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Abstract—Federated machine learning (FL) is gaining signif-
icant popularity to develop cybersecurity solutions in power
grids because of its advanced capability to support decentralized
data handing at local devices, its privacy preservation, and its
low-bandwidth requirement. However, the evolving adversarial
machine learning (AML) threats raise significant concerns for
the cybersecurity of FL architectures. The FL-based split neural
network (SplitNN) achieves high performance through the decen-
tralized training of local neural network models while preserving
data privacy across multiple entities. In this paper, we propose
a methodology for evaluating the performance of a vertical FL-
based anomaly detector against different types of AML attacks,
including denial-of-service attacks, adversarial data injection
attacks, and replay attacks on the trained local models deployed
in the grid network. For a case study, we consider the modified
IEEE 13-bus system, and we develop SplitNN-based binary and
multiclass classification models to detect, locate, and identify
different types of data integrity attacks on the volt-watt control
with two pooling layers: maximum pooling and AvgPool. Our
experimental results, computed through performance metrics,
reveal that the severity of these AML attacks varies with the
integrated pooling mechanism, the type of classification model,
and the nature of the cyberattack. Further, the AML attacks
negatively impacted the prediction time per sample for the
pretrained SplitNN during the online testing.

Index Terms—Federated machine learning, split neural net-
work, adversarial threats, cybersecurity, power grid.

I. INTRODUCTION

The modern power grid is a highly complex and intercon-
nected cyber-physical system that combines digital technology
with physical infrastructure. The substantial advancement in
cyber technologies aimed at enhancing grid intelligence has
propelled the energy industry into a new era characterized
by improved reliability, sustainability, and efficiency. This
progress necessitates a greater reliance on robust communica-
tion infrastructure. While the rise of Cyber-Physical Systems
(CPS) is central to the functioning of the modern power
grid, it has also made the grid network more susceptible to
various cyberattacks [1], [2]. Some cybersecurity incidents,
including the notorious Stuxnet worm attack in 2010 [3] and
the Ukraine power grid hacks in 2015 [4], have severely
impacted industrial control systems (ICS) and affected public
and private sector customers. These cybersecurity incidents

show the interdependencies between ICS and digital infras-
tructure and reveal how cyberattacks can lead to compromises
in regular operations, leading to financial losses [5].

Federated machine learning (FL) has emerged as a promis-
ing approach to bolster the cybersecurity defenses in power
grid networks by addressing challenges related to data dis-
tribution, privacy preservation, and communication bandwidth
optimization. The authors of [6], [7] showed that the perfor-
mance of FL models was comparable to conventional machine
learning models for detecting anomalies in smart meter and
synchrophasor data. Split neural network (SplitNN) is one
of the promising vertical FL (VFL) approaches that preserve
data privacy by substituting sensitive data communications
for intermediate neural network activations. Further, it offers
significant advantages in terms of reducing the computational
expenses associated with training deep neural networks while
ensuring the privacy-aware use of data shared among the
clients. It accomplishes this task by dividing a neural network
across the local clients, deployed at substations, and control
center-based global model. In 2020, the authors of [8] showed
the benefits of integrating several pooling functions, including
max pooling, average pooling, etc. at the global model to
combat client dropouts during the model training. These
pooling layers significantly contribute to make SplitNN more
efficient, robust, and effective by reducing dimensionality,
preserving important features, and improving generalization
while managing computational resources effectively.

As with any evolving technology, however, is not immune
to adversarial machine learning (AML) threats [9], which
pose unique challenges to the security and privacy of the
SplitNN architecture. For example, adversaries can manipulate
input features, poison training datasets, and compromise model
updates, and hence affect the confidentiality, integrity, and
availability of distributed machine learning models. A recent
survey [10] highlighted the existing vulnerabilities in commu-
nication protocols and discussed different types of poisoning
attacks, inference attacks, and generative adversarial network
attacks in the FL architecture.

