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Executive Summary
Bottom-up load modeling of buildings offers a versatile approach to simulating baseline demand and scenarios of fu-
ture technology evolution and adoption at the individual building level. This capability is essential to understanding
how future load shapes may change with the adoption of electric equipment and vehicles, particularly as it relates
to grid planning and infrastructure investments. Traditionally, grid planning techniques have used historical load
data to predict future load and infrastructure needs. However, with the anticipated rise in adoption of electrification
technologies such as heat pumps and electric vehicles, historical data become less reliable predictors of the future.
By employing ResStock, a high-fidelity building stock modeling tool, we can fine-tune electrification scenarios and
aggregate models to represent varying geographic resolutions of the grid system, while considering the underlying
features of homes. This may enable a more accurate and responsive approach to anticipate and plan for the evolving
landscape of energy demands. We present a new framework that leverages building stock energy modeling to iden-
tify building models that align with the load shapes and housing attributes of buildings with AMI data. This approach
applies two model layers: (1) a classification step that identifies the presence of air conditioning, electric heating,
and electric water heating, and (2) an optimization routine that identifies building energy models aligning with load
profile data from advanced metering infrastructure meters. This report demonstrates one approach to deploying this
framework, and presents results for three test cases that use both modeled and AMI data to assess performance. For
a test case using AMI data in Fort Collins, Colorado, we observed a median monthly electricity load CV-RMSE
of 16.6%, and a top ten daily heating and cooling median absolute percent error of 7.7% and 8.3%, respectively.
For each AMI meter, we identify a set of potential energy models so that downstream use-cases can account for
uncertainty driven by variability of baseline technologies and occupant behavior, which impact the response to elec-
trification and energy efficiency scenarios. Our results indicate that ResStock has potential as a scalable solution for
modeling residential energy demand at local grid resolutions. Its performance depends on location-specific factors,
underlying building characteristics, and the level of aggregation, offering a path towards more precise and adaptive
distribution grid planning for the evolving energy landscape.
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List of Acronyms
A/C air conditioning

AMI advanced metering infrastructure

DOE U.S. Department of Energy

HVAC heating, ventilating, and air conditioning

IECC International Energy Conservation Code

NREL National Renewable Energy Laboratory

RMSE root-mean-square error

ROC receiver operating characteristic
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1 Introduction
The landscape of long-term load forecasting for grid solutions is evolving, driven by a transition to clean energy
generation, electrification of buildings and vehicles, and changing weather due to climate change (Energy Systems
Integration Group 2022; Zhou et al. 2023). A significant area of uncertainty is estimating building load responses
under increased adoption of electric vehicles and other electric technologies such as heat pumps (Keen et al. 2022;
Blonsky et al. 2019). This challenge is heightened by the lack of historical data for buildings with such technologies
and is further complicated by the effect of future weather patterns on heating and air-conditioning loads (Lindberg et
al. 2019; Energy Systems Integration Group 2024). Furthermore, the lack of insight into homes for energy-burdened
populations poses a significant challenge for equitable grid planning, as it hampers the ability to ensure that all
populations benefit from clean energy transitions. One method to simulate future scenarios with respect to hous-
ing segments is bottom-up physics-based energy modeling, which relies on the detailed physical parameters of a
building, incorporating descriptions of a building’s geometry, envelope construction, equipment, and occupant be-
havior. However, physics-based models are generally not practical to deploy for real buildings at large scales, as
there are major limitations in collecting the building inputs, and the process can be computationally expensive and
labor-intensive. By using existing, representative energy models, we are able to avoid extensive computation time
and uncertainty regarding the housing features. This report outlines a framework that aligns pre-simulated building
energy models with load profile data from utility meters, providing a bottom-up modeling approach for any number
of homes, which can be used to derive insights at local grid resolutions.

1.1 Overview
The objective of this work is to develop and demonstrate a methodology and framework for aligning utility smart
meter data with load profile data from the ResStockTM Analysis Tool (Wilson, Parker, Fontanini, Present, Reyna,
Adhikari, Bianchi, CaraDonna, Dahlhausen, Kim, LeBar, Liu, Praprost, White, et al. 2022). This approach uses
hourly advanced metering infrastructure (AMI) load data and can incorporate static building inputs to identify similar
models in the public ResStock datasets. Our report demonstrates one implementation of this framework across three
datasets: two simulated and one AMI dataset. The study is designed to evaluate the versatility of our methodology,
but the effectiveness of any custom implementation of this framework will depend on data availability, data quality,
geographic resolution, and use cases. ResStock-modeled load profile data are published at 15-minute time steps
and include fuel and end-use energy values for modeled residential buildings in the United States. In addition, this
dataset includes metadata describing the underlying inputs to the models, giving us flexibility to leverage the data
across geographic regions, housing characteristics, and technology adoption. By incorporating a national-scale,
public dataset, this framework can be used in many locations across the country.

We focus on two components of bottom-up building energy modeling useful to long-term load forecasting: (1)
inferring baseline building characteristics and (2) aligning loads with AMI data. Existing approaches to identify
home characteristics include classification and regression models, neural networks, clustering, change-point models,
and other non-intrusive load monitoring techniques (El Kontar et al. 2024; Westermann et al. 2020; McLoughlin,
Duffy, and Conlon 2015; Perez et al. 2017; Milić, Rohdin, and Moshfegh 2021; Beckel et al. 2014; Schirmer and
Mporas 2023). Inferring baseline building characteristics is helpful to identify candidates for technology adoption,
however, impacts from adoption, population growth, and climate change scenarios cannot be directly modeled with
this information. Other studies have introduced methods of physics-based model identification by mapping smart
meter data using clustering methods (Bass, Ezell, and New 2022), with neural network predictions that feed energy
model inputs (Deng et al. 2022), with change-point models to assess retrofit impacts (Kissock, Haberl, and Claridge
2002), or through identification of reduced order models to estimate impacts to a specific enduse (Perez et al. 2014).

