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ABSTRACT  
This project is part of a national initiative to showcase the benefits of incorporating low-
temperature geothermal resource assessment into the deployment of geothermal heating, combined 
heat and power (CHP), and geothermal direct-use (GDU) technologies. The initiative was 
established to accelerate the country's decarbonization efforts by identifying potential for low-
temperature geothermal resource utilization (<150°C, e.g., CHP and GDU) in selected sedimentary 
basins with numerous population centers.  

The play fairway analysis (PFA) methodologies in this study were adapted from previous PFA 
investigations of sedimentary basin geothermal play types (SBGPTs) that evaluated the potential 
for low-temperature resources (<150°C). Workflows, relevant datasets, a new Python library, and 
common and composite geological criteria maps are utilized to develop low-temperature 
geothermal resource favorability maps for the Denver Basin, a sedimentary basin spanning 
Colorado, Nebraska, and Wyoming. The replication of these methodologies in other SBGPTs can 
evaluate potential for low-temperature resources. To facilitate future assessment of low-
temperature geothermal resources in SBGPTs, this project provides PFA workflows, data, tools, 
and favorability maps that will ultimately support the utilization of low-temperature geothermal 
resources in sedimentary basins. 

1. Introduction  
Sedimentary basins often have numerous layers of highly porous rocks and can have elevated 
fracture permeability, depending on the stress regimes affecting each basin. Candidate fluids for 
low-temperature geothermal utilization (<150°C) readily accumulate in these naturally porous, 
fractured rocks at depth. Nearly half of the United States is underlain by sedimentary basins that 
have been widely uninvestigated for low-temperature geothermal resource potential (USGS 2022).  

A sedimentary basin geothermal play type (SBGPT) is influenced by its historical development 
and current tectonic and geological conditions. Crucial elements of an SBGPT include heat 
sources, the presence of circulating fluids (either natural or injected) for heat transport, reservoir 
porosity and permeability as well as storage attributes (both natural and induced), and reservoir 
seals. These characteristics differ from hydrocarbon play systems, which are characterized by their 
source rock, reservoir traps, and trapping mechanisms (Doughty et al. 2018). 
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Most hydrothermal plays dominated by conduction in sedimentary basins occur in deep aquifers 
with a nearly normal thermal gradient (Moeck 2014). Variations in porosity and permeability are 
dictated by lithology, faulting, diagenetic patterns, and stress fields (Wolfgramm et al. 2009; 
Hartmann and Beaumont 2000), all of which are significantly shaped by the evolution, subsidence 
rates, and contemporary tectonics. Previous research focusing on geothermal resources in 
sedimentary formations emphasized those with high porosity/high permeability (~100 mD) for 
effective convection (Augustine 2014) or high porosity/low permeability at elevated temperature 
gradients, typically found at depths greater than 3 km (Moeck 2014). SBGPTs with low 
permeability may harbor petrothermal resources, which can be accessed by enhancing 
permeability through various reservoir stimulation techniques (Zimmermann et al. 2007). The 
storage capacity related to the host rock’s porosity could critically affect the performance of 
Enhanced Geothermal Systems (EGS) in hot sedimentary aquifers (Rybach 1981). 

It is imperative that more research be conducted to evaluate the potential for low-temperature 
geothermal resources in highly permeable and porous rocks of sedimentary basin geothermal play 
types (SBGPTs). This study centers on implementing a geothermal play fairway analysis (PFA), 
adapted from the hydrocarbon industry for low-temperature resources in SBGPTs, with a specific 
focus on the Denver Basin. The workflow is based on the forthcoming Geothermal Play Fairway 
Analysis Best Practices report (Pauling et al. 2023) and the Low-Temperature Geothermal Play 
Types assessment (Davalos-Elizondo et al. 2023), which identified a general geothermal PFA 
process (Figure 1).  

PFA methodologies should be adapted to each geothermal play type individually. To classify this 
SBGPT, we used the scheme suggested by Coleman and Cahan (2012) based on a simple 
geological setting (Figure 2): (1) intracratonic basins created within the boundaries of a craton; (2) 
pericratonic basins formed near or accreted to the margins of the craton; (3) intercratonic basins 
formed between cratons and extend onto oceanic crust; and (4) oceanic basins that developed 
independently of cratons, primarily on oceanic crust. 

Identification of areas with low-temperature geothermal potential in SBGPTs is a multicriteria 
geospatial decision problem. We suggested three essential criteria for the evaluation of low-
temperature resources (Figure 1):  

• Geologic criteria (e.g., heat, accessible fluid, permeability, and seal). 
• Economic criteria (e.g., population, infrastructure, heating and cooling demand, levelized 

cost of heat). 
• Risk criteria (e.g., exclusion areas, and environmental/natural disaster regions). 

