abatement costs of CO2, or cost of removing an
additional unit of CO2, corresponding to each bioblendstock while considering input variable uncertainties. Results show that the
combination of efficiency gains from advanced multi-mode fuel-engine technologies and the reoptimization of refinery operations
results in several bioblendstocks demonstrating near-zero expected marginal abatement costs. Variable importances are also explored
to highlight which aspects of the multi-mode technology are most influential in determining marginal abatement costs. Results
suggest that Co-Optima multi-mode technology could provide economically viable decarbonization contributions to electrification-
resistant light-duty vehicle sectors or near-term emission reductions, while Co-Optima fuels or alternatives decarbonize further to
reach net-zero status.

1. INTRODUCTION
The Co-Optimization of Fuels and Engines (Co-Optima)
initiative has sought to codesign fuels and engines to reduce
emissions while achieving increased efficiencies with decar-
bonized fuels produced from renewable and circular sources.
Since the initiative’s inception in 2016, the interest in, and
volume of research on, alternative pathways toward decarbon-
izing transportation, such as vehicle electrification, has grown
significantly. However, as with all decarbonization strategies,
there are key barriers to electrifying light- and heavy-duty
vehicles, including decarbonizing the grid, manufacturing
batteries, and building charging networks at scale.1 These
challenges naturally prompt questions about the role of
decarbonized liquid fuels, like those developed in Co-Optima,
in the transition toward a more sustainable transportation
industry.
Several features of Co-Optima would likely make its

deployment a seamless and near-term contribution to U.S.
decarbonization goals. First, relatively minor engine mod-
ifications, mostly involving control strategy development,

engine recalibration, and possible ignition system additions,
would be required from existing manufacturers with
incremental costs over traditional boosted spark ignition
(BSI) vehicles estimated to be below $3000.2,3 Second,
petroleum refineries could leverage their trillions in spent
capital to integrate high-quality biofuels with minimal expense
while potentially unconstraining operations, synchronizing
with market trends, and unlocking new value streams.4

Third, utilizing existing transportation fuel infrastructure
would greatly reduce capital investment requirements and
would leave few barriers to consumer adoption.5−7
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Prior research has produced experimental data and models
to individually analyze each part of a hypothetical Co-Optima
supply chain.4,5,8,9 As a continuation, this analysis seeks to
combine the benefits identified in prior research associated
with each supply chain element to comprehensively assess the
value proposition of Co-Optima. Marginal abatement costs of
CO2 (MAC), a common metric used in other decarbonization
studies defined as the economic penalty incurred while
preventing the emission of an addition unit of CO2 relative
to a business-as-usual benchmark, are quantified for various
scenarios. Calculating MACs normalizes costs by the degree of
greenhouse gas (GHG) reduction for easy cost−benefit
comparisons with other decarbonization pathways.
Although various Co-Optima fuels have been designed for

light-, medium-, and heavy-duty vehicles, a subset of light-duty
gasoline blendstocks, referred to as multi-mode (MM)
gasolines for their ability to increase combustion efficiencies
in both traditional spark ignition and advanced compression
ignition engines, are placed into focus. Uncertainties still
surround many variables that would influence Co-Optima’s
success at the R&D stage. Consequently, a Monte Carlo
framework is developed around the MAC calculation to ease
the severity of assumptions while providing insights into the
potential risks undertaken by producers. Results show the
distributions of MACs that could be achieved by scaling the
production and integration of each MM bioblendstock
candidate. A machine learning model is trained to predict
MAC based on major inputs across MM bioblendstocks to
analyze variable importance and identify which technology
improvements could be most impactful in further reducing
MACs. Results suggest that Co-Optima MM technologies
could provide near-term, economically viable decarbonization
contributions to the light-duty vehicle sector while deeper
decarbonization technologies, such as electrification with grid
decarbonization, are adopted to ultimately reach net-zero
emissions.