In this paper, we propose a methodology for evaluating
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the performance of trained VFL against different types of
AML threats. The proposed approach consists of several steps,
including generating datasets for different cyber-physical sce-
narios for a given wide-area controller, training VFL with
a global pooling layer using generated datasets, testing the
trained model against different AML attacks, and, finally,
evaluating the pooling functions using various performance
measures. In this work, we consider SplitNN-based VFL, and
we perform adversarial attacks during the transfer of the local
model outputs to the global model during the testing. Further,
a voltage-watt controller is applied to regulate the voltage
in the IEEE 13-bus system and to generate datasets through
various cyber-physical scenarios. Finally, several performance
metrics—including accuracy, precision, and F1 score—are
applied to evaluate and compare different pooling functions
in the SplitNN-based VFL.

II. RELATED WORK AND OVERVIEW

Previous research efforts have applied several FL algorithms
to detect cybersecurity attacks in distributed energy resources
(DERs)-integrated grids. The authors of [11] showed the better
performance of decentralized FL compared to centralized ma-
chine learning algorithms against false data injection attack in
photovoltaic (PV) systems. In [12], the authors combined the
federated k-means clustering algorithm with variational mode
decomposition and SecureBoost to improve the prediction
performance for the day-ahead load forecasting. The authors of
[13] showed the benefits of applying both horizontal and VFL
in protecting user privacy, securing power traces, and prevent-
ing data leakage for power consumption datasets. A distributed
deep learning-based VFL method, SplitNN, was introduced
in [14], which showed efficient performance compared to
other federation algorithms in terms of validation accuracy
and computational resources. Further, several configurations of
SplitNN using various pooling functions—including element-
wise average, maximum (max), sum, multiplication, and
concatenation—were evaluated, where element-wise average
and max showed consistent and efficient performance across
various datasets.

Yet none of these works focused on addressing the evolving
vulnerabilities in FL architectures that might have impacted the
performance of the aforementioned proposed models. A recent
survey on FL threats [15] highlighted how this new learning
paradigm is subjected to several adversarial machine learning
(AML) attacks and emphasized the importance of developing
state-of-the-art defense solutions to ensure the secure operation
of FL architectures. In this work, we perform two layers of
cyberattacks in the distribution grid network while considering
a wide-area controller. In Layer 1, cyberattacks are performed
on measurement and control signals of a wide-area controller
to develop binary and multiclass classification models using
the SplitNN algortithm. In Layer 2, adversarial attacks are
performed during the online testing of the trained SplitNN
models, and the performance is evaluated for different con-
figurations (pooling functions). To the best of our knowledge,
this is the first work to discuss the performance of a trained

vertical SplitNN against AML threats in the context of grid
cybersecurity.
A. Overview of Vertically Partitioned SplitNN

SplitNN is a VFL paradigm wherein a machine learning
model is divided into different segments that are distributed
across several devices or parties [16]. In this work, the portion
of the SplitNN model is at grid node c, where c ∈ {c}Nc

c=1 is
denoted by the local model, f c

local. Here, Nc represents the total
number of grid nodes. The portion of the SplitNN placed at
the control center is referred to as the global model, fglobal.
Each local data batch Dc is passed through its corresponding
local model f c

local, as shown by equation 1, to create a total of
No local outputs. The local outputs from f c

local, represented by
{aco}

No
o=1, are then transmitted to the control center. Note that

No must be equal across each f c
local. Further, for each batch

of data, the control center receives a set of successful local
outputs from Ns local clients, where Ns ≤ Nc:

{{aso}
No
o=1}

Ns
s=1 = {fs

local(D
s)}Ns

s=1 (1)

Upon receiving a successful batch of local outputs, fglobal,
deployed at the control center, passes the local outputs through
a pooling layer, P : (RNo

,RNs
) → RNo

, to reduce the
dimension of the input to a consistent form. The pooling
layer mitigates communication failures by allowing Ns to
vary per batch. The detailed operation of the pooling layers
is provided in the following subsections. Next, the global
model does a forward pass to create an event prediction,
ŷ = fglobal({{aso}

No
o=1}

Ns
s=1).