The focus of this paper is exclusively on the geological criteria, our goal is to identify potential 
locations for more detailed geological data collection. Further work has been conducted to 
effectively integrate other criteria in the future. 
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Figure 1: Flow chart outlining a generalized methodology for low-temperature assessment resources modified 

from Pauling et al. (2023) by Davalos-Elizondo et al. (2023) 

 
Figure 2: Present lithospheric-asthenospheric boundary thickness of North American continent from Yuan and 

Romanowicz (2010). A thick black dashed line indicates the borders of the craton 
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2. Background 
The Denver Basin is characterized as a geothermal sedimentary foreland basin play type (Figure 
3). This foreland basin is located on the eastern side of the Rocky Mountain orogenic belt in a 
pericratonic setting. Foreland basins are sedimentary basins that form between an orogenic belt 
and a craton, characterized by thick sedimentary deposits and asymmetric shape (Allen et al. 1986). 
They develop due to the weight of thickened crust and deposited sediments, causing the lithosphere 
to bend downward and create zones of extension and normal faulting. The formation of foreland 
basins is driven by factors such as horizontal compression, slab pull, lateral asthenospheric push, 
and delamination of the retreating mantle lithosphere (Garcia-Castellano and Cloetingh 2011). The 
rigidity of the plates also plays a key role in controlling the geometry and drainage history of 
foreland basins. 

The Denver Basin is asymmetric, with suspected granite basement rocks underneath the 
sedimentary cover. It becomes much deeper as it stretches towards the Front Range in the western 
direction, reaching depths of around 3.5 km, while it is approximately 1.6 km deep in the eastern 
part (Dixon 2002). It spreads across more than 82,000-km2 area, primarily in Colorado, followed 
by smaller portions in Wyoming and Nebraska (Fishman 2005). This basin is renowned for its 
petroleum extraction, with thousands of wells drilled for oil and gas production in various reservoir 
formations, providing data that describes the subsurface conditions. 

 
Figure 3: Orogenic Belt Geothermal Play Type and related SBGPT foreland basin. Modified from Moeck 

(2014) 

3. Methodology 
A classification of the Denver Basin geothermal play type as a foreland basin was established to 
outline the specific scope of work. Our approach includes:  1) identifying relevant data; 2) 
developing python code to combine multiple relevant data into PFA for geological criteria; and 3) 
rendering favorability or common criteria maps for low-temperature geothermal resources. 

The PFA workflow was adapted accordingly (Figure 2) allowing overlaying of multiple geological 
criteria layers (see Table 1) to evaluate resource potential. We created favorability maps to identify 
suitable regions for CHP and GDU technologies. Moreover, the Python library titled “geoPFA” 
was developed and utilized to generate a workflow for producing common and composite maps 
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(Section 5). This Python library and its implementation are updated as the project and related work 
evolve, and it is expected to be released as an open-source toolset when it is robust enough. 

QGIS, an open-source geographic information system from OSGeo, was used in combination with 
the geoPFA Python library to combine and process (e.g., interpolate, standardize, transform) 
different sets of geographic data related to the geological criteria from the raw data layers (e.g., 
heat, fluid, permeability).  

The relevant data for this PFA workflow is outlined in Table 1, but may vary depending on data 
availability, region, and new discoveries. 

Table 1. Relevant data suggested for PFA of low-temperature geothermal resources in the Denver Basin 

GPT and Combination Method Criteria Component Data 

Pericratonic 
Foreland basin 

Modified Voter Veto 
Geological 

Heat 

Bottom-Hole Temperatures 

Gradient Temperatures 
Thermal Conductivity 

Heat Flow 

Accessible Fluid 

Hot Springs 

Co-production Water (BBL) Per Year 

Groundwater Wells 

Permeability 
Faults and Shear Zone 

Earthquake Data 

4. Relevant Data 
4.1 Geological Criteria 

Choosing optimal locations for low-temperature GHC and GDU opportunities involves the 
consideration of multiple factors. Suitability of sites is determined, in-part, based on geological 
criteria, such as heat, fluid, and permeability components (Section 3, Table 1). Combining these 
criteria into favorability maps suggests viable domains for low temperature geothermal resource 
utilization, without consideration for other important factors like risk and economic criteria. 

