
Evaluating the performance and reliability of screen-
printable fire-through copper paste on PERC solar cells

Suchismita Mitra1, Bill Nemeth1, Steve Johnston1, Harvey Guthrey1, Peter Hacke1, Ruvini 
Dharmadasa2, Thad Druffel2, Kevin Elmer2, Apolo Nambo2, Dustin Williams2, Ajay 

Upadhyaya3, Vijaykumar D Upadhyaya3, Ajeet Rohatgi3, Paul Stradins1

1National Renewable Energy Laboratory, Golden, USA
2Bert Thin Films, Louisville, USA

3Georgia Institute of Technology, Atlanta, USA

14th Silicon PV 2024, France



Motivation

• Silicon PV is responsible for >170 GW of 
renewable energy

• 40 TW of energy needed for transition of our 
planet to 100% renewables

• Global production for Ag needs to continue for 
the next 30 years for global transition to 
100% renewables.

Silver is the most-expensive 
non-silicon material used in 
current c-Si technologies
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https://www.changeanyway.com/is-solar-electricity-sustainable/
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Why do we need an alternative material?
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Copper (Cu) is an excellent alternative to Ag

 100 times cheaper than Ag

 Exhibiting similar electrical resistivities 

• (ρAg=1.6 μΩ·cm; ρCu=1.7 μΩ·cm)

 1000x more abundant

A bifacial Silicon Heterojunction solar cell demands ~210 mg usage of silver paste 
(9 busbars, 24.5%, bifacial, M6 size wafer) 
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Silver consumption in solar cells and modules

Ref: Hallam et al., Progress in Photovoltaics: Research and Applications 31, no. 6 (2023): 598-606.
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Electroplating or Screen Printing?
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Electroplating is the most common technique for 
copper metallization on silicon solar cells!

-Highest efficiency achieved for copper plated 
bifacial SHJ cell C. Yu et al., Nature Energy 8, 1375 (2023)

• 26.41% (certificated by ISFH) 
• M6 size wafer (274.5 cm2) 

 
-Challenges in electroplating:

• Plating process, waste
• Copper-induced degradation 
• Reliability 

Fig. Measured IV characteristics under standard test conditions

Screen printing is the most dominant metallization technology (>95%) for c-Si solar cell mass 
production and will continue to be the mainstream metallization technology
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Challenges in preparing Cu paste

Pastes include
 Metal powders: For metallization
 Glass frits: To etch through the ARC
 Organic binders and solvents : For processability of the pastes.

Firing of pastes need high temperatures (>600 oC) 
 To remove the organics, 
 To etch the ARC 
 To sinter the metals. 

At high temperatures
 Copper can oxidize leading to high resistivity
 Copper can diffuse into Si and cause deep level impurities
 Need of Cu diffusion barrier: laser ablation, deposition, silicide barrier formation, etc. ?
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Rheology of Copper Paste

Rheology is 
controllable and is 
being optimized for 
fine line printing 
(< 30 µm).

Screen Parameter Value
Mesh 400-500 mesh, 18 µm wire
Screen tension 16-19 N/cm
Emulsion thickness 12-20 µm
Print gap 1.2-2.0 mm
Print speed 75-150 mm/s
Squeegee pressure 6-10 kg
Squeegee durometer 70-80
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PERC Cells with fire-through Cu paste by Bert Thin Films

Fig. Schematic Structure of 
selective emitter PERC Cell

Table: Details of cell structure
Parameter Selective Emitter Homogeneous Emitter
Cell Size 166x166 mm2 (M6) 166x166 mm2 (M6)
SiNx thickness 70-80 nm 70-80 nm
Emitter Sheet Resistance 150-160 Ω/□ 70-80 Ω/□
Selective Emitter SE 110-120 Ω/□ none
Backside Condition Polish + laser opening Al 

print/AgAl print
Polish + laser opening Al 

print/AgAl print
Busbar Number 9 9
Width of Finger Pattern 65 µm 55 µm
Width of Bus Bar Pattern 0.45 mm 0.45 mm
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Firing process
• Al contact at rear side is printed, dried and fired 
• Cu paste is printed and dried
• Front Cu contact fired (peak temperature varied between 550oC to 630oC)
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Early Studies on Contact Formation (16 cm2 devices)

Fig.  Cross-sectional SEM-Image of Cu finger

Fig.  Contact resistance (ρc) after firing at different 
temperatures for initial versions of the Cu paste 