Our approach predicts housing attributes using a classification model trained on synthetic energy model data, which
informs an optimization routine to identify the final building energy models from average load and peak AMI data.
The optimization routine minimizes the hourly net and peak electricity root-mean-square error (RMSE) between real
and modeled building loads. Additionally, the optimization formulation can be extended to minimize other housing
characteristics or features for groups of homes depending on use case and data availability. The building energy
model outputs can be used to model scenarios of technology adoption or future weather, and do so at a granular level
to forecast distribution system impacts. We present accuracy results for both model layers and demonstrate various
levels of aggregation to represent geographic resolutions on the grid.
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This report details the methodology to prepare data, infer attributes, and align load profiles in Section 2, presents
results for three case studies in Section 3, and provides a discussion of the findings in Section 4.
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2 Methods
This section details the methodology of our framework, which imports raw AMI and ResStock load data and as-
signs the most similar ResStock building model to the AMI data based on various criteria. The three modules that
accomplish this are:

1. Preprocessing and Feature Engineering (Section 2.1)

2. Model Layer 1: Input Inference (Section 2.2)

3. Model Layer 2: Load Profile Alignment (Section 2.3).

Figure 1 shows the high-level steps of this methodology, where the enclosed portion includes the three modules
within the scope of this report, and the focus of this section. The boxes downstream of the current framework scope
(“Process Scenario Data” and “Distributions of Demand Scenarios”) show the expected uses of the framework out-
puts. These outputs represent how identified energy models may be used for scenario analysis, which would use
the ResStock electrification and energy efficiency measures to design custom scenarios for the region of interest.
This technique aims to protect customer privacy while improving load forecasting predictions. It leverages time-
aggregated load profiles to inherently obscure individual energy usage details. This approach is a key focus of the
research to ensure individual privacy is maintained. The following sections outline methodological details for prepro-
cessing and feature engineering, the input inference model, and the load profile alignment model.

We detail three test cases: two that train and test the framework using only ResStock data in Los Angeles (LA)
County and in International Energy Conservation Code (IECC) climate zone 5B within the state of Colorado, and
one that trains the model using ResStock data and tests using AMI data from the Fort Collins, Colorado, area. Test-
ing on modeled data can help assess the upper end of performance as models are trained and tested on like data and
all underlying features are known, while AMI data help demonstrate the model’s ability to generalize to real-world
data.

Figure 1. Flowchart illustrating the steps to assign ResStock model profiles to AMI data. The boxes
downstream of the current framework scope (“Process Scenario Data” and “Distributions of De-

mand Scenarios”) are included as the expected uses of the framework outputs for scenario analysis.

We present each step of the methodology in the context of a case study using AMI data from Fort Collins, Colorado.
This case study demonstrates the potential for matching AMI data with modeled data and validating the identification
of housing attributes. Table 1 provides a summary of the AMI data used in the case study. Section 2.1 details the
steps to ensure AMI compatibility with our framework, while Sections 2.2 and 2.3 demonstrate the application of
this data to each module.

In addition to the time series energy consumption for each premise, the AMI dataset includes some information
about the presence of air conditioning (A/C) and electric heating, which assists in validating results from both mod-
ules. However, labels for these two parameters were inferred from incomplete data, which may skew the results.
Mislabeling could arise from insufficient metadata, unpermitted home modifications, or a mismatch between the
AMI and metadata collection dates. Premises with heating, ventilating, and air conditioning (HVAC) types labeled
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Table 1. Summary of AMI dataset used in the case study

Location Fort Collins, Colorado, area

Data points 10,000

Collection year 2018

Time step Hourly

End use Electricity usage

Building types Residential: single-family detached, townhomes, duplexes, and multi-family

Other data A/C type; presence of electric heating

as central air or heat pumps in the AMI data are identified as having A/C in our framework. This may exclude homes
with window A/C units and does not give insight into equipment efficiencies. Information about the presence of
electric heating is even less certain; HVAC types labeled as electric baseboard, electric radiant, or heat pump were
assigned as having electric heating. Homes with electric furnaces, however, were not labeled as such and could not
be classified as electrically-heated, excluding the most common form of electric heating in the region. Homes on
electric heating rates are also included, though they represent a small fraction of data points and do not include all
electrically heated homes. In practice, it may be important to further verify the accuracy of these labels if additional
model validation is needed. Although there is potential for mislabeled data points, this does not affect the overall
performance of the framework but rather constrains the accuracy of validation efforts in this specific area.

2.1 Preprocessing and Feature Engineering
To prepare electricity load inputs for downstream models, it is necessary to ensure AMI data compatibility and gen-
erate required features, also known as feature engineering. These steps are needed to (1) align features of modeled
and AMI data, (2) better isolate the energy impacts of housing attributes, and (3) reduce computational complexity.

2.1.1 Ensure AMI Data Compatibility

This methodology requires multiple steps to refine the AMI data and select the appropriate subset of ResStock mod-
els. We cleaned the raw data to reduce outliers and missing data, assessed the AMI data to ensure compatibility with
the load mapping model, and selected the geographic resolution of the modeled data. A final check of compatibility
was performed after new features were generated, as described in Section 2.1.2.

Data Cleaning: Various methods exist (Wang and Wang 2020; Wilson, Parker, Fontanini, Present, Reyna, Adhikari,
Bianchi, CaraDonna, Dahlhausen, Kim, LeBar, Liu, Praprost, Zhang, et al. 2022) to ensure AMI time series data are
correct, consistent, and free of outliers, and their selection is contingent upon the quality of available data. After ini-
tial data exploration we removed buildings with missing data and filtered outliers. We also filtered all nonresidential
meters because these test cases are limited to residential loads. We followed this process to ensure that sufficient data
points remained for our analysis; however, more specialized methods could help limit the number of excluded build-
ings. Given the customized nature of this process, which is adapted to fit the unique characteristics of the dataset,
further details on this step are not provided.

Temporal Resolution Constraints: At a minimum, AMI data need to be available at hourly time steps but can be as
frequent as 15-minute time steps to align with ResStock and meet the requirement of the load mapping models. Ad-
ditionally, a single, full year of AMI data is needed, and the year of collection must align with an available simulated
year of published ResStock data. In our AMI test case, we leveraged Fort Collins, Colorado, data, which is available
at hourly time steps for the year 2018.

Geographic Resolution Selection: The geographic scope of the synthetic loads may need to be fine-tuned depend-
ing on the sample size of the region of interest.1 The goal when selecting the geographic bounds is to include as
much diversity in inputs and load profiles as possible while avoiding the influence of dissimilar weather or stock
characteristics that may be introduced by a wider geography. To match the region of our AMI data, we originally

1This report does not detail how to access the ResStock data; for more information visit https://www.nrel.gov/buildings/
end-use-load-profiles.html.
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queried the ResStock load profile data to limit data to Larimer County, Colorado. Given the relatively low population
in this region, there are a limited number of energy models in the data (n = 527); general guidance for ResStock is
to use at least 1,000 models for a representative sample. Further, the standard error of the mean annual electricity in
Larimer County is 381.0 kWh/yr, with a 95% confidence interval of 10,959 ± 746 kWh. We expanded our region to
include all data points in the IECC 5B climate zone in Colorado (n = 7,871), which resulted in an annual electricity
standard error of 86.3 kWh/yr and a 95% confidence interval of 9,833 ± 169 kWh. If possible, it is best to constrain
to a common climate zone and state so that weather and building practices are generally similar across all models.
Another method of selecting buildings involves filtering by known stock characteristics that align with the AMI data.
If the community of interest is known to be homogeneous across one or more attributes, any of the building inputs to
ResStock could be filtered.2 Figure 2 shows the chosen geography for our modeled data relative to the AMI data.