Two different global pooling functions for developing
SplitNN-based classification models are discussed here:
1) Output-wise average pooling

Average pooling (AvgPool), introduced in [17], is a common
pooling function wherein a region of data are averaged. At
the control center, we perform pooling operations neuron-wise
on the local output values to create a consistent number of
inputs to the global model. In particular, AvgPool performs
the following computation on the successful transfer of local
outputs from (1) to create the global model inputs, {Avgo}

No
o=1:

{Avgo}
No
o=1 = { 1

Ns

Ns∑
s=1

aso}
No
o=1 (2)

2) Output-wise max pooling
AvgPool is compared against another common pooling

function, known as max pooling (MaxPool). MaxPool, first
used in [18], selects the maximum value from a region of data
rather than the average value. MaxPool is also applied neuron-
wise, and it creates the global model inputs, {Maxo}No

o=1:

{Maxo}No
o=1 = {max

s
({aso}

Ns
s=1)}

No
o=1 (3)

B. Overview of Volt-Watt Control
Volt-watt control (VWC) addresses the voltage fluctuation

and violation problem of the grid by dynamically adjusting
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the active power output of the inverters based on the grid
voltage level. When the grid voltage exceeds a certain upper
threshold, indicating high grid voltage conditions, the inverters
reduce their power output to help stabilize the grid voltage.
Conversely, when the grid voltage exceeds a certain lower
threshold, indicating low grid voltage conditions, the inverters
increase their power output to support the grid voltage. In our
approach, we use a VWC curve to determine the amount of
active power that needs to be absorbed by or injected into the
inverters to control the network voltage. Fig. 1 represents the
volt-watt curve used to control the active power set point of
the inverters. The slope of this curve determines how the active
power output changes in response to variations in voltage at
the point. The mathematical presentation of the curve is shown
in (4).

Fig. 1: Graphical representation of the volt-watt curve

P (Vi) =


Pmax if Vi ≤ V1

Vi−V1

V1−V2
× (Pmax − Pmin) + Pmin if V1 < Vi ≤ V2

Pmin if V2 < Vi ≤ V3

(4)
where Pmax and Pmin represent the maximum and mini-

mum power of the DERs, and V1 and V3 indicate the minimum
and minimum node voltages, respectively. We set V1 and V2 to
0.95 p.u and 1.05 p.u, respectively, according to the American
National Standards Institute (ANSI) [19] standard.

Step 1) Generate data for different cyber-physical 
scenarios for the given controller

Step 2) Train the VFL model offline using the 
generated dataset

Step 3) Perform online testing of the FML model 
during AML threats

Step 4) Compare VFL models with different 
pooling functions using performance metrics

Fig. 2: Proposed methodology for evaluating the FL architec-
ture against adversarial threats

III. IMPACT ANALYSIS OF ADVERSARIAL ATTACKS

Fig. 2 illustrates the detailed steps required for evaluating
VFL in the presence of adversarial threats in real time. These
steps ensure that any kind of VFL could be evaluated for
different types of AML threats as necessary to performance
quantitative risk assessments in the context of artificial intel-
ligence cybersecurity in the grid network.

Step 1: Generate datasets for different cyber-physical
scenarios for the given controller.

In this step, we create several operating points using the load
profile that varies every 15 minutes for the given distribution
grid. Further, different types of data integrity attacks (pulse,
ramp and scale) are simulated on both measurement and con-
trol signals while considering periodic and regular operation of
the VWC. The generated datasets are labeled to facilitate the
training of the supervised learning-based SpilitNN. The classi-
fication schemes used by SplitNN are binary, attack location,
and attack type classification. Binary classification detects any
attack that happened or not on wide-area signals, location-
based classification identifies the location of the attack, and
attack type classification differentiates between different types
of attacks and normal operation.