4.1.1 Heat Component Analysis  

Analyzing the temperature at the bottom of oil and gas wells, along with navigating limited 
certainty of reported bottom-hole temperature (BHT) accuracies, forms the basis for evaluating 
geothermal resources, according to Spicer (1964) and Whealton (2015, 2016). The end goal of our 
assessment is to determine the heat flow throughout the Denver Basin, suggesting areas of high 
heat flow that may be suitable for low-temperature geothermal resource utilization. There is a 
wealth of temperature data Python from oil and gas wells in the Denver Basin; decades of historic 
oil and gas production has provided many datapoints in the western and central regions of the 
Denver Basin. The basis for our heat component evaluation relies on BHT datasets as reference 
points for temperature at depth. 
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We identified three BHT datasets (Figure 4A): (1) Southern Methodist University (SMU); (2) 
Association of American State Geologists (AASG); and (3) Colorado Geological Survey (CGS). 
BHT data from Wyoming, Nebraska, and Colorado was gathered and narrowed down to focus 
specifically on the Denver Basin region. Despite abundance of BHT data, measurements can be 
distorted by heat changes caused by drilling and errors during data collection; for instance, if BHT 
data comes from a survey conducted a week after drilling, mud circulation could cause the BHT 
measurement to be falsely lower than if the data point were collected from a thermally stable shut-
in well. Several correction methods have been created to estimate equilibrium conditions for BHTs 
in sedimentary basins (e.g., Harrison et al. 1983; Förster & Merriam 1995; Blackwell & Richards 
2004). 

To estimate heat flow and temperature distribution at depth, understanding the thermal 
conductivity of thousands of boreholes was necessary. It involves assigning lithologic units, unit 
thicknesses, and thermal conductivities from the surface to the basement for each borehole that 
had BHT data in the analysis. We utilized the lithology charts and thermal conductivity values 
used by the SMU data from AAPG COSUNA in the Denver Basin. To complete this assessment, 
an interpolation was performed, which estimated the likely distribution of thermal conductivity 
throughout the basin (Figure 4B). Higher thermal conductivities are associated with the southwest 
Denver Basin, while a nearly static thermal conductivity of 1.6 W/m/K is consistent in the 
northeast. 

This project generated a uniformly corrected set of BHT datapoints from the SMU, AASG, and 
CGS datasets. Applying a generalized correction scheme was required. If a prior BHT correction 
scheme had been applied to the constituent datasets, that correction was reversed to obtain the 
original uncorrected BHT datapoints (i.e., AASG). We used the Förster correction to unify the 
datasets. The Förster correction has been suggested as the best correction scheme tailored for 
Denver Basin based on equilibrium data by Crowell et al. (2012; Equation 1): 

Tcf = 0.0124 x + 7.8825         (1) 

where Tcf is the temperature correction factor, and x is the depth at which the BHT measurement 
was reported. It is important to mention that this correction formula is only suitable for the Denver 
Basin and potentially other basins that have comparable stratigraphy (Crowell et al. 2012). For this 
reason, the Förster equation was applied to the Wyoming portion of the Denver Basin to the limited 
BHT datapoints in that region, as the stratigraphy is not drastically different from the Colorado 
and Nebraska portions (which the Förster correction scheme had been applied to previously in 
Crowell et al. 2012). The BHT data of SMU, AASGS, and CGS were corrected with the Förster 
equilibrium factor (Figure 5). Overall, the improved unified BHT dataset offered a more thorough 
evaluation of BHTs, reducing uncertainty and navigating potential errors in the datasets via 
tailored correction scheme for the Denver Basin. This unified BHT data will be available in the 
Geothermal Data Repository. 
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Figure 4: A. Bottom-hole temperatures of oil and gas wells in the Denver Basin from three different datasets: 
SMU, AASG, and CGS. Depth increases to the western side and decreases towards the eastern side of the basin. 
B. Thermal conductivities interpolation of rock across the Denver Basin 

Figure 5: Bottom-hole temperature data of SMU and CGS corrected with the Förster equilibrium factor 
suggested by Crowell et al. (2012) 

Heat transfer is also an essential factor in assessing the potential of geothermal resources, as the 
heat discharge data linked to Earth's heat flow is a vital indicator of potential. Heat flow maps are 
valuable tools for pinpointing regions of high geothermal resource potential in a specific area or 
country (Blackwell et al. 2007). The geothermal gradient plays a vital role in determining heat 
flow. Therefore, the uniformly corrected BHT dataset was used to estimate a temperature-depth 
profile (Figure 6A) in equilibrium developed by Crowell et al. (2012). We estimated the 
geothermal gradient as follows (Equation 2): 

A B 
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dT/dZ = [corrected BHT datapoint – Surface temperature (°C)]/ depth (m)    (2) 

where dT/dz is the geothermal gradient (°C/Km). 