Figure 2. Map of the AMI data location and selected ResStock geographic bounds.

2.1.2 Feature Engineering

Once the raw AMI and ResStock loads are aligned by geography and time, we can engineer features for both datasets
to use in the downstream models. The central input features used in our load mapping model are the daily average
electricity profiles by month, which produce 12 by 24 arrays for each model and AMI dataset. Figure 3 shows two
examples of this data for a ResStock model and an AMI data point. This aggregation was chosen so that seasonal
impacts are incorporated as well as the daily shape, which is driven by specific technologies, building characteristics,
and use patterns. Although hourly profiles are available to use, that level of granularity may introduce noise from
stochastic occupant behavior and equipment cycling, making it difficult to align across datasets. Identifying a Res-
Stock model in which the day-to-day changes in occupant behavior exactly match a real home’s day-to-day changes
in occupant behavior is unlikely and unexpected.

In addition to average daily profiles, we introduce a penalty for deviating from the peak load. Peak load can be an
important consideration, particularly when analyzing grid system impacts from building electrification scenarios. A
new feature, “average of top-10 daily peaks,” is generated using both datasets for cooling and heating seasons. This
value is calculated by pulling the 10 highest daily peaks during each season and averaging, as shown in Equations
2.1–2.3.

2Further guidance regarding uncertainty in the ResStock datasets can be found in Section 5.1.3 of (Wilson, Parker, Fontanini, Present, Reyna,
Adhikari, Bianchi, CaraDonna, Dahlhausen, Kim, LeBar, Liu, Praprost, Zhang, et al. 2022)
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Figure 3. Daily average electricity profiles for each month for two sample data
points, one from modeled data (top) and the other from AMI data (bottom).

Mi,s = max
j

xi, j,s daily max for all hours j in day i for season s (2.1)

Msorted,s = sort(M1,s,M2,s, . . . ,MNs,s) sort the maximum values in descending order for season s (2.2)

M̄top10,s =
1

10

10

∑
k=1

Msorted,s,k average the top 10 maximum values for season s (2.3)

Other features may be valuable given the specific application. For example, if some housing characteristics are
known in the AMI, it is likely that they can be aligned with metadata from ResStock. Common features may in-
clude square footage, building type, or build year, which could help align load profiles by their underlying housing
attributes in addition to the load shape and peak values.

We compared datasets across three outputs to ensure that the modeled data generally encompass the AMI data.
Without this confirmation, there is an increased risk of poorly matched models and greater errors in identifying
building attributes. Figure 4 shows distributions of the annual energy, the peak heating energy feature, and the peak
cooling energy feature. Although the peak energy distributions show a mismatch, which may impact the accuracy of
the matches, the modeled data have a wider range and are likely to contain viable matches for the AMI data. If the
range of ResStock features does not fully encompass the AMI data features, as indicated by feature exploration or
the final output metrics, an expanded set of models may be necessary. This can be determined using a similar process
to the approach for selecting geographic resolution (Section 2.1.1).

Figure 4. Comparisons of AMI and ResStock data for data within 1.5 × IQR (Inner Quar-
tile Range). The peak cooling and heating outputs are calculated using Equations 2.1–2.3.

2.2 Layer 1: Input Inference Model
Two model layers are employed to identify similar building energy models. The first is the input inference model,
which uses a binary classification model to predict high-level building details of the AMI data. Although aligning

9

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



models using load data will naturally align some of the underlying attributes, load features can be driven by a variety
of factors. This model helps embed confidence in identifying a more accurate baseline of existing technologies.
Without this step, there is a higher chance of mischaracterizing building inputs, which can influence the accuracy
of downstream scenario analyses. We identified three parameters that are reasonably inferred given the data and are
important to the load shape and peaks:

• Has A/C: The presence of air conditioning

• Has Electric Heating: The presence of electric heating systems

• Has Electric Water Heating: The presence of electric water heating systems.

Although we developed a straightforward model for this stage, its effectiveness for specific use cases could be en-
hanced by refining model selection, parameter tuning, and the extension of target variables. We use the XGBoost
(Chen and Guestrin 2016) classifier to generate three models that predict probabilities for the target variables using
the average daily profile feature described in Section 2.1.2. Training data are generated from ResStock load profiles
filtered down to the geographic area of interest. Each of the models are tested under three data scenarios: modeled
data in LA County, modeled data in IECC climate zone 5B, Colorado, and AMI data in Fort Collins, Colorado, as
described in the following sections.

The modeled data scenarios are trained and tested using a k-fold cross-validation package (Pedregosa et al. 2023),
and the AMI data scenario is trained with the full set of ResStock data and tested on 10,000 AMI data points. Since
there is a risk that inferences may not generalize well between datasets, we apply the model in a conservative man-
ner. A logistic regression objective function outputs the probabilities of predictions, and only inferences that meet
a prediction probability of 0.95 or greater are used. If the prediction probability threshold is not met, then the set of
potential models is not filtered for that housing attribute. While binary classification routines classically use a thresh-
old of 0.50 and make predictions for all test data, we use only the predictions with high prediction probabilities, and
otherwise do not make any inferences about housing inputs. Section 2.3 describes how these predictions are used in
greater detail.

2.2.1 Application to Modeled Data

Testing the models using synthetic data is useful to understand the best-case scenario of model performance, as
the training and test data are generated using the same modeling approach. By contrast, testing against AMI data
introduces possible differences arising from the physics-based modeling rather than solely from deficiencies in the
classification models. Further, all target variables for the modeled data are known exactly, whereas AMI metadata
will have more unknowns and greater uncertainty surrounding building attributes. Two locations were simulated: LA
County, which is mostly urban and has high summer loads, and IECC climate zone 5B in Colorado, which tends to
be more suburban or rural and has colder winters. The results characterize the performance of these models, which
are trained and tested using k-fold cross-validation with five folds.