Step 2: Train SplitNN for anomaly detection system.
SplitNN is trained offline to classify the cyberattacks de-

scribed in the previous section. Each fz
local is initialized with

an equal number of local model outputs, No. During training,
a loss function, L, compares a true label, y, against ŷ to
determine the classification error. The loss function is either
binary or categorical cross-entropy, depending on the number
of classes for the task. For each batch, global weight gradients,
∇global, are computed by taking the partial derivative of the
global weights with respect to the loss. The Adam optimizer,
as introduced in [20], then updates the global model weights
using ∇global. Next, the control center sends each local client,
s, that contributed to the batch its respective gradients, ∇s,
which are then used to update fs

local:

∇s =
∂L(y, ŷ)

∂{aso}
No
o=1

(5)

After each training epoch, the validation loss is computed
using a reserved dataset. When the validation loss fails to
decrease for a prespecified number of consecutive epochs, the
learning rate is decreased to fine-tune the SplitNN. Training
is terminated when the validation loss fails to decrease for a
larger number of consecutive epochs. At the end of the training
process, the weights of SplitNN’s local and global models are
restored to the epoch that yielded the minimum validation loss.

Step 3: Perform online testing of FL to detect attacks
with AML threats.

In this step, two levels of cyberattacks are considered on the
pretrained SplitNN over the wide-area network (WAN). In the
Level 1 (primary) attack, we assume that the adversary is able
to sniff the communication traffic and perform data integrity
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attacks, as defined in Step 1, targeting wide-area signals for the
VWC. For the Level 2 (secondary) attacks, we assume that the
attacker can perform single AML cyberattacks targeting one
of the local machine learning models as well as multiple AML
attacks where multiple local models are compromised at the
same time. In particular, we consider three AML attacks:

Denial-of-service attack: A denial-of-service (DoS) attack
is a communication failure attack on the network infrastructure
to disrupt the communication between the client and the sever.
In this work, we aim to disable a local client from commu-
nicating with the global server [21], [22]. Specifically, the
attacker intercepts and destroys a communication, {azo}

No
o=1,

thereby decreasing the number of successful communications,
Ns, by one per attack.

Adversarial data injection attack: In an adversarial injection
attack, the attacker attempts to subvert the global pooling layer
by replacing local outputs with large values. During a first
epoch over the test set, the attacker listens to the entire set of
local outputs for the target client and records the largest values
neuron-wise (No in total). The largest local output values,
{Ls

o}
No
o=1, for a given target client are represented by (6):

{Ls
o}

No
o=1 = {max

i
{aso,i}

Ntest
i=1}

No
o=1 (6)

During a second epoch over the test set, the attacker
substitutes the true local outputs from the target client with the
recorded values. This is done to ensure that the injected values
come from the real population distribution of the local outputs
from the targeted fz

local while exploiting the global model’s
pooling function.

Replay attack: During a replay attack, the adversary loops
the local outputs of the target client with real values from a
previous time [23]. Similar to the adversarial data injection
(ADI) attack, the adversary first observes a first epoch over
the test set. The attacker records the entire set of local outputs
from the target client, denoted by {{aso,i}

No
o=1}

Ntest
i=1 . At each

time, t, during the second epoch over the test set, the attacker
replaces the target local outputs, {aso,t}

No
o=1, with a different

randomly chosen recorded set (i.e., i ̸= t). The set of injected
values for the target client at time i are given by (7):

{Rs
o,i}

No
o=1 = {aso,t | i ̸= t}No

o=1 (7)

Step 4: Compare SplitNN models with different pooling
functions. Performance metrics for the SplitNN are computed
during online testing using the performance metrics based
on the generated predictions. These metrics include accuracy,
precision, F1 score, and prediction time per sample. Further,
we consider two different pooling mechanisms, AvgPool and
MaxPool, while evaluating the performance of SplitNN against
AML threats.