 

Figure 6: A. Geothermal gradient estimated from BHT data at 1 km. The average gradient temperature in the 
Denver Basin ranges around 42°C/km to 63°C/km. B. Heat Flow map of the Denver Basin calculated from 
geothermal gradient and thermal conductivities from SMU data. The heat flow map shows ranges around 64 
to 96 mW/m2. NWTC: National Wind Technology Center facility 

We calculated heat flow as a function of depth (mW/m2; Figure 6B). The uniform BHT dataset is 
required to estimate a geothermal gradient in conjunction with the lithology-dependent thermal 
conductivity. The following equation was used to estimate the heat flow: 

Q= dT/dz * K       (3) 

where Q is the heat flow (mW/m2), dT/dz is the geothermal gradient (°C/Km), and K is thermal 
conductivity (W/m/ K), see Figure 4B. 

The 1D heat flow model contains the following input assumptions and simplifications:  

1. The model assumes that the generation of radiogenic heat is consistent and evenly spread 
throughout sedimentary rocks. 

2. Input data was spatially interpolated to estimate the average and standard error of the 
average data values for the resource, producing maps depicting thermal quality in a 
GeoTIFF format (Figure 6). 

In the Denver Basin, BHT data are concentrated in regions containing oil and gas reserves, such 
as central Colorado, while data are scattered in areas lacking exploration, such as southeastern 
Wyoming and southern Colorado. Sparsity of data in areas of the basin necessitates interpolation 
algorithms that can accurately predict nonexistent datapoints in both sparse and clustered datasets.  

A B  
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The intended application of the heat component is to suggest areas with a high geothermal resource 
potential based on temperature gradient as a proxy of heat flow, with high-temperature resources 
above 150°C typically used for generating electricity, while lower-temperature resources (<150°C) 
can be utilized for various direct applications such as heating buildings, industrial processes, 
agriculture, and recreational purposes. 

4.1.2 Fluid Component Analysis  

This first analysis was focused on the presence of coproduction water in oil and gas wells. Water 
production data can be used to provide information about where flowing water exists in the basin. 
It also indirectly provides a proxy for permeability aquifers and/or geothermal reservoirs, which is 
a key factor in hydrothermal resource and direct-use assessment. This type of data indicates 
reservoir quality of rocks by showcasing their capacity to uphold fluid flow rates needed for 
extracting heat from the rocks. 
The main source for this water coproduction data from O&G wells in the Denver Basin is the 
USGS database that collates drilling and production records in the United States. The USGS 
dataset offers a comprehensive summary of the production records of U.S. wells spanning from 
1817 to 2020. It was constructed using information gathered by IHS Markit, a commercial database 
provider. The production figures are consolidated in increments ranging from 2 to 10 square miles, 
detailing the cumulative output of oil, gas, and water volumes. In this study we used water 
production aggregated in 2 miles square that sum production per year in Barrels (BBL; Figure 7A).  

 
Figure 7: A. Water coproduction volumes (BBL) per year from oil and gas wells in the Denver Basin. B. Well 

water levels for Colorado, Nebraska, and Wyoming 

The data quality information mentioned that comparing the annual production numbers with the 
total production figures revealed a discrepancy likely stemming from wells with unspecified 
production years. To ensure accuracy, the consistency between the original and processed total 
production values was verified. Moreover, a cross-check of well counts in various categories was 
performed to confirm alignment, with the disparity between annual and total figures attributed to 
wells lacking spud dates. 

A B 



 

10 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Deeper reservoirs in the Denver Basin are well explored; for instance, over 8,000 wells have been 
drilled across the basin into the top of the Terry ("Sussex") sandstone alone (Fishman 2005). When 
investigating potential for direct-use geothermal energy (range of 50 m to 1,000 m vertical depth; 
minimum 80°C), grasping the potential volume of fluid available in shallower reservoirs is crucial. 
To achieve an estimation of shallow fluid availability, the elevation of static water level for all 
available groundwater wells in the Denver Basin area was calculated in Equation 4: 

WL=GL-SWL       (4) 

where WL (ft) is the water elevation in the well above sea level, GL (ft) is the ground surface 
elevation, and SWL (ft) is the reported static water level measured in the well. The datasets used 
to create an estimated water elevation in the Denver Basin were: SEO groundwater wells, where 
the depth to water (static water level) and well depth was reported in feet (WWDC 2024) and the 
ground elevation was obtained from USGS DEM files and converted to feet; CDSS wells, where 
the water elevation was reported as field 'WLElevation' in feet; and DNR for Nebraska, where 
Static Level was reported in feet. Well water elevation availability is visualized in Figure 7B.   

4.1.3 Permeability Component Analysis  

The permeability component analysis was simplified using structural geology data (e.g., faults and 
shear zones) and earthquake data due to a lack of accessibly data and short time frame to find, 
collect, and organize porosity, thickness, and other permeability data of reservoirs rock in the 
Denver Basin.   