Table 2 and Table 3 present cross-validation precision, recall, and F1 scores for IECC climate zone 5B, Colorado,
and LA County, respectively. Precision measures the ratio of true positive predictions to the total number of positive
predictions made, recall measures the ratio of the true positives predictions to the total number of actual positives,
and the F1 score is the harmonic mean of precision and recall. Inferring building inputs with load shapes depends on
the geographic region. Colorado has significant A/C and electric heating loads, which drive summer and winter load
profile shapes and can therefore be predicted with high confidence, as shown by the F1 scores of both parameters.
Electric water heating can also be predicted well; although it is not as seasonally dependent, it is one of the highest
electric loads in a home and often follows a common schedule when averaging across the month, making it a reliable
target variable to predict.

LA County, conversely, is warmer and has higher summer peaks due to A/C loads. As a consequence, the highest-
confidence predictions are associated with inferring A/C system presence. Although a large fraction of homes have
electric heating (≈25%), the F1 score for predicting the negative class is lower when compared to the Colorado
model. This is because the contribution of heating to the overall load shape is relatively small in most cases, making
it more difficult to identify when analyzing the total electricity load.
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Table 2. Input Inference Model Classification Metrics Using Modeled Data in IECC Climate Zone 5B, Colorado
Parameter Value Precision Recall F1 Score Support

Has A/C
0 0.93 0.98 0.95 2,933
1 0.99 0.95 0.97 4,938

Has Electric Heating
0 0.97 1.00 0.99 6,066
1 0.99 0.91 0.95 1,805

Has Electric Water Heating
0 0.94 0.97 0.95 5,715
1 0.91 0.83 0.86 2,156

Table 3. Input Inference Model Classification Metrics Using Modeled Data in LA County
Parameter Value Precision Recall F1 Score Support

Has A/C
0 0.97 1.00 0.98 4,298
1 1.00 0.99 0.99 9,197

Has Electric Heating
0 0.87 0.97 0.92 10,027
1 0.88 0.59 0.71 3,468

Has Electric Water Heating
0 0.95 0.99 0.97 11,783
1 0.89 0.68 0.77 1,712

Classification metrics are calculated for every test point using a threshold of 0.50 to determine class membership.
In practice, this model is applied when prediction probabilities meet or exceed 0.95 for either the negative class or
positive class. Figure 5 shows all cross-validation predictions sorted by the maximum prediction probability for each
location. The probabilities in these plots can indicate either the positive or negative class, and the value shown is
the maximum prediction probability between the two, i.e., greater than 0.50. The chosen probability cutoff of 0.95
is also shown, which is the point at which inferences are included or excluded from the downstream model, where
those greater than or equal 0.95 exclude non-matching models, and those less than 0.95 include all possible models.
Table 4 shows the percentage of predictions that meet this threshold. These values can be interpreted as confidence
levels for each inference model, where the highest confidence values are most likely to meet the threshold. Inference
of the “Has A/C” parameter for LA County and the “Has Electric Heating” parameter for IECC climate zone 5B,
Colorado, are associated with the highest prediction confidences. Alternatively, the “Has Electric Heating” model for
LA County has the lowest average prediction probability and therefore the smallest fraction of predictions that are
used.

(a) Colorado, IECC climate zone 5B (b) LA County
Figure 5. Prediction probabilities for every prediction from (a) the IECC climate zone 5B, Colorado, model and (b) the LA County

model. Values represent the larger probability of each prediction, which may indicate either the positive class or the nega-
tive class. The probability threshold of 0.95 represents the point at which predictions are included in the downstream model.
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Table 4. Percentage of Predictions That Exceed the Threshold of 0.95 Prediction Probability
Parameter IECC Climate Zone 5B, Colorado LA County

Has A/C 89.0% 97.1%

Has Electric Heating 96.6% 60.9%

Has Electric Water Heating 83.5% 87.9%

Receiver operating characteristic (ROC) curves show true positive vs. false positive rates of binary classification
models at varying thresholds. These values help assess the overall ability to predict both classes and enable compari-
son against other models. Figure 6 shows ROC curves for the two locations in modeled data scenarios and reiterates
the high accuracy for most of the models. Note that the data shown include all predictions, not just those that meet
the probability prediction threshold.

(a) Colorado, IECC climate zone 5B (b) LA County
Figure 6. ROC curves of each inference model and location using cross-validation results from the mod-
eled data scenarios. The area under curve (AUC) values are shown in the legends, which quantifies the
model’s ability to identify classes, where 1.0 is perfect and 0.5 would be equal to a random assignment.

2.2.2 Application to Smart Meter Data

We trained input inference models using ResStock data from IECC climate zone 5B in Colorado and applied them
to 10,000 AMI data points from the Fort Collins, Colorado, area. Because the underlying housing attributes of these
buildings are either unknown or uncertain, there is less opportunity to validate the models compared to testing with
modeled data. The test data in our results have some information regarding the presence of A/C and electric heating,
but there is uncertainty surrounding the negative classes for each of these features. Those classified as positive are
most likely labeled correctly, but there may be homes with a negative label that lack information, particularly for
electric heating. Because precision is impacted by the number of false positives, the values shown for this metric
may be lower than actual. No information is known regarding the water heater fuel; therefore, the accuracy results
are omitted, even though a model is still trained and deployed for that parameter.

Table 5 shows classification results from the inference models applied to the AMI test dataset. The lowest-performing
metric is the precision of the positive class for the “Has Electric Heating” model. There are likely multiple reasons
for this: First, the electric heating fuel labels are imbalanced—9,641 vs. 359—meaning just a small number of false
positives can have a large effect on precision. Second, the true fraction of homes with electric heating is expected to
be much higher than what the labels show, and therefore many of the false positives may in fact be correct if more
accurate information was available. For the “Has A/C” model, the recall of the negative class is the worst perform-
ing. The recall is driven by the number of false negatives, which in the case of the negative class means that this
model is predicting that A/C is present when it is labeled as having none. One explanation may be that the AMI data
do not indicate whether homes have room A/C units. This affects approximately 14% of homes that may be misla-
beled as not having A/C, whereas in the training data, we categorize all homes with central air, room, or heat pump
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systems as having A/C. More generally, there are areas in which the model can be refined to improve performance.
These models are trained using only their load shapes, and they lack information about other parameters such as
building type, square footage, or build year, all of which may influence the response that A/C or electric heating have
on the building load.

Table 5. Input Inference Model Classification Metrics Using AMI Data From Fort Collins, Colorado
Parameter Value Precision Recall F1 Score Support

Has A/C
0 0.75 0.27 0.40 4,087
1 0.65 0.94 0.77 5,913

Has Electric Heating
0 0.99 0.91 0.95 9,641
1 0.24 0.82 0.38 359

The confidence levels associated with the three inference models are visualized in Figure 7. The prediction probabili-
ties from inferring on AMI data are generally lower than the test case for IECC climate zone 5B, Colorado, but most
data points still maintain a probability that exceeds the threshold of 0.95. Inference of A/C and electric heating fuel
have the highest prediction probabilities, with 86% or more data points exceeding the threshold, whereas 71% of the
electric water heating inferences exceed the threshold, as shown in Table 6.