IV. SIMULATION SETUP

For a case study, we simulate the modified IEEE 13-
bus test system using the OpenDSS software (see Fig. 3).

Fig. 3: BESS-integrated IEEE 13-bus system during primary
attacks

This system is divided into three regions, and three BESS
are connected at three nodes (675, 646, 611). The system
loads are varied every 15 minutes based on the aggregated
load profile of a physical site in Henderson, Nevada [24], to
create several operating points. To develop the SplitNN-based
anomaly detection system, three types of single data integrity
attacks—pulse, ramp, and scale, with defined parameters, as
shown in Table I—are injected into the measurement and
control signals of the VWC (see Fig. 3). The generated datasets
are used for training the local models in Area 1, Area 2,
and Area 3 to perform three types of classification: binary,
attack location, and attack types. Binary classification includes
two labels: attack and no attack; attack location classification
includes four labels: no attack, Area 1, Area 2, and Area 3;
and attack type classification includes four labels: no attack,
pulse, ramp, and scale attacks.
TABLE I: Attack scenarios for training and testing models

Attack Type Attack Parameters Area

Pulse Magnitude =[0.9, 1.1, 1.4],
Duty Cycle = [0.3, 0.5, 0.8] A1, A2, A3

Ramp Ramp = [0.5, 0.7, 0.3],
Direction = [-1, 1] A1, A2, A3

Scale [1.1, 0.9] A1, A2, A3

Fig. 5 presents the simulation setup for training SplitNN
using the data aggregators from Area 1, Area 2, and Area 3.
Hyperparameter and model architecture tuning is performed
using random search, introduced by [25], using 30 trials each.
The chosen architecture and hyperparameters are selected by
the minimum validation loss. The model architectures and

TABLE II: SplitNN architectures and hyper-parameters
A B C D E
Binary Classification

MaxPool 2 110 2 96 2.344e−3
AvgPool 2 71 3 65 3.332e−3

Attack Location Classification
MaxPool 3 91 1 111 8.885e−3
AvgPool 2 109 1 26 3.682e−4

Attack Type Classification
MaxPool 2 110 1 95 1.713e−3
AvgPool 1 56 2 118 1.345e−3
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Fig. 4: Simulation setup for training SplitNN

Fig. 5: Simulation setup for testing SplitNN against AML threats

hyperparameters used for each classifier are given in Table II.
The columns of Table II are as follows: (A) number of hidden
layers per f c

local, (B) number of neurons per hidden layer in
f c

local, (C) number of hidden layers in fglobal, (D) number of
neurons per hidden layer in fglobal, and (E) initial learning rate.
Each local model is initialized with No = 6. The learning rate
decay factor is set to 50% after 3 consecutive unsuccessful
training epochs, down to a minimum of 10−7, and training is

terminated after 15 consecutive unsuccessful training epochs.
During the online testing, both the primary attacks against

the VWC and the secondary attacks against the local model
outputs are launched over the WAN. The testing setup is shown
in Fig. 5. The pretrained SplitNN is trained to perform only
one of the binary, attack location, or attack type classification
for the primary attacks. We compare the performance of the
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SplitNN with two global pooling functions, AvgPool and
MaxPool, during various AML scenarios.

V. RESULT ANALYSIS

The performance of the proposed SplitNN-based approach
with two different global pooling layers is tested and evaluated
during real-time testing against three AML attacks. Several
case studies for these three attacks are evaluated using perfor-
mance metrics, as shown from Fig. 6 to Fig. 9. In particular, we
consider seven cases, where Case 0 indicates normal operation
of the SplitNN with no AML threat; Case 1 through Case 3
indicate a particular AML attack on Local Model 1, Local
Model 2, and Local Model 3; and Case 4 through Case 6
indicate coordinated AML attacks on any of the two local
models, respectively.