Most of the structural data in the region (Figure 8A) is inferred from surface fault features 
predominantly located in the western and southwestern parts of the Denver Basin. In the western 
section, the prevailing fault structures are primarily high-angle reverse faults that trend northwest 
and dip northeast, as documented by Erslev and Selvig in 1997. On a more specific level within 
the Wattenberg area, north of Denver, smaller but important structural characteristics are evident. 
These include ENE-trending wrench strike-slip faults and related listric normal faults with NNE, 
N, and NNW trends, as highlighted in works by Fishman (2005), Weimer (1996), and Weimer & 
Davis (1996). Research from multiple sources, such as Fishman (2005) and Weimer (1996), 
suggests the existence of five significant wrench faults in the Denver Basin within right-lateral 
movement along vertical planes, extending from the basement to the sedimentary cover (Weimer 
1996). The intricate patterns of faulting indicate that the region is predominantly experiencing 
compressive stress, with the highest horizontal stress oriented towards the NNW, as noted by 
Heidbach et al. (2018).   

Secondary permeability in the Denver Basin was assessed by distance from geologic structures in 
the Denver Basin. In a study conducted by Filina et al., structures in Nebraska were interpreted 
from a filtered magnetic field (2018). The structures identified in the study were digitized and 
included in the assessment of Denver Basin secondary permeability. Colorado structures were 
obtained from the USGS Geologic Map Database, and Wyoming structures were obtained from 
the Wyoming State Geological Survey. Primary permeability data of aquifers and rock formations 
were not accessible. 
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Figure 8: A. Faults and filtered magnetic lineaments and structures in the Great Basin area. B. Earthquakes 
greater than 2.9 magnitude in the Denver Basin from USGS earthquake catalog 

To project secondary permeability of active faults, earthquake data from the 1950s to present day 
that was equivalent to or exceeded 2.9 magnitude was obtained from the USGS earthquake 
database presented in Figure 8B to identify Quaternary Faults and permeability of fluid pathways.  

5. PFA Methodology  
The Python library geoPFA was built with extensibility and reusability in mind, in the hopes that 
it may eventually be developed further and released as an open-source Python library. It is 
technologically agnostic and is modelled after the workflows described in the PFA Best Practices 
report. The library includes tools for: 

• Reading in geospatial data in various formats (i.e., shapefile, TIFF, CSV).  

• Cleaning the data (i.e., projecting onto the same CRS and grid, changing geometry type). 

• Processing the data (i.e., distance function, various interpolation methods).  

• Transforming the data (i.e., standardization, various methods for going from data 
values/data layers to favorability values/evidence layers). 

• Weighting and combining the evidence layers (i.e., Voter-Veto method). 

• Plotting the data and ouputs. 

Throughout this section, examples of how the geoPFA Python library can be used to conduct PFA 
will be provided. The geoPFA is expected to be released as an open-source toolset in the future. 

A B 
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5.1 Configuration 

There are several required inputs for each criterion and each component in the PFA process. These 
include component weights, component prior probabilities, evidence layer weights, and data layer 
transformation methods. In the full PFA, we will also add in criteria weights since there will be 
multiple criteria. 

Component weights and component prior probabilities were assigned using expert opinion. 
Transformation methods were assigned based on a simple understanding of which relative 
relationship between data values and favorability (e.g., high values are more favorable = No 
transformation, or vice-versa = Negate). This could also be done more intelligently in the next 
PFA iteration. Evidence layer weights were also assigned using expert opinion and are set to 1.0 
when there is only one evidence layer within a component (i.e., heat). Below are these parameters 
in tabular format for the geologic criteria only (Table 2).  

geoPFA is built to be extensible to any possible combination of criteria, associated components, 
and data layers. It does so through requiring a configuration file that specifies the relationship 
between the data layers, respective components, and respective criteria. It also specifies the 
weights, units, data column names, and required transformation method for each data layer, and 
the prior probabilities associated with each component. Figure A.1 in the Appendix shows the 
configuration file for the geologic criteria only, in json format, compiling the information from 
Table 2 into a machine-readable format. Note that additional criteria may be added to the 
configuration file and formatted in a similar way. 

Table 2: Table of component weights, component prior probabilities, evidence layers, evidence layer weights, 
and transformation methods applied. This table provides the basis for the configuration file shown in 
Figure A.1 in the Appendix. 

Criteria Component Component 
weight* 

Component 
Prior 
Probability 

Evidence 
Layer Name 

Evidence 
Layer 
Weight** 

Transformation 
method 

Geologic Heat 0.40 0.65 Temperature 
Gradient 

1.0 None 

Geologic Permeability 0.30 0.50 Structures 
(Faults) 

0.50 Negate 

Geologic Permeability 0.30 0.50 Earthquakes 0.50 None 
Geologic Fluid 0.30 0.50 Hot Springs 0.5 Negate 
Geologic Fluid 0.30 0.50 Groundwater 0.2 Negate 
Geologic Fluid 0.30 0.50 Coproduced 

Fluid 
0.3 None 

*Note that the Voter-Veto method, as published in Ito et al. 2017, does not allow use of component weights. We have 
created a modified version of the Veto equation for combining component and criteria probabilities using weights. 
**Note that the data layer weights are set to 1 when there is only one layer associated with a component. 