Figure 7. Prediction probabilities for every input inference model prediction of the Fort Collins, Colorado, AMI data.
Values represent the larger probability of each prediction, which may indicate either the positive class or the negative

class. The probability threshold of 0.95 represents the point at which predictions are included in the downstream model.

Table 6. Percentage of Predictions That Exceed the Threshold of 0.95 Prediction Probability for Fort Collins, Colorado, AMI Data
Parameter Percentage Above Threshold

Has A/C 88.3%

Electric Heating Fuel 86.0%

Electric Water Heater Fuel 70.7%

The ROC curves generated by the inference model applied to AMI data are shown in Figure 8. Because these curves
depend on known labels, only the A/C and heating fuel parameters are shown, as information related to water heater
fuel are absent in our AMI test dataset. Despite a higher potential for incorrect labels, the model for predicting
electric heating achieves a better balance between true and false positives, as indicated by the ROC curve. Due to
the large number of negative samples, the false positive rate remains relatively low despite the high number of false
positives and low precision (Table 5), resulting in a consistently high ROC curve.
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Figure 8. ROC curves of each inference model applied to Fort Collins, Colorado AMI data. The
area under curve (AUC) values are shown in the legends, which quantifies the model’s abil-
ity to identify classes, where 1.0 is perfect and 0.5 would be equal to a random assignment.

2.3 Layer 2: Load Profile Alignment Model
We formulated a mixed-integer linear program to map the set of modeled load profiles to real buildings. Our ap-
proach uses a default solver in the PuLP (Roy, Mitchell, and Peschiera 2023) Python package (COIN Branch and
Cut Solver); however, further investigation into the best-performing algorithm may be needed depending on the use
case. Because our optimization formula does not require complex trade-offs and instead simply minimizes the error
across features, this algorithm is sufficient. This layer is formulated as a minimization problem to allow for flexibility
of more complex tradeoffs. Given the constraints presented, an optimization is not necessary, but additional con-
straints to minimize error across building aggregations can easily be incorporated. The model formulation is shown
in Equation 2.4.
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minimize ∑
b∈B

∑
y∈Y

wb,y(rb,yXb,y +α
c pc

b,yXb,y +α
h ph

b,yXb,y) (2.4)

subject to

rb,y =

√
1
H

H

∑
h=1

(xy,h − xb,h)2 for b ∈ B, y ∈ Y

pc
b,y = |p̄c

b − p̄c
y| for b ∈ B, y ∈ Y

ph
b,y = |p̄h

b − p̄h
y | for b ∈ B, y ∈ Y

Xb,y binary, for b ∈ B, y ∈ Y

∑
b∈B

Xb,y ≤ n for y ∈ Y

∑
b∈B

Xb,y ≥ n for y ∈ Y

where,

X Indication of a model being selected
b ∈ B Set of ResStock building models
y ∈ Y Set of AMI buildings
r RMSE for AMI data compared to modeled data
x Average hourly electricity usage (kWh)
H Total number of hours in the daily average profiles
pc, ph Cooling and heating peak errors, respectively (kWh)
p̄c, p̄h Cooling and heating average of top 10 peaks, respectively (kWh)
w Penalty to exclude ResStock models with non-matching attributes identified by the

input inference model
n Number of matches for each AMI building
αc,αh Cooling and heating peak weights

The three terms in the objective function use the generated features described in Section 2.1.2: daily average profiles
by month, the average peak cooling days, and the average peak heating days. The solution to this problem results in
a binary 2D matrix indicating the set of ResStock matches that result in the lowest objective value for all AMI data
points. We framed this as an optimization problem to allow for flexibility in introducing other terms that may be
important and that might require trade-offs. In practice, the RMSE and peak error terms can be precalculated, and the
minimum n could be selected to achieve quicker compute times.

Number of matches, n: We elected to match 10 building models to each test data point in our analyses. By iden-
tifying more than a single model for each data point, distributions of expected housing characteristics and energy
impacts of future scenarios can be outputted. Ideally, there will be many candidates that align with each AMI data
point, resulting in higher-confidence distributions. However, increasing samples will result in a trade-off with the
average error metrics across matches.

Penalty coefficient, w: As discussed in Section 2.2, the set of potential matches for a given AMI dataset is con-
strained when a housing attribute is predicted with high confidence, that is, exceeding a prediction probability of
0.95. The modeled buildings are filtered based on the presence of A/C, electric heating fuel, and electric water heat-
ing. To incorporate the results of the input inference model, a matrix of penalties, w, is generated that effectively
eliminates ResStock building models with attributes that do not match those predicted. This process is mapped out in
Figure 9.

Objective function weights, α: To appropriately balance the impacts of individual terms in the objective function,
we applied weights to scale the cooling and heating peak error penalties. A parametric analysis informed the values
of these weights, during which the cooling and heating peak term weights were incremented, and the impacts to the
monthly CV-RMSE (Equation 2.5) and the peak errors were observed, as show in Figure 10. This analysis revealed
a gradual increase in the monthly CV-RMSE and a sharper reduction in peak errors as peak weights were increased.
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Figure 9. Demonstration of the process by which ResStock models are filtered to target specific housing characteristics with
the input inference model. The example probabilities shown represent the prediction probability for each housing attribute

inference; those that exceed 0.95 will impact the available ResStock models while the other does not filter any models.

Based on this analysis, we selected equal weights of 0.5 to apply to both heating and cooling in the objective func-
tion. Future applications could fine-tune these weights further.

Figure 10. Parametric analysis of weights for the peak heating and cool-
ing features, and resulting trade-off between variance and peak error.
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We set the input inference model as the first layer of the framework to identify housing attributes and reduce the
parameter space that feeds into the optimization layer. This second optimization layer outputs the n ResStock models
that minimize the objective function for each test building. We applied this workflow to modeled and AMI test
datasets, as shown in Section 3.

2.3.1 Outputs

The optimization layer outputs a set of n building IDs that correspond to synthetic ResStock models. Figure 11
shows examples of the AMI and building model loads, which are used to assess one aspect of model performance.
The underlying housing characteristics of the matched building models can also be outputted, enabling a better
understanding of the baseline housing stock, which homes may be eligible for certain electrification scenarios, and
how those scenarios impact loads.

Figure 11. Two AMI test buildings from Fort Collins, Colorado, and their
matches for a week in the winter (January) and a week in the summer (August).