Fig. 6 and Fig. 7 show the accuracy metric and F 1 scores
of the SplitNN for detecting primary attack scenarios when
DoS attacks are performed on local models for different cases.
The SplitNN shows robust performance during the binary
classification compared to the attack location and attack type
classifications with both the MaxPool and AvgPool layers.
Because the attack location and attack type classifications
have multiple labels, the DOS attacks have a more severe
impact in different cases. It also means that the SplitNN is
more resilient against DoS attacks while performing binary
classification than the other classifications.

Fig. 8 and Fig. 9 represent the accuracy and F 1 scores
during the ADI attacks. In this case, both pooling layers
are vulnerable to high-valued fake data because MaxPool
passes the highest valued neuron element-wise across clients,
and AvgPool computes an element-wise average. During the
binary classification, both AvgPool and MaxPool are entirely

subverted by the ADI attack. During the attack type classifica-
tion, MaxPool mitigates the ADI slightly better than AvgPool
during cases 1, 3, and 5. Note that outside of Case 1, both
AvgPool and MaxPool are heavily subverted by the ADI attack
during the attack type classification. In the attack location
classification, MaxPool performs much better during Case 3
and slightly better in Case 6, but it worse or equal during the
other experimental cases. In general, MaxPool displays a more
volatile mitigation ability than AvgPool during the ADI attack.

Fig. 10 and Fig. 11 depict the accuracy and F1 score during
the replay attacks. Like the ADI attacks, the replay attack is a
data injection. Moreover, MaxPool displays the same volatil-
ity in mitigation ability compared to AvgPool. The binary
classification performances are similar to the ADI scenario,
with MaxPool outperforming in cases 3 and 5 but falling
behind or approximately equal in the other cases. The attack
type performances exhibit the same comparison. During the
attack location classification, the MaxPool mitigation volatility
is even more drastric. This is highlighted by outperforming
AvgPool during cases 3, 5, and 6 while performing much
worse during cases 1, 2, and 4.

Table III summarizes the SplitNN performance during the
AML attacks. It averages each computed performance metric
by the number of clients targeted by the AML threats. Table
III shows that AvgPool has better performance than MaxPool
during DoS attacks during all three classification schemes. In
contrast, MaxPool is more resilient than AvgPool against ADI
attacks during the attack location and attack type classifica-
tions. Both MaxPool and AvgPool are entirely subverted into
the null model during ADI attacks on binary classifiers, as
the accuracy for each is 50%. For the replay attack, MaxPool

TABLE III: Averaged performance metrics of VFL models during testing with various AML scenarios

Accuracy Precision F1 Score
Time/Sample

(ms) Accuracy Precision F1 Score
Time/Sample

(ms)

No AML Attack 0 0.9878 1.0 0.9877 0.1818 0.9773 1.0 0.9768 0.1658
1 0.9543 0.9975 0.9522 0.1252 0.9274 1.0 0.9206 0.1045
2 0.8494 0.9816 0.8250 0.0945 0.7960 1.0 0.7213 0.0884
1 0.5000 0.5000 0.6667 0.0846 0.5000 0.5000 0.6667 0.0825
2 0.5000 0.5000 0.6667 0.0854 0.5000 0.5000 0.6667 0.0789
1 0.7930 0.7278 0.8192 0.8434 0.8037 0.7585 0.8230 0.7918
2 0.6520 0.6061 0.7140 1.6147 0.6520 0.6156 0.6999 1.5166

No AML Attack 0 0.9576 0.9578 0.9575 0.2504 0.8911 0.8978 0.8902 0.1461
1 0.8713 0.8836 0.8703 0.0872 0.6550 0.5698 0.5879 0.0938
2 0.5884 0.5840 0.5491 0.0721 0.4430 0.2949 0.3282 0.0744
1 0.3634 0.4044 0.2486 0.0624 0.4814 0.4254 0.3940 0.0656
2 0.2500 0.0625 0.1000 0.0665 0.2677 0.1470 0.1306 0.0663
1 0.6911 0.7036 0.6872 0.9667 0.6574 0.6666 0.6556 0.7927
2 0.4496 0.4567 0.4407 1.4649 0.4397 0.4472 0.4375 1.6186