2. METHODS
2.1. Marginal Abatement Cost Calculation. MACs were

determined by calculating lifetime cost and emission differences
associated with a consumer purchasing and operating an MM vehicle
instead of a traditional boosted spark ignition (boosted-SI) light-duty
vehicle. Co-Optima researchers developed a merit function to
estimate Co-Optima engine efficiency gains over traditional
boosted-SI engines (EFFGain) as a function of fuel properties.8

Through experimentation, the research octane number (RONBlend)
and sensitivity, defined as the difference between research and motor
octane numbers (SBlend = RONBlend − MONBlend), of the blended fuel
were identified as the dominant fuel properties determining efficiency
gains. The merit function is shown in simplified form in eq 1 where
(EFFBias) is a bias term accounting for terms unrelated to RONblend or
SBlend, which have a lesser impact on efficiency gains.8
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Consequently, the MM vehicle fuel efficiency (FEMM) could be

predicted using eq 2 given a traditional boosted-SI vehicle’s fuel
efficiency assumed to be 38 MPG in other Co-Optima research.10
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If the number of lifetime vehicle miles traveled (LVMT) by the
MM and boosted-SI vehicle is assumed to be equal, lifetime fuel
consumption (LFC) can be calculated as shown in eqs 3 and 4.

LFC GGE LVMT
( )

38Base =
(3)

LFC GGE LVMT
FE

( )MM
MM

=
(4)

Next, given LFCs, the lifetime costs (LTCs) of operating each
vehicle could be determined if the prices of each fuel were known.
Given the price of a baseline gasoline (PBase), the minimum selling
price the refinery would need to charge for MM gasoline (MSPMM) to
maintain its baseline gross margin after integrating a bioblendstock
was calculated using eq 5. In eq 5, GMBase is the gross margin of the
refinery while not producing MM gasoline, GMMM is the gross-margin
while producing MM gasoline, and VMM is the volume of MM gasoline
produced at price PBase. In eq 6, ICMM is the incremental cost of
purchasing a MM over a boosted-SI vehicle.
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LTC LFC MSP IC($) ( )MM MM MM MM= · + (6)

LTC LFC P($)Base Base Base= · (7)

LTC LTC LTC($) MM Base= (8)

Lifetime emission differences were calculated by adding differences
among cradle-to-refinery gate (GHGR), distribution (GHGD), and
vehicle combustion (GHGC) emissions. Refinery gate emissions
(GHGR) are those associated with feedstock growth, collection,
transportation, and processing within the refinery which include all
emissions produced up until products leave the refinery and are
calculated by the Refinery Products Life Cycle Assessment (RP-LCA)
model as discussed in Section 2.3. The RP-LCA model was designed
to quantify the emissions impacts of integrating biofeedstocks into
petroleum refineries, so negative credits for biomass production are
included in the refinery gate emissions. The difference in refinery gate
emissions over the vehicle lifetime (ΔLTER) was calculated using eq 9
where GGEMM is the quantity of MM gasoline-gallon equivalents
produced each day by the refinery.
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The distribution emission difference (ΔLTED) once leaving the
refinery gate was calculated with eq 10 with a constant emissions
factor (EF 5.7 10D

tCO
GGE

5 2= × ) pulled from The Greenhouse
Gases, Regulated Emissions, and Energy Use in Transportation
Model (GREET) associated with conventional gasoline.11

LTE tCO EF LFC LFC( ) ( )D D Base MM2 = (10)

Combustion emission factors (EFC), tabularized in Table S1, were
sourced for each MM bioblendstock (BBS) and fossil gasoline before
oxygenate blending (BOB).9 Eqs 1111 and 12 were then used to
determine blended emission factors for the base boosted-SI (10 vol %
ethanol) and MM gasolines.
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As a result, the lifetime difference in combustion emissions was
calculated by using eq 13.

LTE tCO EF LFC EF LFC( ) ( ) ( )C C Base Base C MM MM2 , ,= · · (13)
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Finally, the total lifetime emission difference and the corresponding
MAC were determined using eqs 14 and 15.

LTE tCO LTE LTE LTE( ) R D C2 = + + (14)
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Models, tools, and data from prior Co-Optima research were
combined to extract values for each equation to ultimately calculate
MAC. Descriptions of each value source are given below.

2.2. Multi-Mode Gasoline Properties. Experimentally deter-
mined research octane numbers (RONBlend) and sensitivities (SBlend)
were collected from the Co-Optima Fuel Properties Database for use
in eq 1 to predict MM vehicle efficiency gains.12 These data were also
used to create effective blending models consistent with a prior
methodology4 to accurately reflect the nonlinear blending character-
istics of MM bioblendstocks, due to their polarity, in the refinery
model. Nonlinear blending models were developed for RON,
Sensitivity, Reid Vapor Pressure (RVP), and ASTM D86% recovered

distillation temperatures (T10, T50, and T90) using the data in Table
S2.