It is also important that the data directory follows this same structure: there is a directory for each 
criteria, which contains subdirectories for each component, which each contain their respective 
data layers. The temperature gradient shapefile is named as described in the configuration file. 
Everything is also named as it is in the configuration file. This structure is demonstrated in Figure 
A.2 in the Appendix. 
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The configuration file is read into a Jupyter Notebook and stored as a Python dictionary named 
‘pfa.’ This ‘pfa’ dictionary is updated throughout the process so that the entire PFA process is 
stored in a single data structure. This allows users to reference different parts of the PFA process 
throughout the workflow, for example, by comparing the original data layer to the final resulting 
favorability map or comparing the component favorability maps to the criteria favorability map. 

5.2 Read in Data 

The configuration and setup make it straightforward to read in the data (see Appendix: Figure A.3). 
Figure A.3 in the Appendix is a screenshot of the code which uses the ‘gather_data’ function from 
the ‘GeospatialData’ class in the geoPFA Python library. In this code snippet, we limit the data 
gathering only to shapefiles, but this can be adjusted to other formats, or all compatible geospatial 
data formats (currently shapefile, TIFF, and CSV). You can see from the text output that three data 
layers were read in–one for each component of the geologic criteria. 

We can plot the raw data layers and see that they include various geometries (from left to right: 
point, line, and polygon), different CRSs, and different data spacing. The data need to be converted 
into point geometries, interpolated and/or processed to represent a feature of interest (e.g., distance 
from faults instead of fault traces), and projected onto the same CRS and the same grid (Figure 9). 
They also require some cleaning of outliers to show the trends more clearly in the data. These raw 
data layers are stored in Pandas GeoDataFrames (a type of dataframe that stores geospatial 
metadata and geometry) and added to 'data’ keys within their associated layer/component/criteria 
path within the ‘pfa’ dictionary so that they can be plotted at any point throughout the process. 
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Figure 9: Raw data layers input into geoPFA for geologic criteria favorability mapping, including layers 
associated with the heat (red border), permeability (orange border), and fluid (blue border) components 

5.3 Cleaning and Processing 

Cleaning is done in just a few lines of code (Appendix: Figure A.4). This includes projecting 
everything onto the same CRS and filtering out outliers in some datasets by setting everything 
above the 0.9 quantile to the value associated with the 0.9 quantile. Particularly, the coproduced 
fluid and temperature gradient datasets included anomalously high values that masked the trends 
in the data. Outliers above the 90th percentile were filtered out and set to the value at the 90th 
percentile. Next, all the datasets were projected onto the same CRS. WGS 84 (EPSG:3857) was 
used because it is a common projected coordinate system. A projected coordinate system is a 
requirement for the interpolation and distance function to be accurate.  

Linear interpolation is applied to temperature gradient and coproduced fluid data to produce 2D 
maps from these point datasets. A Euclidean distance function is used to calculate distance from 
faults, converting this line dataset into a 2D map. All three of the resulting 2D maps are on the 
same grid with the same CRS. 

This is done using functions built into the ‘Cleaners’ class in the geoPFA. Currently the code 
requires somewhat manual cleaning of the data, but this could be automated in the future through 
allowing the user to specify cleaning methods for each layer within the configuration file. 

Next, the data layers are interpolated/processed into maps (Appendix: Figure A.5). This process 
also puts all the layers onto the same grid through setting the ‘nx,’ ‘ny,’ and ‘extent’ variables. In 
addition, since the ‘interpolate_points’ function in the ‘Processing’ class of geoPFA requires point 
geometry, the polygon geometry of the produced fluid data layer is converted to point geometry 
by calculating the centroid of each grid square and applying the values for each grid square to its 
associated centroid. We have built this functionality into the ‘interpolate_points’ function. 
Currently, this function includes options for linear, cubic, or nearest-neighbor interpolation, and 
the linear option is selected.  
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Figure 10: Processed data layers (or maps) input into geoPFA for geologic criteria favorability mapping, 
including layers associated with the heat (red border), permeability (orange border), and fluid (blue border) 
components Note that gray lines and dots represent data locations. Data locations are not labelled in the 
temperature gradient and coproduced fluid maps because the data points are dense and hide the trend in the 
interpolation 

The fault location data is easily converted into a ‘distance from faults’ map using the 
‘distance_from_lines’ function, and the hot springs and groundwater datasets are converted into 
‘distance from hot springs’ and ‘distance from groundwater observations’ maps using the ‘distance 
from points’ function. The earthquake location data is converted into an ‘earthquake density map’ 
using the ‘point_density’ function. All three of these functions are in the ‘Processing’ class of the 
geoPFA. Similar to the cleaning functionality, geoPFA requires somewhat manual processing of 
the data, but this could also be automated in the future through allowing the user to specify 
processing methods for each layer within the configuration file. 