(Firing done in a 3-zone furnace, Temperature of zone 1 &2 
was 450oC with belt speed =250 inch/min)
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Interface Studies by Energy Dispersive X-ray Spectroscopy (EDS)

Observations:

• Thick oxide layer between Copper 
and Silicon

• This layer likely acts as Cu diffusion 
barrier

• Interface chemistry controls 
electronic properties
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Copper

Oxygen

Silicon
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Early pastes: J-V parameters for M6 sized PERC Cells

Observations:

• Mean Voc is ~ 5mV lower for 630 
°C, but the Rs is lowest and hence, FF 
and efficiency is highest 

Fig.  Distribution of IV parameters for M6 Size cells fired at 
three peak temperatures namely, 590°C , 610 °C and 630 °C
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17+ Year Old Furnace (M2) 

 Designed for smaller wafer sizes.

 Temperature uniformity limiting performance.

Champion Cell on M6 size wafer: 
Jsc  = 38.32 mA/cm2  

Voc = 0.657 V 
FF = 76.14% 
η  = 19.17%

EL

PL
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Biased PL imaging reveals firing non-uniformities; Series Resistance Mapping

Fig.  (a) Rs map obtained from biased PL images at two different intensities 
          (b) Histogram showing the distribution of Rs over the entire surface
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Improved paste study: Initial Cell Efficiency correlates with Fill-factor variations. 
       FF  controlled by J02 and Rser

FF varies within 9% abs. in series 
studied. 
(12% relative, >> than Voc, Jsc)

Voc varies within 10 mV (1.5% relative)
Short circuit current varies within 1.5 % 
relative.

FF is affected  by Rseries between 0.3 and 1.7 Ohm-cm2 and Pseudo-FF (varies ~ in the 
same range as FF plus 4% abs)

FF and pFF are 
controlled by J02 
junction 
recombination; 
anticorrelate with J01

FF vs RseriesFF vs pFF FF vs Rshunt

FF vs Jo2

pFF vs Jo2

FF vs Jo1
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Observations:

• In Devices with Cu paste 1, Voc 
degraded severely by 7.44% after 
500 hrs of Damp heat (DH) testing.

• In Devices with Cu paste 2, Voc 
degraded by 1.67% in the first 500 
hours but didn’t decay further in 
1500 hours.

Reliability Studies: earlier pastes, Damp Heat

Fig. Open –Circuit PL imaging and Voc degradation after 
DH (85 deg C/85% Humidity)- 4 cmx4cm modules
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Damp Heat – improved pastes

Copper contacts were 
compared to commercially 
sourced silver contacts in 
micro-modules.

Measured at NREL.
 16 cm2 cells encapsulated in to 

6.4 cm × 8.3 cm micro-modules.
 24 µm Screen Opening.
 Glass/Glass module structure 

with Thermoplastic Polyolefin 
(TPO).

 5 micro modules per condition.
 Smart Wire Connection 

Technology (SnBiAg solder) 
used for the front.

 Manually soldered (SnPb) 
coated ribbons used on the rear.

 Modules used a desiccated 
polyisobutylene tape sealant on 
the edges.

Yellowing of encapsulant for all (including silver 
contact) samples observed over time.
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Improved paste Cu-printed cells in a minimodule: 
Minimodules degrade 3.5% relative after 1000h Damp Heat Test

Efficiency dropped 
by 3.5% relative in 
1000h DHT 

Jsc drops by 0.5 
mA/cm2 (2%) 



Minimodule degradation is governed by Fill-factor change. FF is again controlled mostly by J02

Both FF and pFF degrade to similar extent (1% - 3% relative):
FF/pFF ratio is almost constant

Rseries is ~ unchanged near 1.2 Ohm-cm2

pFF

FF

Rshunt drops ~ 3x
to ~ 1kOhm-cm2

J02 increases > 2x 
to 2.8E-8 A/cm2
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Conclusions

 Successful demonstration of large area selective emitter PERC solar cells using Cu fire-through paste with 
FF ~75% and ~19%

 Paste chemistry results in oxide-based Cu diffusion barrier, leading to good reliability of the devices: 
1000h DHT  3.5% efficiency drop. The additional series resistance still needs to be lowered.

 Printed and fired cell performance is governed mostly by pFF, especially J02 ; same for DHT degradation.

 Further improvement in printing and firing optimization for lower series resistance and higher FF.
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