No AML Attack 0 0.7055 0.7535 0.6815 0.2289 0.5901 0.6932 0.5545 0.1278
1 0.5062 0.5865 0.4645 0.0792 0.4123 0.4089 0.3488 0.0816
2 0.3136 0.2276 0.2451 0.0695 0.2659 0.1848 0.1785 0.0660
1 0.3292 0.2031 0.2159 0.0628 0.3608 0.2952 0.2702 0.0661
2 0.1910 0.0427 0.0687 0.0619 0.2117 0.0710 0.0973 0.0654
1 0.4684 0.4865 0.4489 1.1536 0.4317 0.4921 0.3991 0.7753
2 0.2810 0.2855 0.2668 1.5152 0.2810 0.3069 0.2534 1.4783

Scenario # Targets

AvgPool MaxPool

Binary Classification

DoS Attack

ADI Attack

Replay Attack

Attack Location Classification

DoS Attack

ADI Attack

Replay Attack

Attack Type Classification

DoS Attack

ADI Attack

Replay Attack
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Fig. 6: Accuracy metric against the DoS attack
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Fig. 7: F 1 score against the DoS attack

performs better during cases 1, 2,and 3 during the AML attacks
on the binary classifier but worse or equal to AvgPool during
all other scenarios. Finally, for each classification scheme,
AvgPool has a higher baseline performance than MaxPool at
detecting primary attacks when no AML threats are present.

Note that we also compute the average processing
time/sample for both pooling layers during the cyberattacks
and normal operation. We observe that the average processing
time/sample during normal operation is higher for AvgPool
than MaxPool because of the added computational complexity
during the averaging process. In the case of AML-based DoS
and ADI attacks, the average processing time/sample decreases
in both pooling layers for all three classification models;
however, it increases to approximately 1.5 milliseconds during
replay attacks. Note that calculating replay attacks has a higher
computational complexity than calculating the other two AML
attacks.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a methodology for evaluating the per-
formance of VFL against different types of AML attacks dur-
ing online testing in the grid network. Initially, the SplitNN-
based VFL was considered for developing three classification
models for detecting, locating, and identifying different types
of (primary) cyberattacks on wide-area signals of the VWC
in the grid network. These cyberattacks include pulse, ramp,
and scale attacks, which were simulated across three different
zones in the distribution grid. Later, we described AML-based
cyberattacks, including DoS, ADI, and replay attacks, which
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Fig. 8: Accuracy metric against the ADI attack
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Fig. 9: F1 score against the ADI attack
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Fig. 10: Accuracy metric against the replay attack
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Fig. 11: F1 score against the replay attack

were launched during the testing phase of the trained SplitNN
network, despite being absent during the training phase.
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Two pooling layers, AvgPool and MaxPool, were considered
during the simulation-based testing of the applied SplitNN
network. Our simulation-based evaluation showed that case
studies related to applying multiple AML attacks at the same
time severely impact the regular operation of the trained
SplitNN compared to single AML attacks. Also, the impact
of these AML attacks varies with the nature of the attack
and the pooling layers. Further, the computed performance
metrics showed that the SplitNN is more capable of reducing
the impact of a DoS attack than ADI and replay attacks. We
also observed that the processing time/sample is higher during
replay attacks because of the added computational complexity
during testing.

For future work, we plan to develop an attack-resilient
pooling layer by incorporating concatenation and stochasti-
cally chosen order statistic functions. We will further evaluate
the performance of VFL models under various AML threats,
incorporating multiple local models in large-scale power grid
networks.
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