2.3. Refinery Modeling Framework. A collection of refinery
nonlinear programming (NLP) models were developed within
AspenTech’s Process Industry Modeling System (PIMS) software
package in a manner consistent with refining industry standards to
optimize crude purchases and operations.13 The “Gulf-Coast”
example model was customized to (1) represent a typical high-
conversion, U.S. refinery located in Petroleum Administration for
Defense District 3 (PADD3) region, (2) constrain finished products
after blending to all pertinent ASTM specifications, and (3) represent
all MM bioblendstocks with experimentally determined properties.12

Additionally, peripheral models were developed based on industrial
data sources to feed the PIMS model realistic information. Feedstock/
product prices, including Pbase, were modeled as functions of a
benchmark West Texas Intermediate (WTI) crude price. Product
demands were modeled by year, extending to 2050, based on scaled
predictions given in the Energy Information Administration’s (EIA)
Annual Energy Outlook (AEO) or the National Renewable Energy

Figure 1. A graphical depiction of the refinery modeling framework composed of a central petroleum refinery optimization model built in Aspen-
PIMS being fed realistic inputs including crude oil assays, input/output pricing, and fuel specifications from peripheral models.

Figure 2. A high-level, graphical overview of the Refinery Products Life-Cycle Assessment Tool with data sources, flows, and outputs.
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Laboratory’s (NREL) Automotive Deployment Options Projection
Tool for gasoline (ADOPT).10,14 Aforementioned nonlinear blending
property models were also constructed to determine effective
blending properties as a function of the MM bioblendstock blend
level. The PIMS and peripheral models were combined to form the
refinery modeling framework, graphically depicted in Figure 1, used in
this analysis and others where more detailed descriptions can be
found.4,15

One alteration made to the modeling framework for this analysis
was the inclusion of minimum selling prices (MSP) for each MM
bioblendstock, tabularized in Table S1, determined through rigorous
process simulation and techno-economic analysis (TEA) with nth
plant assumptions in prior Co-Optima research.9 Instead of
calculating the maximum price a refiner would pay for each
bioblendstock (break-even value) as in other works,4,15 TEA informed
estimates for bioblendstock prices were implemented to determine
GMBase and GMMM to calculate the minimum price at which refiner
would need to sell MM gasoline (MSPMM) using eq 5. The refinery
model also produces mass balances from which product energy flows
(GGEMM, GGEBOB, GGEEtOH, and GGEBBS) were extracted.

2.4. Life-Cycle Analysis Model. The Refinery Products Life
Cycle Assessment (RP-LCA) model, developed by Argonne National
Laboratory (ANL), was used to determine (GHGR), the environ-
mental impacts from integrating Co-Optima MM bioblendstocks into
refinery gasoline production and blending operations. The RP-LCA
model is an Excel-based tool designed to link process-level material
and energy flows from PIMS model solutions with appropriately
sourced LCA data. Emission factors within RP-LCA are pulled from
ANL’s Greenhouse Gases, Regulated Emissions, and Energy Use in
Transportation Model (GREET) and an updated version of the
Petroleum Refinery Life Cycle Inventory Model (PRELIM) for
refinery subprocesses.16,17 RP-LCA results are given as 100-year
global warming potentials as calculated in the International Panel on
Climate Change’s Fourth Assessment Report in terms of tons of CO2-
equivalent.18 The system boundary imposed in RP-LCA is a cradle-to-
refinery gate, so emissions from the full supply chain of each refinery
input are accounted for including feedstock collection, transportation,
and processing. From the refinery-gate emissions calculated by RP-
LCA (GHGR), distribution (GHGD) and vehicle combustion (GHGC)
emissions were added to calculate cradle-to-grave emissions for each
MM gasoline blend. Emission credits are included in RP-LCA for
renewable and circular feedstocks to appropriately account for their
decarbonization impacts at the refinery gate. Changes in utilities, such
as heating, cooling, electricity, hydrogen, and wastewater treatment,
are also captured. Moreover, market projections including U.S.
electricity grid composition, pertinent technology improvements, and
the same transportation fuel demand projections used in the PIMS
model are included to give emission factors time sensitivity. Figure 2
shows a high level overview of the RP-LCA model and more details
can be found in a forthcoming publication.19