To assess the input inference model performance, we output percentages of the correct attributes for each set of
matches. Metrics applied to final outputs include the hourly and monthly CV-RMSEs (Equation 2.5) and absolute
percent errors for the average of the top ten peaks. Section 3 displays figures and metrics evaluating these outputs in
the context of the case studies.
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CV-RMSE =

√
1
n ∑

n
i=1(yi − ŷi)2

y
×100% (2.5)

where,

n Number of observations (months or hours)
yi Observed value for the i-th observation
ŷi Modeled value for the i-th observation
y Mean of the observed values
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3 Results
Three aspects of the model are analyzed to assess its performance: (1) accuracy of predicting baseline housing
attributes, (2) hourly and monthly electricity usage errors, and (3) summer and heating peak errors. Although these
are interrelated, input parameters may still need to be adjusted to enhance specific outputs as needed. Adjustments
may include changes to the input inference prediction probability threshold, objective function weights, or feature
engineering. This section presents results from applying the framework to modeled datasets in LA County and IECC
climate zone 5B in Colorado, as well as the AMI test data in Fort Collins, Colorado. We reserved 1,000 building
models as test data in each modeled test case to represent AMI data, and the remaining models were left as potential
matches. This resulted in test data that accounted for approximately 13% of the IECC climate zone 5B, Colorado
building models and 7% of the LA County building models. The AMI test included the full set of IECC climate zone
5B, Colorado ResStock models as potential matches.

3.1 Prediction of Building Attributes
We assessed the rates of alignment between test buildings and their matches for certain attributes. Although the first
layer of the framework helps to identify some of the test building attributes, the final output of building attributes
checks the accuracy of all buildings after running the full workflow. For each set of model matches, we collected the
values of A/C presence, electric heating fuel presence, and electric water heating presence and compared to known
values in the test data. The modeled test runs allow us to check the accuracy of any predicted housing attributes
relative to the synthetic modeled dataset, whereas the AMI dataset has only limited information about underlying
attributes.

3.1.1 Modeled Data

Figure 12 shows distributions of the two modeled test runs. In general, there is a very high rate of alignment for
the three housing attributes shown. Given similar modeled data are used as the test data, these results are expected
to be near the upper limit in the framework’s ability to infer characteristics. These results are similar to those of
the inference models, but because the second layer minimizes across energy metrics without considering housing
attributes, results are expected to differ slightly.

(a) Colorado IECC climate zone 5B (b) LA County
Figure 12. Percentage of accurate matches across three housing characteristics for each test build-

ing, indicating the proportion of matches sharing the same housing characteristic as the test building.
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3.1.2 Smart Meter Data

Figure 13 shows the accuracy of A/C presence and electric heating fuel attributes when applying the AMI dataset.
We anticipate some reduction in accuracy compared to the modeled data due to (1) differences between the training
data (ResStock) and the test data (AMI) and (2) uncertainty surrounding the housing characteristic labels in the AMI
data.

Figure 13. Percentage of accurate matches across two housing characteristics for each Fort Collins, Colorado, AMI
test building, indicating the proportion of matches sharing the same housing characteristic as the test building.

3.2 Load Profile Matching Results
This section examines model performance using electricity load data of test and simulation buildings. The CV-
RMSE is primarily used to measure the load profile error and the absolute error measures peak error. Beyond these
error metrics, we also analyze the effectiveness of the model across aggregations of housing segments, simulating
groups of homes that could share distribution grid resources such as transformers or feeder lines.

3.2.1 Modeled Data

Figure 14 displays load and peak error metrics for the two locations in the modeled test case, which uses synthetic
data for both the test and simulation datasets. Results from the case studies indicate a regional dependence on the
performance of our methodology. The LA County case outperforms the IECC climate zone 5B, Colorado, case
for hourly CV-RMSE, but has similar performance for monthly CV-RMSE and peak error. Hourly profiles are
more sensitive to occupant behavior and therefore are more difficult to align with similar profiles. The geographic
influence on the hourly matches could be due to both the underlying building technologies and the nature of the
datasets. First, LA County has a larger number of building models in ResStock compared to IECC climate zone
5B, Colorado (13,495 vs. 7,871), meaning there are more representations of possible occupant behavior in LA, and
therefore a greater likelihood of identifying similar profiles. Further, the profiles in LA County are generally more
homogeneous than in Colorado, so there is also a greater fraction of models with similar shapes. The majority of LA
County homes are summer peaking, even if electric heating is present, while an electrically heated home in IECC
climate zone 5B, Colorado, dramatically changes the shape of the load. Monthly errors still have similar distributions
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across locations, indicating that the hourly error differences are probably driven by occupant behavior and do not
lead to broader errors at coarser timescales. Note that the weights applied to peak error were determined through
a parametric analysis using AMI data, and refining these values may shift the balance between the peak and CV-
RMSEs for modeled data results.

(a) IECC climate zone 5B, Colorado (b) LA County
Figure 14. Energy error metrics calculated for each test building and their 10 matches. Each point represented in
these distributions is a unique calculation comparing the test building to the simulated match. The whiskers rep-

resent values within 1.5 × IQR (Inner Quartile Range), while the outliers beyond this range are not plotted, as
homes with low electricity usage can skew percentages to very large values, even if the absolute error is small.

3.2.2 Smart Meter Data

Peak error and CV-RMSE were outputted for the smart meter case study in Fort Collins, Colorado, as shown in
Figure 15. The modeled case study (Figure 14) acts as an upper limit to model performance and therefore performs
better compared to the application to AMI data. That said, the peak errors in Figure 15 do outperform the modeled
data, which may indicate that further parameter tuning of the peak weight values could be needed in the modeled
case study, balancing results in favor of the CV-RMSE. These plots summarize metrics across the full AMI dataset,
but this framework is expected to be deployed for aggregations across similar housing segments, which has a large
influence on the final matching performance, as discussed in the text below.