The resulting maps are added to ‘map’ keys within their associated layer/component/criteria path 
within the ‘pfa’ dictionary so that they can be plotted at any point throughout the process. Above 
are the resulting maps produced from the processed data layers (Figure 10). 
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5.4 Transformation and Layer Combination 

Next, all the data layers need to be converted into evidence layers. This involves normalizing and 
transforming (mapping data values to favorability values) each of the data layers. The evidence 
layers are then weighted and combined using the Voter-Veto method (Ito et al. 2017). 

These steps are all built into the ‘do_voter_veto’ function in the VoterVeto class because 
transformation methods are specific to a given layer combination method. Transformation methods 
are additionally specific to a given data layer and are therefore specified in the configuration file 
for each data layer (Appendix: Figure A.6). For example, lower distance from faults is more 
favorable than higher distance from faults, so the evidence layer is produced by multiplying the 
fault distance map by –1 (‘negate’ method). No transformation methods are applied to the 
temperature gradient and coproduced fluids data layers because higher values are more favorable. 
In the future, transformation methods will be improved to better represent probability distributions 
associated with data layers as they pertain to their respective components and criteria. This will 
enable mapping of probabilities rather than just relative favorability. 

Each data layer is normalized using min-max normalization. This puts all datasets on the same, 
positive, scale so that datasets with higher magnitudes do not dominate the results. Normalization 
may be done using either ‘min-max’ or mean absolute deviation (‘mad’). 

Figure A.6 in the Appendix shows that we are able to normalize, transform, weight, and combine 
all of the data layers using just one line of code and the information (i.e., prior probabilities, 
transformation methods) stored in the configuration file. This uses the ‘do_voter_veto’ function 
from the ‘VoterVeto’ class in the geoPFA.  

The ‘do_voter_veto’ function is written to complete the following steps: 

1. Converts the data from a Pandas GeoDataFrame into a rasterized array to allow linear 
algebra/matrix math. 

2. Transforms the data layers (‘map’) into evidence layers (‘pr’) using the transformation 
method specified for each data layer in the configuration file (if any) and then 
normalizing. 

3. Weights and combines evidence layers into component favorability maps using the 
‘voter’ method with the evidence layer weights in the configuration file.  

4. Combines component favorability maps using the ‘veto’ method. 
5. Combines criteria favorability maps using the ‘veto’ method. 
6. Converts the rasterized favorability maps back into Pandas GeoDataFrames with the 

original geometry. 

In other words, the weights and prior probabilities described in Table 2 are used in a modified 
version of the Voter-Veto equation (Ito et al., 2017). Within the Voter-veto method proposed by 
Ito et al, the Voter method (generalized linear model) is used to combine data layers into 
component favorability maps. Then, the modified Veto equation (element-wise multiplication) is 
used to combine component favorability maps into a geologic criteria favorability map, and to 
combine criteria maps into combined overall favorability maps, vetoing areas where any 
component criteria have a favorability value of 0. The original equations for this methodology are 
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described in Section 2.1 of Ito et al., 2017, and our modified version of the Veto equation is as 
follows:  

Pr(𝑅𝑅) = ∑ 𝑤𝑤𝑐𝑐 Pr(𝑋𝑋𝑐𝑐)𝑐𝑐

max[∑ 𝑤𝑤𝑐𝑐 Pr(𝑋𝑋𝑐𝑐)𝑐𝑐 ] × max[∏ Pr(𝑋𝑋𝑐𝑐)𝑐𝑐 ]         (5) 

where PrR is the probability of a resource, wc is the weight of a given component or criteria, and 
Pr(X_c) is the probability of a given component or criteria. In written language, the equation 
produces a weighted some of the components or criteria, depending on which level the probability 
mapping is occurring on, normalizes by dividing by the maximum value, and scales using the 
product of the individual component or criteria probability maps to ensure that the resulting 
probability map represents a valid probability distribution. The veto portion of the equation is 
optional, but when desired, resulting indices in Pr(R) are set to zero if the associated indices in any 
Pr(X_c) are zero. In the methodology presented here, the veto option is used when combining 
criteria, but not when combining components. 