2.5. Monte Carlo Input Variables. Key input variables used to
calculate MAC included MM bioblendstock blend-levels, years, and
WTI benchmark prices for the refinery model and the efficiency bias
term (EEFBias), lifetime vehicle miles (LVMT), and incremental MM
vehicle cost (ICMM). Blend-levels and years were specially selected as
case variables of interest. Consequently, refinery integration dynamics
and LCA implications could be observed across varying degrees of
decarbonization, set by blend-level, and varying market demands
referenced from the EIA’s AEO, which are indexed by year as
mentioned in Section 2.3. The other inputs carried uncertainty and,
therefore, were treated as random variables within the context of
Monte Carlo simulation. Handling uncertainties with Monte Carlo
simulation was desirable for several reasons. First, although uncertain,
each input variable’s range and distribution were well understood
through prior Co-Optima research or historical data so reasonable
estimations of distributions could be made. Second, Monte Carlo
simulation produced a valuable coproduct in the form of MAC
distributions that provided a risk profile associated with each MM
bioblendstock candidate. Finally, simulating many randomized
scenarios generated a large enough data set to assess variable
importance’s which provided a better understanding of what inputs
could be most influential in the successful deployment of MM
technologies. The distributions shown in Figure 3 were determined
on a case-by-case basis given the intricacies of each underlying
variable as discussed below.

WTI year-overyear returns were assumed to follow a normal
distribution, implying prices follow a log-normal distribution as
traditionally assumed in most financial literature.20 Using historical
WTI prices (PWTI) spanning 1990 to 2020 in yearly intervals from the
EIA,21 the normal distribution (N) of returns was found to have a
mean (μ) of 1.06 and standard deviation (σ) of 0.24. Using these
parameters, yearly prices were projected from a starting value of $ 60/
Bbl, as shown in eq 16. Bounds of [20, 100] ($/Bbl) were imposed to
stay within the feedstock/product pricing model range, which is also
why an artificial, bisecting starting price of 60 ($/Bbl) was chosen.

P y P y N( ) ( 1) ( 1.06, 0.24)WTI WTI= · = = (16)

If P y( ) 20WTI < or P y( ) 100WTI > , resample
For all y 2021, 2050[ ] with P y( 2020) 60WTI = =
Co-Optima’s High-Performance Fuels (HPF) Team estimated the

merit function’s bias term (EFFBias) to be somewhere between 8% and
16%, with high uncertainty.8 Therefore, EFFBias values were randomly
sampled from a uniform distribution with bounds [0.08, and 0.16].
For lifetime vehicle miles, a modal value of 150,000 and upper bound
of 300,000 miles for an exceptionally well maintained vehicle were
pulled from literature, while a reasonable lower bound of 100,000
miles was imposed.22,23 A beta distribution (α = 2, β = 4) was fit to
these values to fill in the asymmetric distribution. Finally, unpublished
Co-Optima research has estimated incremental MM vehicle cost to
range between $0 and $3,000 relative to comparable boosted spark

Figure 3. Distributions of the random variables considered during Monte Carlo simulation.
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ignition vehicles. However, a more conservative upper bound of
$6,000 was implemented, while the median estimate of $1,500 was
preserved as a modal value. Another beta distribution (α = 2, β = 5)
was fit to these estimates to model incremental MM vehicle costs.

2.6. Variable Importance Determination. It was desirable to
better understand which inputs and bioblendstock characteristics were
most impactful in determining MACs. A byproduct of training some
machine learning models is information regarding relative predictor
variable importance. In particular, the average improvement in
performance measure added by each variable split point after training
a decision tree is a well-documented method to rank variable
importance.24 Therefore, a gradient-boosted decision tree was trained
to predict MAC based on the dependent variables presented in eqs
1−15 with the popular Python package XGBoost.25 To train the
model, 90,000 Monte Carlo samples were used as data points,
predictors were centered and scaled, and 20% of the data set was
reserved for testing. The XGBoost regression model was trained using
5-fold cross validation to avoid overfitting. The R-squared score of the
trained model in the testing set was 0.76. Finally, the average
improvements in mean-square error (MSE) provided by splits along
each variable within the decision tree were averaged and ranked.