To estimate how the framework performs when applied to different segments of the housing stock, we sampled AMI
data points and their matches and compared the aggregated profiles. This is meant to represent examples of local
grid resolutions, such as a group of homes served by a single secondary transformer, all the homes in a subdivision,
or all the homes on a distribution feeder. We find that error is reduced with increased aggregation of homes due to
smoothing of stochastic events (e.g., occupant behavior and equipment cycling), but is dependent on the features of
the housing segments. Figure 16 shows sets of five buildings aggregated across homogeneous housing segments,
representing homes near each other that might be served by a single secondary transformer. We present five different
samples (one for each row in the figure) per housing segment, as there can be significant diversity for a group of
homes even with common attributes. In general, aggregated modeled data align well with the aggregated AMI data,
but the housing segment influences to what extent this is true. Single-family detached homes align better than the
attached and multifamily homes, most likely because these homes have a higher fraction of HVAC contributing
to the overall electricity load, which is highly dependent on timing of weather, and is naturally built into the time
series features of the model layers. Alternatively, the attached and multifamily homes have fewer exposed walls and
are smaller but still have similar appliance loads as the detached homes, meaning their loads are driven to a greater
extent by occupant events. Given the variability of occupant loads, the individual building load is less predictable,
and that variability is still observed when aggregating to five homes. The build year influences the aggregate matches
in similar ways. The older attached and multifamily homes are better aligned than the newer homes, most likely
because HVAC loads are higher in the older, less-efficient buildings.
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Figure 15. Energy error metrics calculated for each test building and their 10 matches for all 10,000 Fort Collins, Colorado
AMI data points. Each point represented in these distributions is a unique calculation comparing the AMI test building to
the simulated match. The whiskers represent values within 1.5 ∗ IQR, while the outliers beyond this range are not plot-
ted, as homes with low electricity usage can skew percentages to very large values, even if the absolute error is small.

Figure 17 shows the aggregation of the monthly daily profiles for segments of 500 homes. Random assignment
of homes at this level does not result in much variability within a given segment, and therefore only one sample is
taken for each segment. Load alignment and error metrics are generally improved with the increased sample counts;
however, there is still a dependency on building characteristics. Similar to the five-building aggregations, the models
identified for attached and multifamily buildings are associated with a worse fit. This is likely due to the smaller
relative impact of HVAC loads and increased influence from occupant-driven events in smaller and more efficient
homes.

Finally, an aggregation of every AMI data point and its matches are shown in Figure 18. This provides insight into
the ability of synthetic loads to represent a large and diverse population of residential loads. These results are still
specific to the region of interest in Fort Collins, and may not generalize to other locations. Remaining discrepancies
between matched modeled data and AMI data could be due to deficiencies in the ResStock model, insufficient
tuning and model selection for the input inference model, or simplicity in the objective function definition of the
optimization layer.
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Figure 16. Random aggregations of five Fort Collins, Colorado AMI buildings and their matches across four housing seg-
ments. Each row in the plot represents a different random sample of five buildings to illustrate the diversity that can

occur between small groups of homes. ResStock profiles are calculated by averaging the ten matches for a given test
building and then summing those averages for the five test buildings. The CV-RMSEs on the right of each plot com-

pare the (1) hourly average ResStock matches and summed AMI profiles for every hour of the year, (2) monthly totals,
and (3), 12x24 profiles representing the monthly-daily loads shown in the plots and found in the optimization routine.

Figure 17. Random aggregations of 500 Fort Collins, Colorado AMI buildings and their matches across three hous-
ing segments. ResStock profiles are calculated by averaging the ten matches for a given test building and then

summing those averages for the 500 test buildings. The CV-RMSEs on the right of each plot compare the (1)
hourly average ResStock matches and summed AMI profiles for every hour of the year, (2) monthly totals, and

(3), 12x24 profiles representing the monthly-daily loads shown in the plots and found in the optimization routine.

23

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



Figure 18. Aggregation of all 10,000 AMI data points and the sum of the average matches for each data point,
representing alignment of models for an entire city. The CV-RMSEs on the right of each plot compare the (1)

hourly average ResStock matches and summed AMI profiles for every hour of the year, (2) monthly totals, and
(3), 12x24 profiles representing the monthly-daily loads shown in the plots and found in the optimization routine.
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4 Discussion
This report describes a methodology to identify building energy models for utility service areas using AMI load data.
We leverage public ResStock data to generate a model for inferring baseline housing characteristics and align mod-
els with AMI data using hourly and peak electricity outputs. The primary application of the workflow is generating
localized bottom-up models for building scenario analysis. Although the expansion of smart meter infrastructure has
provided valuable information for grid operation and forecasting, very little is typically known about the underlying
building details. This impedes the ability to forecast the impacts of electrification or energy efficiency scenarios,
which are highly dependent on existing technologies. We detailed one implementation of this framework and simu-
lated case studies with modeled and AMI data.

The first layer of the workflow is an input inference model. This step was isolated to ensure better accuracy of identi-
fying high-level inputs that are important when determining how a home responds to technology changes. Although
the inference model predicts only A/C presence, electric heating presence, and electric water heater presence, it
could be expanded to potentially capture other inputs, such as electric vehicle (EV) charging or rooftop photovoltaics
(PV). The final output of the workflow assigns several ResStock building matches to each AMI data point, mean-
ing distributions of the underlying ResStock inputs can be used to convey probabilities of attributes for a building
or group of buildings. We designed the second layer as an optimization routine that minimizes average hourly load
error, peak cooling, and peak heating metrics to assign a set of 10 models to a household with AMI data. This ap-
proach generally reduces error from the assigned models, but aspects of each model may be improved with updates
tailored for specific analyses. Our approach focused on the overall fit of housing attributes and time series data with
consideration for peak heating and cooling loads. Other applications may benefit more from ensuring that peak peri-
ods are most closely aligned, for example. In this case, a more robust input inference model could be implemented,
and an optimization could be used to better minimize peak error instead of relying on it for time series matching and
final housing attribute identification.

The following is general guidance on how aspects of the framework may be updated:

• ResStock data selection: More targeted selection of buildings that align with the true data beyond just geog-
raphy, such as building type or build year. If this information is available, it should be used to filter potential
ResStock matches or apply penalties in the optimization to improve baseline technology predictions and sce-
nario analysis.

• Feature selection: Additional or alternative features can improve usefulness of either layer. Updates to the
input inference model should include those that directly inform the housing characteristics; this could include
additional load information such as natural gas usage or electric vehicle charging load, or other attributes that
are interdependent with housing characteristics. The optimization layer parameters may not need to directly
correlate with housing attributes but may focus on specific periods of interest or grid planning priorities.
Specifically, introducing the timing of peaks to the optimization formulation can help the model align with
peak demand patterns.

• Model selection: Alternatives to the input inference model could be explored to improve housing attribute
predictions, including different classification models, clustering, neural networks, change-point models, and
other methods used in non-intrusive load monitoring.

• Optimization objective function: If the information is available for individual buildings, greater penalty
for deviating from certain attributes could ensure a more accurate baseline set of synthetic loads. This could
help inform the impacts of future scenarios. Additionally, terms that minimize error across aggregations of
buildings may be useful to ensure accuracy at distribution network levels.

• Parameter tuning: Selection of the input inference threshold and weighting of peak terms in the optimization
may be fine-tuned to prioritize specific elements of the model.