     
Figure 11: Geologic criteria component favorability maps, including heat, permeability, and fluid 

components, produced using geoPFA 

The resulting evidence layers and component favorability maps are added to ‘fav’ keys within their 
associated criteria/component/layer and criteria/component paths, respectively, within the ‘pfa’ 
dictionary so that they can be plotted at any point throughout the process. The resulting component 
favorability maps are shown in Figure 11. Note that since we only are inputting one data layer to 
map the heat component, the temperature gradient evidence layer is equivalent to heat component 
favorability map, but typically this is not the case. The resulting criteria favorability maps are 
added to ‘fav’ keys within their associated criteria paths (in this case ‘geologic’) within the ‘pfa’ 
dictionary, and the resulting combined favorability map (not yet generated) is stored under a ‘fav’ 
key at the top level of the ‘pfa’ dictionary. The draft geologic criteria favorability map produced 
by geoPFA is shown in Figure 12. 



 

18 
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Figure 12: Combined geologic criteria favorability map of the Denver Basin, produced using geoPFA 

6. Geological Criteria Favorability Map 
The resulting favorability map is shown below in Figure 13. In the future, more robust data 
transformation methods will be implemented to more realistically map data values to probability 
values. 

The map appears to validate the methodology thus far. The map highlights the area to the west end 
of the Denver Basin (e.g., Wattenberg area) where there appears to be intersection between faults, 
some seismic activity, elevated temperature gradient values, ground water presence, a hot spring, 
and relatively high volumes of coproduced fluids. It also highlights some other smaller areas that 
are not as obvious to the human eye, within the northwest (in southeast Wyoming) and southwest 
areas (near Colorado Springs) of the Denver Basin. 

However, the significant reliance on earthquake density as a component of permeability in the 
geothermal favorability map raises concerns about potential artifacts, as the highest probability 
area coincides with multiple back-to-back earthquakes in very close proximity to each other. This 
suggests that the earthquake component may need to be weighted lower in our future analyses to 
avoid artifacts in the resulting favorability maps.  
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Figure 13: Geological Criteria Favorability Map for the Denver Basin 

7. Conclusions 
The study adapted PFA methodologies from previous studies to SBGPT to assess the potential of 
low-temperature resources in the Denver Basin. The resulting favorability map highlights areas 
with high potential for geothermal technology opportunities. While the map is still uncertain, it 
suggests promising areas, particularly in the western part of the Denver Basin. 

To improve the accuracy and uncertainty quantification of the geological resource maps, future 
steps include: (1) incorporating additional high-quality data that provide enough information to 
create confidence layers; (2) adding more layers to the permeability component, particularly those 
that provide information about primary permeability in the geological formations rather than only 
secondary permeability; (3) improving interpolations and implementing more intelligent 
transformation methods; (4) refining prior probabilities and weights for each component (e.g., 
earthquakes will be weighted lower); and (5) building other layer combination methods into the 
geoPFA library, such as weights of evidence. The geoPFA Python library is expected to be released 
as an open-source tool in the future to enable others to use this code for their own PFA studies. 

Furthermore, identifying potential areas for geothermal direct uses, and combined heat and power 
is a complex geospatial decision-making problem that requires consideration of multiple criteria. 
This paper was focused on the geological criteria, including heat, accessible fluid, and 
permeability, as essential factors for evaluating low-temperature resources. However, it is 
recognized that other critical criteria such as risk (seismicity, exclusion areas, and 
environmental/natural disaster) and economic factors (population, infrastructure, heating and 
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cooling demand, and levelized cost of heat) must also be considered in the evaluation process in 
this project. Future work will integrate these additional criteria to provide a comprehensive 
assessment of potential areas for geothermal applications. 

In conclusion, this project aims to accelerate the country's decarbonization efforts by identifying 
opportunities for utilizing low-temperature geothermal resources (<150°C) in sedimentary basins 
with numerous population centers geothermal direct uses, and combined heat and power 
applications. The project has provided PFA workflows, data, tools, and favorability maps to 
support the utilization of low-temperature geothermal resources in the Denver Basin. Future 
improvements will focus on refining the methodology to ensure accurate and reliable results, 
ultimately facilitating future assessment of low-temperature geothermal resources in sedimentary 
basins and supporting the country's transition to a low-carbon economy. 
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APPENDIX A. Screenshots of code using geoPFA Python library 

 
Figure A.1: Configuration file used to map criteria to components, components to data layers, and additional 

information to data layers. This configuration file is part of the required setup for geoPFA 

 
Figure A.2: Example directory structure for input data layers for geoPFA 
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Figure A.3: Screenshot of code to read in data using geoPFA 

 
Figure A.4: Screenshot of code to clean data using geoPFA, including setting the CRS and filtering datasets 
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Figure A.5: Screenshot of code to process data using geoPFA, including interpolation, distance, and density 
functionalities 

 
Figure A.6: Screenshot showing code to transform and combine data layers in one line of code using geoPFA 
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