3. RESULTS
3.1. Marginal Abatement Cost Distributions. MACs

for each MM bioblendstock candidate were calculated as
shown in eqs 1−15 by fixing both blend level and year and
then randomly sampling WTI prices, efficiency bias term
(EFFBias), lifetime vehicle miles (LVMT), and incremental MM
vehicle cost (ICMM) values from the distributions depicted in
Figure 3. Figure 4 shows MAC distributions resulting from

1,000 Monte Carlo samples for each MM bioblendstock at 10,
20, and 30 vol % blend levels for years 2030, 2040, and 2050
where random variables were resampled for each MAC
distribution to mitigate sampling biases and distributions
were smoothed using kernel density estimation (KDE) with a
bandwidth parameter of 1.0.26 MAC value means and standard
deviations are tabulated in a heatmap in Table S3 for reference.
Methanol, ethanol, and propanol/ethanol stood out as

having consistently low MACs with averages of 61, 142, and 87
$/tCO2 across blend levels/years while di-isobutylene, prenol,
and iso-propanol had the highest with averages of 265, 224,
194 $/tCO2. For most bioblendstocks, the 10 vol % blending
level produced the most variability which seemed to
consistently shrink with increasing blend level. Additionally,
higher blend levels appeared to shift each MAC distribution
backward, indicating that generally, the costs of MM gasoline
production increased more quickly than their decarbonization
impact when scaling from 10 to 30 vol %, though only slightly.
This trend follows results from a similar analysis regarding
boosted-SI Co-Optima gasolines which found that bringing in
additional volumes of high RON and sensitivity blendstocks
had marginal benefits to refineries beyond the 10 vol % blend
level.
Visualizing the data in Figure 4, and in the alternative

heatmap format provided in Table S3, shows some
inconsistencies in trends observed across blend-levels and
years. This is a phenomenon also observed in similar refinery
optimization analysis that can be attributed to the fact the

Figure 4. Distributions of marginal abatement costs (MACs) of CO2 per U.S. ton corresponding to different blend levels (blnlvl) of 10, 20, and 30
vol % across MM bioblendstocks and years (2030, 2040, and 2050), which correspond to different refinery product demand projections.
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model is optimizing purely based on costs and CO2 abatement
is calculated afterward.27 Consequently, the optimizer has a
tendency to shift its crude slate when adapting to changing
bioblending levels or product demands which can cause step-
function changes in refinery emissions (GHGR), which
ultimately impact calculated MACs. Considering LCA metrics
more directly in the objective function would result in
smoother transitions across average crude slate carbon
intensities when considering different blend levels and years/
product demands. Not accounting for LCA metrics in the
optimizer’s objective function could be considered a limitation,

but in practice refineries make decisions to optimize overall
profitability and, in the absence of policy incentives to produce
MM gasolines with low carbon intensities, optimizing overall
gross margin could also be considered a more realistic scenario.

3.2. Variable Importance. Figure 5 shows the relative
variable importance, calculated as the unitless average of how
well splitting on each variable improved the decision tree
prediction’s mean-square error (MSE), of each variable
influencing MAC. Although bioblendstock minimum selling
price was not explicitly used in eqs 1−15, it was an input to the
PIMS and RP-LCA models.

Figure 5. Relative importance of each variable (feature) that influences the MAC associated with Co-Optima MM fuels and engines. Variables in
ranked order of highest to lowest importance included (1) incremental cost of the MM vehicle, (2) minimum selling price of the MM
bioblendstock, (3) lifetime miles covered by the hypothetical vehicle, (4) efficiency gain provided by the MM fuel and engine, (5) emission factor
of the MM bioblendstock, (6) the benchmark WTI crude oil price, and (7) year of calculation [2025, 2030, 2035, 2040, 2045, 2050] setting
refinery product demands.

Figure 6. Marginal abatement cost (MAC) of CO2 ($/U.S. Ton) distributions for methanol, ethanol, and propanol/ethanol mixture blended at 20
vol % in year 2030 displayed alongside MAC ranges for battery electric vehicles (BEV) and hybrid electric vehicles (HEV) given current (2020)
and future (2030) average U.S. grid mix assumptions, all calculated using consistent LCA data and methods from the GREET model.17,28.
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Figure 5 indicates that price reductions, in either
incremental vehicle costs or MM bioblendstock production
costs, would have the most impact in reducing MACs. This
assertion is also supported by methanol, ethanol, and
propanol/ethanol producing the most favorable MAC
distributions in Figure 4 while having the lowest MSPs.
Moreover, increasing lifetime vehicle miles was found to be the
next most important modification that would increase the
overall emissions savings provided by an MM vehicle. Also,
increasing efficiency gains, as calculated in eq 1, and reducing
emissions factors would have more moderate impacts on
reducing the MAC.