• Introduce weather: Weather influences the modeled and AMI load data, however, the response of weather is
not explicitly introduced as an input to the modules. Extracting the relationships between the load and weather
variables could help better identify certain features such as HVAC and envelope efficiency.
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Results are presented to understand the error of energy-related outputs and the accuracy of baseline housing charac-
teristics, both of which are important to consider when modeling scenario impacts. On the individual building level,
calculating energy error is important to confirm suitability of the matches and their housing attributes. Analyzing
energy results at different aggregations helps assess the ability to represent segments of buildings at varying grid res-
olutions. Uncertainty is highest when representing a single building at hourly timesteps due to the stochastic nature
of loads, driven by occupancy behavior. As we increase the number of buildings, variability is averaged and loads
become smoother, resulting in a better match between AMI and modeled data. Aggregating housing segments also
demonstrates the dependency of variables like building type and build year on model performance.

Each ResStock model corresponds to a set of unique housing characteristics and end-use load data, which allows
for results to drive insights in a number of ways. First, the synthetic matches of each AMI data point can be used to
produce distributions of housing characteristics and extract probabilities that a characteristic belongs to a building
or a group of buildings. With this information, we can (1) provide a better understanding of the building stock char-
acteristics, which inform the applicability of electrification and energy efficiency scenarios and (2) simulate those
scenarios and analyze the resulting energy impacts. This can unlock new information for distribution system plan-
ners to anticipate how building scenarios influence loads in the future. Second, modeled end-use load data can be
used to disaggregate load profiles, informing what drives annual and time series energy usage, which could enable
smarter design of energy efficiency and demand-response programs. By generating outputs at the individual building
level, these insights may help inform decisions related to demand-side management and distribution networks.

This report documents and demonstrates an approach to align residential building models using AMI load data. One
area for future work would be to extend the framework’s scope to include commercial building loads. Although
the overall concepts should be similar, key aspects would be different, such as the choice of characteristics in the
inference models. Based on past experience with commercial building AMI data, another key difference is that
commercial building stock model datasets represent whole buildings, whereas commercial buildings are often served
by multiple AMI meters. Another area for further work would be evaluating the framework using AMI data from
other locations around the country that have different building stock characteristics, different weather, and potentially
different occupant behavior. Assessing the sensitivity to varying data characteristics such as temporal resolution or
the inclusion of sub-metered data for PV, batteries, or EVs could further clarify the applicability of the methodology.
Lastly, extending the framework to natively support scenario analysis would help users derive insights more quickly.

26

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



References
Bass, B., E. Ezell, and J. New. 2022. “Using Measured Building Energy Data to Infer Building Characteristics for
Urban Building Energy Modeling.” In 2022 Building Performance Analysis Conference and SimBuild, 10:173–180.
ASHRAE/IBPSA-USA Building Simulation Conference. Chicago, Illinois: ASHRAE/IBPSA-USA, September.
ISBN: 978-1-955516-21-1. https://doi.org/https://doi.org/10.26868/25746308.2022.C021.

Beckel, C., L. Sadamori, T. Staake, and S. Santini. 2014. “Revealing household characteristics from smart meter
data.” Energy 78:397–410. ISSN: 0360-5442. https: / /doi .org/https: / /doi .org/10.1016/ j .energy.2014.10.025.
https://www.sciencedirect.com/science/article/pii/S0360544214011748.

Blonsky, M., A. Nagarajan, S. Ghosh, K. McKenna, S. Veda, and B. Kroposki. 2019. “Potential Impacts of Trans-
portation and Building Electrification on the Grid: A Review of Electrification Projections and their Effects on Grid
Infrastructure, Operation, and Planning.” Publisher Copyright: © 2019, Springer Nature Switzerland AG. Current
Sustainable/Renewable Energy Reports 6, no. 4 (December): 169–176. ISSN: 2196-3010. https://doi.org/10.1007/
s40518-019-00140-5.

Chen, T., and C. Guestrin. 2016. “XGBoost: A Scalable Tree Boosting System.” In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. KDD ’16. San Francisco,
California, USA: Association for Computing Machinery. ISBN: 9781450342322. https://doi.org/10.1145/2939672.
2939785. https://doi.org/10.1145/2939672.2939785.

Deng, Z., Y. Chen, J. Yang, and Z. Chen. 2022. “Archetype identification and urban building energy modeling for
city-scale buildings based on GIS datasets.” Building Simulation 15 (January). https://doi.org/10.1007/s12273-021-
0878-4.

El Kontar, R., J. Robertson, K. N. Cu, A. Grayson, J. Ling, H. Sotiropoulos, and T. Rakha. 2024. “An Open-Source
Framework for Characterizing Urban Energy Models: Integrating Top-Down and Bottom-Up Methods to Predict
Residential Buildings Characteristics.” In Proceedings of the 2024 ACEEE Summer Study on Energy Efficiency in
Buildings. American Council for an Energy-Efficient Economy (ACEEE), August.

Energy Systems Integration Group. 2022. Long-Term Load Forecasting: Workshop Summary. Workshop held by the
Energy Systems Integration Group, June 13-15, 2023, Reston, VA. https://www.esig.energy/event/2023-long-term-
load-forecasting-workshop/.

. 2024. Grid Planning for Building Electrification. Technical report. Reston, VA: Energy Systems Integration
Group. https://www.esig.energy/grid-planning-for-building-electrification.

Keen, J., J. Giraldez, E. Cook, A. Eiden, S. Placide, A. Hirayama, B. Monson, D. Mino, and F. Eldali. 2022. Dis-
tribution Capacity Expansion Planning: Current Practice, Opportunities, and Decision Support, November. https:
//doi.org/10.2172/1898008.

Kissock, K., J. Haberl, and D. Claridge. 2002. Development of a Toolkit for Calculating Linear, Change-Point Linear
and Multiple-Linear Inverse Building Energy Analysis Models. ASHRAE Research Project RP-1050, Atlanta.

Lindberg, K., P. Seljom, H. Madsen, D. Fischer, and M. Korpås. 2019. “Long-term electricity load forecasting:
Current and future trends.” Utilities Policy 58:102–119. ISSN: 0957-1787. https://doi.org/https://doi.org/10.1016/j.
jup.2019.04.001.

McLoughlin, F., A. Duffy, and M. Conlon. 2015. “A clustering approach to domestic electricity load profile char-
acterisation using smart metering data.” Applied Energy 141:190–199. ISSN: 0306-2619. https : / /doi .org /https :
//doi.org/10.1016/j.apenergy.2014.12.039.
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