3.3. Marginal Abatement Cost Comparisons. To give
context to the MACs presented in Figure 4, comparisons with
alternative light-duty vehicle decarbonization technologies are
shown in Figure 6. MAC simulations were generated for the
three MM gasoline blends with the lowest MACs from Figure
4 (methanol, ethanol, and propanol/ethanol) all at 20 vol % in
year 2030 with 2500 samples a piece. Comparisons were made
with battery electric vehicles (BEV) and hybrid electric
vehicles (HEV) MAC range estimates previously calculated
and reported using the GREET model to maintain consistency
between underlying LCA methods and assumptions.28 More-
over, individual MAC ranges encompass 200-to-400-mile
battery ranges for BEVs and HEV to plug-in HEV (PHEV)
vehicles, which are midsize sedans to match the underlying
base efficiency assumption used in the MM gasoline MAC
calculations. Distinct MAC ranges for BEVs/HEVs are
provided using current (2020) and future (2035) average
U.S. grid mix LCA assumptions to analyze how MM gasoline
might compare to electrified vehicles over time as the grid
decarbonizes.
Figure 6 suggests that select MM gasoline blends would

likely be a more cost competitive light-duty vehicle decarbon-
ization strategy than electrification based on the current
(2020) average U.S. grid mix carbon intensity. However, as the
grid decarbonizes, BEVs/HEVs will be more likely to provide
low or even negative MACs. Therefore, the results suggest that
MM gasolines would best serve the market as an interim
strategy to partially decarbonize the light-duty transportation
fleet, as the investment and capital projects needed to
decarbonize the grid and improve HEV/BEV MACs occur
over time.

4. DISCUSSION
Results from Figures 4 and 6 indicate that some Co-Optima
MM gasoline blends have the potential to provide cost-
competitive GHG emission reductions, particularly, while the
grid and BEVs/HEVs decarbonize over time. However,
simulated distributions also show appreciable risks of higher
lifetime MACs which could be best mitigated through
incremental MM vehicle cost and bioblendstock production
cost reductions as suggested by Figure 5. Moreover, Co-
Optima technology readiness, preexisting gasoline distribution
infrastructure, and refinery interest in decarbonization
opportunities could allow MM GHG reductions to scale
more quickly when compared with alternative light-duty
vehicle decarbonization technologies. More specifically, Figure
5 indicates Co-Optima bioblendstock prices and emission
factors are influential variables in determining lifetime MACs,
so more mature, and consequently lower cost MM gasoline
blends with methanol, ethanol, and propanol/ethanol mixtures

are particularly well-poised to provide low-cost emissions
reductions within a short time span.
Neat methanol has been used successfully in racing vehicles,

with minimal range requirements thereby mitigating the fuel’s
lower energy density, because of its high octane and fast flame
velocity.29 However, methanol’s low-energy density and high
hygroscopicity (ability to attract and absorb water), making
large-scale distribution and storage more difficult, have
prevented its wider-spread adoption as a gasoline blendstock
as evidenced by E.U. and U.S. maximum blending limits of 3
and 0.3 vol %, respectively.30,31 Nevertheless, large-scale
methanol gasoline blending has been demonstrated in
countries like China, producing between 0.9 and 1.5 billion
gallons of methanol per year with national guidance to invest
more into methanol production, infrastructure, and vehicle
technologies.30,32 Methanol is also a favorable platform
chemical for several biomass conversion technologies, and
marine fuels, which could provide additional incentive to invest
in its distribution infrastructure.33

Additionally, the ethanol-based MM blendstocks (ethanol
and propanol/ethanol mixture) are advantaged by the fact 10
vol % ethanol blending is already standardized in the U.S.
gasoline market with higher blends (E15, E85, etc.) also
distributed widely. Therefore, supply, distribution, and infra-
structure investment constraints would likely be less restrictive
for ethanol-based MM gasolines when compared to other
blendstocks with U.S. production capacity estimated to be 17.7
billion gallons of ethanol per year.34 Moreover, the federal
incentives, such as the U.S. Department of Agriculture’s
(USDA) Higher Blends Infrastructure Incentive Program
(HBIIP), already provide financial assistance for infrastructure
projects aiming to increase ethanol, or other biofuel, blending
levels.34 Supply constraints would be further alleviated if BEV
market adoption progresses as anticipated, leading to a 17%
(AEO) or 38% (ADOPT) drop in gasoline/ethanol
demand.10,14 Ethanol producers could maintain sale volumes
despite market headwinds by diversifying into markets such as
sustainable aviation fuels (SAF) or 20, 30, or higher vol % MM
gasoline blends.
While the other MM bioblendstocks yield less competitive,

higher lifetime MACs, the uncertainty associated with their nth-
plant scaled production costs are also much higher than the
more matured methanol, ethanol, and propanol/ethanol
processes. Demand stemming from MM gasoline blending
could incentivize bioblendstock production and competition.
Increasing cumulative production volumes have been linked to
reductions in production costs through industrial learnings as
exemplified by the nearly 70% reduction in ethanol prices in
Brazil from 1980 to 2002.35 Learning curve mechanisms could
reduce bioblendstock production costs in unanticipated ways
and allow higher-quality blendstocks, in terms of RON and
sensitivity, such as furans or prenol, to become economically
feasible. Additionally, hard-to-anticipate technological im-
provements in the biomass conversion pathways underpinning
each MM bioblendstock could improve their associated MACs
with continued interest and R&D.
MM gasoline deployment would face several risks that could

influence each bioblendstock’s success in the market. First,
production volumes would need to be sufficiently large to
reduce bioblendstock costs to their nth-plant estimates, a highly
influential factor in determining lifetime MACs. Second, Figure
5 identified the incremental vehicle cost of MM engines over
standard boosted-SI engines as the most influential factor in
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predicting MACs. Vehicle manufacturers would need to limit
MM vehicle R&D and manufacturing costs for the
technology’s deployment to result in cost-competitive MACs.
Third, this study is limited in capturing the infrastructure
investment costs that would be needed to distribute each
bioblendstock, though they should be lower than alternatives
like HEVs/BEVs since sufficient liquid distribution infra-
structure already exists throughout the U.S. Since costs,
whether they be associated with bioblendstock or vehicle
production, were found to be more influential than other
variables, unforeseen infrastructure costs such as metallurgy or
seal material changes would likely be equally influential and
could pose risks to the technology’s deployment.
Finally, the MM fuels presented herein are limited in being

unable to achieve net-zero emissions because of their reliance
on blending with petroleum fuels. In contrast, HEV and BEV
adoption is predicated upon the continual decarbonization of
the U.S. power grid overtime until net-zero transportation is
eventually achieved.1 Further MM bioblendstock conversion
technology developments including higher conversion efficien-
cies, carbon sequestration technology implementations, and
higher blending volumes up to neat fuels would need to occur
to reach net-zero, or possibly net-negative emission status.
However, Figure 6 suggests that commercializing MM
gasolines could be a cost-competitive option to decarbonize
the light-duty fleet as the grid decarbonizes over time, and
electrified vehicles can provide net-zero transportation options
at scale.

5. CONCLUSION
In summary, optimizable refinery models were developed to
quantify the costs and benefits of integrating renewable
bioblendstocks with existing refining infrastructure and
producing high-quality fuel blends for advanced, high-
efficiency MM engines. The results of the analysis, based
largely on experimental fuels research data from Co-Optima,
show that bioblendstock integration can contribute to
attractive decarbonization strategies. Combining the efficiency
gains from advanced fuel engines with the reoptimization of
refinery operations for producing Co-Optima fuel blends
results in probabilistic averages for marginal CO2 abatement
costs nearing zero for several bioblendstocks with blend levels
up to 30%. Moreover, existing infrastructure could reduce
technology deployment timelines, specifically for mature
biofuels such as methanol, ethanol, or a propanol/ethanol
mixture. However, risks associated with bioblendstock
production and incremental MM vehicle costs coupled with
the technology’s inability to reach net-zero emissions when
limited to lower blending volumes could deter the investment
needed for market development.
Given the opportunities and obstacles associated with Co-

Optima MM technology deployment, MM vehicles and
gasolines could have a role to play in providing valuable,
near-term GHG emission reductions as the U.S. transitions
away from fossil fuels. Although there are many light-duty
vehicle decarbonization strategies competing for investment,
such as e-fuels, alternative biofuels, or HEV/BEVs, few appear
as readily scalable. For example, in regions of the U.S. with
sufficient E15 gasoline supply, MM gasoline production and
distribution infrastructure already exists, and future MM
vehicles sold and operated in those regions could immediately
capitalize on increased engine efficiencies. Furthermore, MM
gasolines could reduce emissions in sectors that are challenged

or resistant to electrification, such as performance, powersport,
or long-range vehicle applications.
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